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Immune-Mediated Inflammatory
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Piercarlo Sarzi Puttini1,4, Paolo Fiorina1 and Sandro Ardizzone3
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Patients with Immune-Mediated Inflammatory Diseases (IMIDs) are known to

have an elevated risk of developing cancer, but the exact causative factors remain

subject to ongoing debate. This narrative review aims to present the available

evidence concerning the intricate relationship between these two conditions.

Environmental influences and genetic predisposition lead to a dysregulated

immune response resulting in chronic inflammation, which is crucial in the

pathogenesis of IMIDs and oncogenic processes. Mechanisms such as the

inflammatory microenvironment, aberrant intercellular communication due to

abnormal cytokine levels, excessive reparative responses, and pathological

angiogenesis are involved. The chronic immunosuppression resulting from

IMIDs treatments further adds to the complexity of the pathogenic scenario. In

conclusion, this review highlights critical gaps in the current literature, suggesting

potential avenues for future research. The intricate interplay between IMIDs and

cancer necessitates more investigation to deepen our understanding and

improve patient management.
KEYWORDS
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1 Introduction

The term Immune-Mediated Inflammatory Diseases (IMIDs) groups apparently

unrelated multifactorial and polygenic diseases with multi-organ involvement, all sharing

an aberrant, severe and continuous immune dysregulation associated with high levels of

inflammatory cytokines (1). IMIDs affect a variety of organs and tissues, including the skin

(e.g., psoriasis, atopic dermatitis), eyes (uveitis), joints [e.g., rheumatoid arthritis (RA)],

internal lumens (e.g., inflammatory bowel disease (IBD), i.e. Crohn’s disease (CD) and

ulcerative colitis (UC), asthma) (2), white and gray matter of the central nervous system

[e.g., multiple sclerosis, neuromyelitis and autoimmune epilepsy (3)], and endocrine glands
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(e.g., type 1 diabetes (T1D), Addison’s disease). Some of these

conditions arise from autoimmune mechanisms, while others result

from hypersensitivity reactions. These aberrant immune responses

lead to inflammation, tissue damage, and functional impairment of

the involved organs or systems. IMIDs are prevalent in 5–7% of

populations in developed Western countries, and, as globalization

continues to expand, their occurrence is becoming more common

in developing countries and among immigrant populations (4).

IMIDs reduce the quality of life, are potentially disabling and

represent an economic burden for health care systems. In

addition, they increase the risk of developing cancer and the big

question is why.

In this narrative review, we begin with a brief overview of the

common etiological factors in IMIDs and cancer and then focus on

the association between cancer and three common IMIDs, such as

IBD, RA and T1D, and cancer. We performed a worldwide review

of studies on IMIDs and cancer using three electronic medical

databases, i.e. PubMed, EMBASE, and Web of Science. We selected

the following keywords: “Immune-Mediated Inflammatory

Diseases”, “IMIDs”, “IBD”, “RA”, “rheumatic diseases”, “T1D”,

“cancer”, and “malignancy”. We included studies published in

English, with available abstracts, and excluded case reports.
2 Common etiologic factors in IMIDs
and cancer

Environmental factors play a role in the etiology of IMIDs in

genetically predisposed individuals. Epidemiological studies have

highlighted smoking, dietary habits, drugs, microbial dysbiosis,
Frontiers in Immunology 02
pollution and emotional stress (5) as common risk factors in the

onset of IMIDs. Intriguingly, these environmental factors have a

role also in tumorigenesis (6) (Figure 1).

A clear association has been reported between smoke and RA,

CD, and psoriasis (6) mainly because of immune dysregulation.

Indeed, active tobacco smoking impacts the immune system by

decreasing circulating natural killer and CD4+ T cells and

increasing CD8+ and CD8+ memory lymphocytes (7). Moreover,

smoke endorses epigenetic changes to trigger the development of

autoimmunity (8). The causal relation between smoke and cancer is

well established, and is due to the fact that several of its components

are carcinogens that cause permanent somatic mutations while

others promote cell proliferation and/or prompt inflammation (9).

Processed foods, additives as well as deficiencies in micro- and

macronutrients trigger inflammatory responses and disrupt

immune response (10). For example, specific nutrients play key

immunoregulatory roles. L-Arginine, for instance, acts as a critical

nutrient and signaling molecule that shapes immune responses

through the production of nitric oxide, T cell activation, immune

cell proliferation, and modulation of immune suppression (11).

Accordingly, L-Arginine depletion impairs anti-tumor immune

responses, primarily by compromising T cell function (12).

Additionally, zinc and vitamin A exhibit anti-inflammatory effects

through the inhibition of the nuclear factor (NF)-kB pathway and

also control the rate of antibody synthesis (13). Indeed, zinc and

vitamin A depletion disrupts normal cellular processes, impairs

immune surveillance, and promotes environments conducive to

cancer development and progression. Nutrition also shapes the

microbiota, the community of microorganisms that colonize the

skin, the gut, and the respiratory mucosa (14). The microbiota
FIGURE 1

Genetic and environmental factors contribute to the etiopathogenesis of IMID. The environmental factors that promote IMIDs are the same as those
that cause cancer. The boxes on the right summarize the mechanisms involved. Everything converges on a significant dysregulation of the immune
system, with inflammation being a key event. For details see the text. Image created with BioRender.com.
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influences tissue homeostasis and metabolism as well as the

development of several immune cells including Th1, Th2, Th17,

and immunosuppressive Treg cells (15). Not unexpectedly, gut

microbiota is significantly different in IMIDs’ patients vs healthy

individuals (16) and, while each specific disease has its own

characteristic microbic signature, there are common dysbiotic

alterations in different IMIDs (16). Considering that the

microbiota also affects cell proliferation and death, it is not

surprising that its composition in cancer-associated areas is

different from the neighboring healthy tissue (17, 18).

Accordingly, the microbiota is mechanistically involved in cancer

initiation, progression, metastasis, and response to therapy (19).

While some microorganisms produce genotoxins and reactive

oxygen species, leading to oxidative stress and direct DNA

damage (20), others release metabolites that promote tumor cell

proliferation (21, 22). Moreover, dysbiosis disrupts the immune

system balance by regulating immune cell activity, including T-cells

and regulatory cells, thus impairing the body’s ability to fight

malignancies (23). It is also relevant to highlight that some

bacteria metabolize chemotherapeutic drugs, thus inducing

resistance (24), and that dysbiosis impairs immunotherapy by

creating an immunosuppressive environment (25). Therefore,

studies should be encouraged to individuate microbial drivers in

the progression from IMIDs to cancer.

Pollution is emerging as a novel player in IMIDs (26). Beyond

inducing oxidative stress and long-term inflammation, pollutants

dysregulate DNA methylation and Particulate Matter (PM) interacts

with the Aryl hydrocarbon receptor (AHR) pathway, known to be

involved in inflammatory processes and adaptive immune responses.

In particular, the binding to AHR decreases Treg while augmenting

Th17. Pollutants activate CD4+ T lymphocytes with the consequent

increased production of pro-inflammatory cytokines, and also induce

epigenetic modifications in T cells. For instance, the incidence of RA

is higher in urban than in rural areas and this is due to high

concentrations of PM2.5 and nitrogen dioxide (NO2) (27).

Increased exposure to NO2, PM2.5 and ozone (O3) during

childhood is also associated with increased risk of overall IBD (28).

Persistent organic pollutants might play a role in T1D etiology,

because they impair b cell function and viability (29).

Pollutants are also implicated in tumorigenesis. Some of them

damage DNA (30), thereby activating oncogenic mutations, while

others, such as PM2.5, promote cancer by inducing the expansion of

cells with pre-existing oncogenic mutations (31). It is intriguing that

lung malignancy is more frequent in patients with RA (32, 33), an

issue that raises the question about the links between PM2.5 and the

onset of the disease eventually complicated with the development of

lung cancer.

Also chronic psychological stress accounts for a place in the

pathogenesis of IMIDs (34–36), since it dysregulates innate and

adaptive immune responses (37, 38). Moreover, the diagnosis of

IMIDs engenders chronic psychological stress that, on one side,

might generate mental health concerns (39), on the other one

sustain chronic inflammation.

Both in IMIDs and in cancer, genetic predisposition is pivotal.

Over the last twenty years, the genetic landscape of IMIDs has been

intensely explored. The human leukocyte antigen (HLA) complex,
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located on chromosome 6, encodes proteins that play a crucial role

in regulating the immune system by presenting antigens to T cells.

Variations or polymorphisms in HLA genes are strongly associated

with susceptibility to many IMIDs, because they influence how the

immune system recognizes self versus non-self, leading to immune

dysregulation and chronic inflammation in IMIDs. Moreover,

hundreds of non-HLA genetic variants have been unraveled (40).

For example, the locus containing T lymphocyte-associated antigen

(CTLA)-4 is associated with many IMIDs (41). Accordingly,

targeting the CTLA-4 pathway, often used in tumor

immunotherapy, leads to multi-organ autoimmune reactions (42,

43). Genome-wide association studies have demonstrated a

remarkable overlap in the loci predisposing to IMIDs (44, 45). It

is known that, differently from autoantibody-negative IMIDs, such

as psoriasis and CD, autoantibody-positive IMIDs, among which

RA, strictly cluster with each other, as demonstrated by the evidence

that, among the 150 genetic loci associated with RA, only a few are

specific to the disease (46). All this knowledge has disclosed novel

pathways implicated in the pathogenesis of IMIDs and has

pinpointed the involvement of genes that might offer insights into

the higher risk of developing cancer in IMIDs patients.
3 Immune dysregulation in IMIDs:
an overview

Innate and adaptive immune dysregulation, driven by

environmental factors in genetically predisposed individuals, is

central to generate cytokine dysregulation, the decisive event in

the pathophysiology of IMIDs. Cytokine signature hubs have been

described in single IMIDs (2). However, an appraisal of the distinct

mechanisms involved in each individual disease is beyond the scope

of this article. Our aim is to provide a synthetic overview on the

common aspects of the complex immune dysregulation occurring

in IMIDs and the connections with cancer.

In addition to the classical pro-inflammatory cytokines

interleukin (IL)-1, IL-6 and Tumor Necrosis Factor (TNF)a,
whose role in IMIDs has been amply described (47), the IL-23/17

axis is emerging as a common feature in several IMIDs among

which IBD, psoriasis, uveitis, psoriatic arthritis and evidence are

accumulating about its role in RA (48, 49). Upon exposure to a pro-

inflammatory milieu, IL-23 is synthesized by several types of cells,

including dendritic cells and macrophages, and acts on IL-23

responsive cells, which include neutrophils, natural killer

lymphocytes, mast cells, macrophages, memory T cells, all

localized at the barrier surface, and also cells involved in

transmitting biomechanical forces (50–52). IL-23 promotes the

release of IL-17, which induces pro-inflammatory mediators and

cooperates with other molecules in triggering and chronicizing

inflammation (53). By transcriptional and post-transcriptional

regulation, IL-17 stimulates the release of TNFa, a downstream

effector common to many IMIDs (2), IL-1, IL-6, IL-8 and other

cytokines and chemokines, thus unbalancing the complex

communication network that, tightly tuned (54) in physiological

conditions, is radically deregulated in IMIDs. As an example, IL-1

acts synergistically with IL-23 to perpetuate the continuous high
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production of IL-17 (55) and, consequently, chronic inflammation

(55). Therefore, one would expect the inhibition of IL-17 to be a

success, but this is true in psoriasis and ankylosing spondylitis, and

not in CD (56, 57) where, paradoxically, the clinical course is

aggravated. Similarly, in spite of the fact that TNFa is upregulated

in most IMIDs, not all the patients respond to anti-TNFa therapy,

and many of the initially responders lose response over time (58). It

is likely that anti-TNFa antibodies promote a change in innate and

immune cell infiltrates so that TNFa independent inflammatory

pathways emerge and keep the disease active.

It is worth mentioning that chemokines are important actors in

several IMIDs, from RA (59) to IBD (60), from LSE (61) to psoriasis

(62) and T1D (63), as they recruit immune cells into the tissues and

regulate their reciprocal interactions. Of note, the chemokine/

chemokine receptor axis is also implicated in tumorigenesis,

because it controls cell proliferation, stemness, survival and

neovascularization, and contributes to the generation of an

immunosuppressive tumor microenvironment (64).

Dysfunction of immune checkpoints in IMIDs is beginning to

draw some attention. An imbalance between co-stimulators, such as

CD28 and CD40, and co-inhibitors, among which CTLA-4 and

programmed cell death (PD)-1, contributes to immune

deregulation and inflammation (65), as demonstrated by

immune-related adverse effects, which include IBD and dermatitis

(66), experienced by individuals receiving checkpoint inhibitors to

treat malignancies (67). CTLA-4, expressed by activated and

regulatory T lymphocytes, has a relevant role in maintaining

immune homeostasis. Abatacept, a fusion protein consisting of

the extracellular domain of CTLA-4 and a genetically engineered

fragment of the Fc region of human immunoglobulin G1 (IgG1), is

efficacious in RA, because it inhibits the co-stimulation of T cells

(68). In T1D it modifies the pattern of immune cells and enhances

insulin secretion, but it does not delay the progression to glucose

intolerance (69). In IBD (70) and psoriasis (71), abatacept is not

effective, thus highlighting on one side the complexity of

approaching IMIDs, on the other the current gaps in our

knowledge. PD-1 is another immune checkpoint receptor which

is expressed predominantly by T lymphocytes (72). When PD-1

interacts with its ligands PD-L1 or PD-L2, it elicits an inhibitory

response by targeting T cell receptor signaling (73). Since many

malignant cells overexpress the PD-1 and its ligands, this pathway is

a target for immunotherapy. PD-1 is upregulated in peripheral T

lymphocytes in RA (74) and in the professional immune cells of the

lamina propria in IBD (75). However, a reduced binding of PD-1 by

PD-L1 may down-regulate pathogenic immune responses. Indeed, a

phase 2 trial in patients with RA has recently shown that the PD-1

agonist monoclonal antibody peresolimab is safe and improves the

clinical course of the disease (76).
4 Chronic inflammation in IMIDs
and cancer

The connection between IMIDs and some cancers is well

known, but the mechanisms involved remain unclear and are

often controversial. As mentioned above, infection, diet,
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environment are common to IMIDs and cancer, and lead to

chronic inflammation that plays the lion’s share in the

development of malignancies.

A link between inflammation and cancer has been appreciated

for a long time, since when Rudolf Virchow wrote that “chronic

irritation and inflammatory hyperplasia predispose to cancer

development” (77). Nowadays, prolonged inflammation is

considered one of the hallmarks of cancer (78). An inflammatory

microenvironment can contribute to tumorigenesis by increasing

oxidative stress, which damages DNA, by activating prosurvival

pathways and promoting growth, migration, invasion of tumor

cells, and also angiogenesis, thereby supporting tumor progression

locally and at metastatic sites (79–81).

The altered intercellular communication due to the upheaval of

the cytokine network has a prominent role in the progression

toward neoplasia. Inflammatory cytokines activate the

transcription factor NF-kB, which on one side fuels cytokine

production, on the other inhibits epithelial apoptosis. They also

induce another transcription factor, i.e. STAT3, which not only

contributes to the maintenance of an inflammatory environment

but also acts on the epithelium stimulating growth and protecting

from apoptosis (82). In addition to the prototypical inflammatory

cytokines such as TNFa, IL-1s and IL-6 whose role in cancer has

been largely described, novel players are entering the scene. The IL-

23/17 pathway, which is implicated in several IMIDs, not only

promotes and maintains inflammation, but also weakens the barrier

function of the skin, gut and lung, and reduces CD8+ lymphocyte

antitumor immunosurveillance, both factors that contribute to

cancerogenesis (53). A seminal finding is that IL-17A is necessary

and sufficient to activate the hypoxia inducible factor (HIF)1a (83),

thus demonstrating the coupling of inflammatory, metabolic, and

migratory programs as well as angiogenesis (84), all events clearly

involved in cancer. IL-17 also stimulates epithelial stem cell

proliferation after injuring the tissue with a carcinogenic agent

(85) and the inhibition of IL-17 prevents colon cancer in an

experimental murine model of colitis (86).

Attention has been devoted also to IL-36, a member of the IL-1

superfamily, which is upregulated in the synovium of patients with

RA, in psoriatic skin, in the mucosa of patients with IBD, in the sera

of patients with SLE (87–89). Its role in cancer is controversial, as it

displays both anti and pro tumor properties depending on the type

of neoplasm and its level of expression (90). IL-36 markedly

increases and exerts pro-tumorigenic effects in lung and colorectal

cancers (91, 92). Of interest, colon cancer cells without the IL-36

receptor grow slower and express lower amounts of Ki-67 than

controls (91). A recent study shows that increased IL-36 expression

is associated with a decrease of 5 year survival rates in colon cancer

patients (92).
5 Common cues in IMIDs and cancer

While in the early stages of cancer the immune system identifies

and controls the tumor cells, in the later stages anti-tumor immune

cells are corrupted into tumor-promoting immune cells that sustain

survival, growth, invasiveness of tumor cells and generate chronic
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inflammation. In the end, tumor cells escape immune surveillance

through the activation of various anti-detection pathways (93).

These events are orchestrated by the cytokine storm generated

within the tumor microenvironment (94–96). Among the various

mechanisms of evasion of anticancer immunity, a light is shed on

myeloid-derived suppressor cells (MDSC), which derive from

neutrophils and monocytes in response to high levels of

inflammatory cytokines (66, 97). MDSC are potent inhibitors of

immune responses mediated by natural killer cells, B and T

lymphocytes, thus facilitating the escape of tumor cells. The

number of MDSC rises in various pathological conditions, such

as cancer, inflammation, and transplantation (98, 99). Notably,

MDSC accumulate in the lesions occurring in IMIDs and their

number is proportional to the severity of the disease (100). The

number and activity of MDSC are increased in the blood of T1D,

RA and IBD patients (101–103). To the best of our knowledge, there

are no studies correlating MDCS, IMIDs and cancer risk, albeit this

issue is very challenging and deserves further investigations. The

link between autoimmunity and neoplasia is further supported by

increased risk of lymphoma and gastric cancer in individuals with

mutated CTLA-4 and, consequently, with dysregulated immune

responses (104).

It should also be underscored that tissue damage in IMIDs

triggers a reparative response that represents a double edged sword.

Whereas the primary aim is to heal the injured tissue, an exuberant

and unleashed production of growth factors together with the

myriad of inflammatory mediators overstimulates cell

proliferation, bolsters transformation, and promotes the

development of dysplasia that can progress into malignancy

(105). Also stromal cells play a role in the attempt of healing the

tissue and, eventually, in the onset of cancer. Fibroblasts and

myofibroblasts deposit collagen, fibronectin, laminin and

continuously remodel the extracellular matrix by releasing

proteases in IMIDs and, even more, in cancer (106).

Another common event in IMIDs and cancer is pathological

angiogenesis. Inflammation and cancer share molecules that

support the formation of a new vascular network, such as

prostaglandins, cytokines, chemokines and growth factors, with a

prominent role of the members of the vascular endothelial growth

factor (VEGF) family (107), secreted by platelets, activated T

lymphocytes, neutrophils, macrophages, dendritic cells and

tumor cells.

The inflammatory environment suffices to explain the strong

association existing between organ-specific immune-mediated

diseases and the risk of local cancers, in agreement with the idea

of tumors as wound that do not heal (108). However, IMIDs

moderately increase oncologic risk also in distant organs and in

different systems (see below). Again, lifelong immune dysregulation

and altered cytokine profile are likely to be implicated.

Another interesting, albeit overlooked, issue is that cytokines

also activate the hypothalamic–pituitary–adrenal axis (109),

significantly shaping immune function and consequently

inhibiting antitumor immune responses. This effect is further

magnified by the common anxiety or depression experienced by

patients with IMIDs, who must live with a chronic, recurrent, and

disabling disease (110).
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6 IMIDs and cancer: the example
of IBD

It is well known that IBD predispose to intestinal cancers, a

finding that does not surprise because the persistent activation of

the transcription factors NF-kB and STAT3 in the lesions fuels

inflammation and upregulates genes implicated in tumor cell

survival, proliferation and invasion. Intestinal inflammation can

also affect the brain through the brain-gut axis, resulting in the

activation the hypothalamic–pituitary–adrenal system, which

impairs the antitumor immune defenses and promotes cancer

occurrence. Indeed, malignancies are the second most common

cause of death in IBD patients after cardiovascular diseases both in

male and female (111).

Long-standing UC and CD colitis cause an approximately 2–3-

fold increased risk of colorectal cancer (112). Typically, neoplasms

develop from dysplasia originating on inflamed areas, in the

sequence inflammation-dysplasia-adenocarcinoma differently

from the adenoma-carcinoma sequence described in sporadic

colon cancer (Figure 2). Accordingly, dysplasia is the most

reliable marker of increased risk of colon cancer in IBD (113). Of

note, mutant cells bearing genomic and epigenomic alterations are

detectable even before the onset of dysplasia. Apart from the low

rate of KRAS mutations, in IBD associated colon cancer driver

genes are the same as in sporadic colon cancer, but the timing of the

mutations is different. P53 mutation or silencing occurs very early

in the process, eventually before the onset of dysplasia, whereas

APC is mutated or lost later and less frequently than in sporadic

colon cancer (114). It is noteworthy that genome wide studies

demonstrate an important increase in mutations in the 5’

untranslated region of p53 in IBD associated colon cancer (115).

The same study individuates as a unique feature in IBD colon

cancer the hypermethylation and consequent loss of function of the

polymeric immunoglobulin receptor (PIGR), which is responsible

for the transport of IgA and IgM through the epithelium (116). This

event can be interpreted as a loss of the epithelial properties of

tumor cell, as further supported by the downregulation of genes

promoting epithelial differentiation. In parallel, genes involved in

modeling the extracellular matrix are upregulated. All together

these alterations facilitate the acquisition of a mesenchymal colon

cancer subtype. This subtype is linked to drug resistance (117),

reduced survival and is characterized by the presence of a high

number of Treg, indicating that the microenvironment is highly

immunosuppressive (118). In the case of colon cancer arising in

patients with UC, a systems biology approach (119) revealed the

upregulation of two chemokines, namely CXCL1 and IL-8, the

matrix metalloproteinase (MMP)-7, the serine protein urokinase-

type plasminogen activator, the tissue inhibitor of metalloproteinase

(TIMP)-1, and the solute carrier 16 member 9 (SLC16A9) which

transports monocarboxylic acids. This molecular signature is

proposed as specific for colon cancer in UC and further

corroborates the dominant role of inflammation and matrix

remodeling pathways.

CD is also associated with a high risk of developing small bowel

adenocarcinoma (120), which occurs mainly in young adults and

has a poor prognosis (121). KRAS mutation and p53 loss of function
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are common characteristics of sporadic and CD related small bowel

cancer, whereas p16 positivity, the nuclear accumulation of b-
catenin and mutations of isocitrate dehydrogenase (IDH)-1 seem

to be specific in CD small bowel cancer (122).

Although much rarer, intestinal B cell lymphoma, which is

uncommon in the general population, is a dreadful complication in

IBD patients, mainly in male older than 65, after a mean average of

12 years from the diagnosis (123). Chronic inflammation, therapy

with the immunosuppressant thiopurine and Epstein Barr virus

positive lymphocytes are the main driving factors for uncontrolled

B cell proliferation ultimately progressing to lymphoma.

Patients with long lasting IBD have a slightly increased risk of

extralocal malignancies (124), among which cholangiocarcinoma

(125, 126). It frequently develops in the context of primary

sclerosing cholangitis, a chronic inflammatory disease, according

to the inflammation-dysplasia-cancer sequence. Even though the

pathogenic mechanisms remain unclear, it is reasonable to propose

the involvement of altered microbiota and metabolism in the

inflamed gut, along with an altered bile acid profile due to

impairment of the enterohepatic axis, as described in IBD (125).

Moreover, a recent metanalysis of cohort studies confirms previous

reports about the increased risk of prostate cancer in IBD, in

particular in European UC patients (127). In addition to the
Frontiers in Immunology 06
tumor promoting role of the aberrant microbiome in UC, chronic

intestinal inflammation fosters genetic instability and the

upregulation of pro-cancer signaling pathways in the prostate (128).

7 IMIDs and cancer: the example of
rheumatic and
musculoskeletal diseases

The association between rheumatic and musculoskeletal

diseases (RMDs) and neoplasm is a dynamic and continuously

evolving field of scientific research. While certain RMDs, such as

RA, SLE, Systemic Sclerosis (SSc), Sjögren’s syndrome, and

inflammatory myopathies are recognized to have a heightened

association with an increased risk of cancer (129), the underlying

mechanisms remain multifaceted. Undoubtedly, a significant factor

contributing to the increased cancer risk is the presence of chronic

inflammation and associated tissue damage (130). For instance, the

risk of lymphoma in patients with Sjogren’s syndrome is known to

correlate with disease activity and severity (131). Similarly, in the

case of RA, elevated markers of inflammation, such as erythrocyte

sedimentation rate and C-reactive protein, have been associated

with an increased risk of neoplastic disease (129, 132).
FIGURE 2

A schematic diagram illustrating the molecular mechanisms in sporadic (CRC) and IBD-related colorectal cancer. CRC arises from the accumulation
of mutations in oncogenes and tumor suppressor genes, driving the progression from single preneoplastic cells to adenoma and ultimately to
carcinoma. In contrast, IBD-related colorectal cancer is driven by chronic inflammation, which leads to the production of proinflammatory cytokines
and the buildup of reactive oxygen and nitrogen species, promoting genomic aberrations and instability. This process results in mutations in
oncogenes and tumor suppressor genes. Mutations in p53 lead to low-grade dysplastic mucosa, with subsequent mutations in KRAS contributing to
the progression from low-grade to high-grade dysplasia. Finally, mutations in the APC gene culminate in the development of cancer. Image created
with BioRender.com.
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Another hypothesis suggests that natural immune responses

against cancer cells may trigger autoimmunity and rheumatic

disease (133). This theory is supported by cases where cancer

rapidly develops in patients with dermatomyositis and SSc, often

occurring within three years of the onset of autoimmune disease.

Moreover, the presence of specific autoantibodies, such as anti-RNA

polymerase III and anti-RNA-binding region-containing protein 3

(RNPC3) in SSc (134, 135), or anti- transcription intermediary factor

1 (TIF1)-g and anti-nuclear matrix protein 2 (NXP2) in

dermatomyositis, could help to stratify patients at higher risk of

cancer, as a strong association has been demonstrated (136, 137). In

addition to inflammation and immune response, the inability to clear

viral infection, as observed in SLE, can also elevate the risk of certain

cancer. For example, the higher susceptibility of SLE patients to

human papillomavirus infection is believed to contribute the

increased risk of cervical cancer in this population (138).

Sjögren’s syndrome is primarily associated with an elevated risk

of developing lymphoma, notably non-Hodgkin lymphoma (with a

prevalence of around 5%). The risk of lymphoma is estimated to be

5-10 times greater than that of the general population (139).

However, a recent meta-analysis by Zongh et al. showed that

patients with Sjögren’s syndrome also have an increased risk of

solid tumors, such as lung, thyroid, and non-melanoma skin

cancers (140).

Individuals diagnosed with inflammatory myopathies have long

been recognized as having a higher likelihood of developing specific

cancer types, with adenocarcinoma being the predominant

histological tumor type (141, 142). The period of greatest cancer

susceptibility occurs within three to five years before and after the

diagnosis of myositis, and cancer risk appears to be contingent on

the specific subtype of inflammatory myopathy. Individuals with

dermatomyositis exhibit a 5.5-fold increased cancer risk, while

those with polymyositis display a 1.6-fold elevation (142–144).

SSc is characterized by an increased age- and sex-adjusted risk

of developing cancer, often ranging from 1.5 to 4 times higher than

that of the general population (145, 146). The relationship between

SSc and cancer risk is thought to be related to the damage caused by

SSc in various body sites, potentially predisposing individuals to

malignant transformation. This may explain why esophageal and

lung cancers are more frequently observed in these patients, given

the association of gastroesophageal reflux and interstitial lung

disease with the pathology (147, 148).

There is evidence suggesting association between SLE and an

increased susceptibility to certain malignancies (149, 150).

Epidemiological studies have indicated that individuals with SLE

face a moderately elevated risk of cancer, particularly hematological

malignancies such as non-Hodgkin lymphoma (150). Additionally,

a higher prevalence of cervical dysplasia and cervical cancer has

been observed in women with SLE (151).

A recent meta-analysis indicated that individuals with RA may

have a slightly increased risk of cancer (152). In particular,

lymphoma and lung cancer are the most commonly observed

types of neoplasm in this group of patients (153). This elevated

risk is believed to be influenced by shared risk factors. such as

smoking, in addition to the mechanism of chronic, persistent

inflammation (154, 155).
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In conclusion, the intricate relationship between neoplastic

diseases and RMDs is an ongoing subject of scientific

investigation. This complex connection highlights the need for

more comprehensive data and further research to elucidate the

underlying biological mechanisms. A deeper understanding of these

mechanisms is essential for improving the management and care of

patients with both RMDs and cancer.
8 IMIDs and cancer: the example of
type 1 diabetes

Type 1 diabetes (T1D) is a chronic autoimmune condition

characterized by the destruction of insulin-producing b cells in the

pancreas (156). Emerging evidence suggests a link between T1D

and cancer risk, but the relationship is multifaceted and not fully

understood. Numerous studies have investigated the standardized

mortality ratio for cancers among patients with T1D compared to

the general population. These reports have yielded conflicting

results (157–159), often due to limitations in statistical power,

which affect the precision of risk estimates for specific cancer types.

In 2016, Carstensen et al. conducted an extensive study

analyzing cancer incidence in individuals with T1D using

population-based registries in five countries (160). Their findings

revealed that hazard ratios (HRs) for all cancers combined were

slightly elevated in both men (HR 1.01) and women (HR 1.07) with

T1D. Notably, elevated HRs were observed for cancers of the liver,

pancreas, and kidney. Conversely, prostate cancer (HR 0.56) and

breast cancer (HR 0.90) exhibited reduced risks in men and women

with T1D, respectively. Interestingly, the risk of some cancers in

individuals with T1D appears to resemble that in people with type 2

diabetes. Factors such as high blood sugar levels may contribute to

the elevated cancer risk in both types of diabetes. Additionally,

emerging contributors, such as obesity and insulin resistance -

conditions for which growing evidence indicates increased

incidence in symptomatic and pre-symptomatic T1D individuals

(161–163) - may also play a significant role in cancer development.

An intriguing explanation of the link between T1D and cancers

lies in the relationship between daily insulin dose and cancer risk. A

recent study revealed that higher daily insulin doses are associated

with an increased risk of cancer, even after adjusting for age and sex

(164). Both in vitro and in vivo studies have highlighted the pivotal

role of insulin and the insulin receptor in cancer biology (165).

Hyperinsulinemic states contribute to increased hepatic insulin-like

growth factor (IGF)-1 production through the upregulation of the

growth hormone receptor (GHR) and enhanced GHR signaling

(166), demonstrating the potential to induce cancer cell

proliferation and their capacity to spread to secondary sites (167).

However, epidemiological data on the link between disease duration

and cancer in T1D are inconsistent, with some studies indicating

that cancer risk is highest at the time of diabetes diagnosis and

decreases over time (160), while others report cancer development

in patients with a mean diabetes duration of 25 years (164).

Hyperglycemia promotes tumorigenesis through the “Warburg

effect,” which involves increased glucose uptake by cancer cells to fuel

their proliferation (168, 169). This can contribute to the cancer
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1436581
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Maier et al. 10.3389/fimmu.2024.1436581
predisposition associated with diabetes (170). Furthermore,

hyperglycemia stimulates the production of advanced glycation end

products (AGEs), which interact with their receptor, RAGE, to activate

NF-kB and generate reactive oxygen species (171). This cascade

accelerates oxidative stress, leading to increased proinflammatory

signaling and potentially promoting transformation (172, 173).

In conclusion, the relationship between T1D and cancer risk is

intricate and influenced by various factors, including insulin dose,

disease duration, and the complex interplay of metabolic pathways.

As research continues, a deeper understanding of these mechanisms

may shed light on strategies for cancer prevention and improved

care for individuals with T1D.
9 IMIDs therapeutics: a role in cancer?

The relationship between immunosuppressive drugs and risk of

malignancies has been widely explored, but the results are still

conflicting (174).

Historically, immunomodulators such as thiopurines and

methotrexate were the milestone of treatment of IMIDs. In this

setting, the longstanding experience in transplanted patients showed

an increased risk of skin cancer such non-melanoma skin cancers

(NMSC), and lymphoproliferative diseases associated to Epstein-Barr

virus infection (175). In the past, the large use of azathioprine and 6-

mercaptopurine in IBD patients confirmed this association (176–

178), and in 2009 the large prospective study by Beaugerie et al. (176)

found that IBD patients receiving thiopurines showed an hazard ratio

(HR) of 5.28 (2.01-13.9, p=0.0007) of developing lymphoproliferative

disorders compared to other IBD patients.

Data on methotrexate are controversial: a systematic review in

2010 found an increased risk of melanoma in RA and NMSC in

patients with psoriasis (179), but other studies did not confirm it

(180, 181). Recent evidence suggests a higher rate of NMSC

associated with the use of methotrexate, demonstrating a dose-

response pattern (182). Similarly, cyclosporine can also increase the

risk of skin cancer in patients with psoriasis (183). Studies in IBD

patients are not available; however, effects are likely to be the same.

On one hand, these drugs may promote the development of

malignancies through direct DNA modifications and by altering

immunosurveillance of tumor cells or mutagenic viruses (184–186).

On the other hand, controlling inflammation with these drugs is

one of the primary strategies for cancer prevention in some

gastrointestinal malignancies among IBD patients (187).

In the late 1990s, the introduction of biologic therapies

revolutionized treatment approaches. Initially, their ‘targeted’

effects were considered to ensure safety, and short-term cancer

risks were thought to be minimal. However, long-term effects were

unpredictable at that time and remain controversial today. Early

studies on the association between anti-TNFa therapies and

malignancies reported a possible link to higher rates of

lymphoma and melanoma (188, 189). However, more recent

studies on anti-TNFa therapies appear to exclude a link with

increased risk of cancer in RA (190), psoriasis (191), and IBD (192).

According to the phase 2/3 studies, the use of selective agents

such as the anti-integrin vedolizumab and the anti IL-12/23
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ustekinumab does not carry any risk of cancer development (193,

194) and they are considered safe in patients with a prior history of

cancer (195, 196). Regarding antibodies targeting IL-23,

risankizumab modestly increased oncologic events, with a clear

prevalence in men (197), while cancer occurred in a small number

of patients treated with mirikizumab (198). Due to the quite recent

introduction of these drugs, long-term effects are still unknown.

Recently, small molecules such the Janus kinase (JAK) inhibitor

tofacitinib were approved as therapeutic option in IMIDs patients

(199). Clinical trials showed a higher incidence of malignancies

compared to anti-TNFa or general population, especially in RA, not

confirmed in real life studies and in clinical practice (200, 201). An

increased short term risk for NMSC was described in patients with

RA or psoriatic arthritis initiating treatment with the JAK inhibitors

tofacitinib, baricitinib (202), filgotinib (203) and upadacitinib (204).

This latter molecule increases the risk of NMSC in a dose dependent

manner (204).

Thus, as available data are still limited and controversial, more

long-term studies are needed to confirm this association.
10 Gaps and future directions in
research on IMIDs and cancer

In spite of the significant advances in our understanding of the

link between IMIDs and cancer, there is still a long way to go for

researchers and clinicians.

Studies should be fostered to highlight whether sex or ethnicity

impact the progression from IMIDs to local and distant malignancies.

It is also important to identify molecular markers involved in this

progression, as recently demonstrated by a system biology approach

in UC patients [108]. These markers can function as prognostic tools

and therapeutic targets. It is clear that intercellular communication

goes awry in IMIDs and until now attention has been devoted mainly

to soluble molecules and far less to exosomes. These 30-150 nm sized

vesicles are released by many cells and contain lipids, proteins and

nucleic acids (including non coding RNAs) that can be delivered

locally as well as to distant districts. They regulate immune system,

remodel the extracellular matrix and other crucial biological

processes (205). Exosomes can also promote chronic inflammation,

facilitate immune evasion, and contribute to tumor progression

(206). While their role in cancer is well established, very little is

known about potential alterations of exosome characteristics in

IMIDs. Therefore, it would be relevant to individuate differences in

exosomes between IMIDs patients and the general population, and to

investigate whether their cargo changes when malignancies arise.

Interesting insights may emerge from studies on organoids

derived from biopsies or induced pluripotent stem cells of IMIDs

patients. Organoids are three-dimensional, cell-based in vitro

models that replicate the complex structure and function of

tissues (207). They are useful to answer fundamental questions

about disease modeling, gene expression, drug response (208) with

the final aim of personalizing medical approaches. Organoids have

been successfully developed from pluripotent stem cells of UC

patients and shown to recap colitic reactivity (209), thus

underscoring that this approach may advance diagnostics and
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therapy at the individual level. The question is: can organoids be

helpful to predict the potential progression in neoplasia?
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