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Background: Breast cancer ranks as one of the most prevalent malignancies

among women globally, with increasing incidence rates. Physical activity,

particularly exercise, has emerged as a potentially significant modifier of

cancer prognosis, influencing tumor biology and patient outcomes.

Methods: Using a murine breast cancer model, we established a control and an

exercise group, where the latter was subjected to 21 days of voluntary running.

RNA Sequencing, bioinformatics analysis, pan-cancer analysis, and cell

experiments were performed to validate the underlying mechanisms.

Results: We observed that exercise significantly reduced tumor size and weight,

without notable changes in body weight, suggesting that physical activity can

modulate tumor dynamics. mRNA sequencing post-exercise revealed substantial

downregulation of CD300E in the exercise group, accompanied by alterations in

critical pathways such asMicroRNAs in cancers and the Calcium signaling pathway.

Expanding our analysis to a broader cancer spectrum, CD300E demonstrated

significant expression variability across multiple cancer types, with pronounced

upregulation in myeloma, ovarian, lung, and colorectal cancers. This upregulation

was correlated with poorer prognostic outcomes, emphasizing CD300E’s

potential role as a prognostic marker and therapeutic target. Moreover, CD300E

expression was associated with cancer cell proliferation and apoptosis.

Conclusion: The study highlights the dual role of exercise in modulating gene

expression relevant to tumor growth and the potential of CD300E as a target in

cancer therapeutics. Further research is encouraged to explore the mechanisms

by which exercise and CD300E influence cancer progression and to develop

targeted strategies that could enhance patient outcomes in clinical settings.
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1 Introduction

Breast cancer, a predominant malignancy among women, has

witnessed an increasing global incidence (1, 2). The World Health

Organization reports that it stands as one of the leading causes of

cancer-related deaths among women worldwide (3, 4). The impacts

of breast cancer extend beyond severe health threats; its cells invade

surrounding tissues and metastasize via lymphatic and circulatory

systems to distant organs such as bones, liver, lungs, and brain,

complicating and escalating the complexity of treatment protocols

(5, 6). Additionally, the socioeconomic repercussions are profound,

imposing substantial financial burdens during treatment and

straining familial and social relationships due to the psychological

toll of the disease (7, 8). Therefore, deepening our understanding of

the mechanisms underlying breast cancer pathogenesis and

developing innovative targeted therapies are imperative (9–11).

The beneficial impacts of physical activity on health and cancer

prevention are multifaceted (12). Exercise enhances cardiovascular

efficiency and muscle strength, augments bone density, and aids in

osteoporosis prevention (13). It also boosts metabolism, which

helps maintain a healthy weight and physique. Immunologically,

physical activity increases lymphocyte counts, thereby

strengthening the immune system’s defense against diseases,

including cancer (14). Exercise also alleviates psychological stress

and mitigates symptoms of anxiety and depression, enhancing

overall mood and well-being, thereby indirectly reducing cancer

risk (15–17). Persistently engaging in physical activities has been

shown to correlate with lower cancer incidence rates, likely due to

enhanced antioxidative capacity and expedited elimination of

carcinogens (18–20). Recent research further underscores the

therapeutic potentials of exercise in oncology. A study by Luo

et al. revealed that physical activity could transform the

immunological microenvironment of non-small cell lung cancer

from a “cold” to a “hot” state, indicating that exercise not only

increases the population of CD8+ T cells and M1 macrophages but

also reduces immunosuppressive cells, thereby sensitizing tumors to

immunotherapy (21). This transformative potential of exercise

offers a promising adjunct to conventional cancer treatments,

suggesting that integrating physical activity could significantly

enhance therapeutic outcomes.

The CD300E gene encodes a protein that interacts with the

TYRO protein tyrosine kinase binding protein, and is considered an

activating receptor (22). Within the immune system, CD300E is

posited to play a pivotal role in modulating the activity and

functionality of immune cells (23–25). Research indicates that

mCD300E can recognize sphingomyelin, thereby regulating the

functions of atypical and intermediate monocytes through FcRg
and DAP12 (26). In the realm of oncology, the study of CD300E is

garnering increasing attention due to its potential role in

modulating tumor immune responses and facilitating immune

escape (25, 27). Specifically, CD300E may promote tumor growth

and dissemination by influencing the interactions between tumor

cells and the immune system. In addition, one patent have reported

that CD300E siRNA delays or halts cancer progression by blocking

or knocking down cd300e to inhibit its activity or expression, and
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that the rate of tumor growth is significantly inhibited in mouse

tumors compared to controls. Understanding the precise

mechanisms of CD300E’s involvement in tumor immunity is

critical for the development of novel immunotherapeutic

strategies, which could include modulating its expression or

function to enhance the immune system’s capacity to target

tumors (28, 29).

This study has identified CD300E as a critical target through

gene sequencing of voluntary running wheel exercises in mice as an

anti-breast cancer initiative. By further analyzing CD300E through

bioinformatics and cellular biology experiments, we aim to explore

and demonstrate its role in tumor development and progression.

This research not only sheds light on the mechanistic

underpinnings of CD300E in cancer biology but also underscores

the potential of exercise-induced molecular responses as a strategic

approach in cancer prevention and treatment.
2 Materials and methods

2.1 Cell culture

The 4T1 mouse cancer cell line (catalog KGG2224-1) and

MDAMB231 (catalog KGG3220-1) were procured from KeyGEN

(Nanjing, China). MDA-MB-468 was procured from FengHui

ShengWu, China. 4T1 cells were cultured in RPMI-1640 medium

enriched with 10% fetal bovine serum (FBS) and sustained at 37°C

in either an ambient atmosphere or one containing 5% CO2.

MDAMB231 and MDAMB468 cells were cultured in the MEM

media with 1% non-essential amino acid and 1 mM sodium

pyruvate. All media were added with 10% FBS at 37°C with or

without 5% CO2.
2.2 Animal interventions

Female BALB/c mice, aged 5-6 weeks, were obtained from the

Shanghai Laboratory Animal Center (SLAC). To establish a triple-

negative breast cancer (TNBC) model, 4T1 cells (5 × 10^6) were

subcutaneously injected into the abdomen of BALB/c mice. The choice

of this specific strain and demographic was based on its relevance to

breast cancer research and its consistent response to exercise

interventions. All mice were in good health, verified by a veterinarian

prior to the commencement of the study. The mice were housed in a

controlled environment with a 12-hour light/dark cycle, and were given

free access to food and water. Tumor growth was monitored and

measured regularly every 2-3 days using calipers. Mice were randomly

divided into two groups: an exercise group (E) and a non-exercise

group (NE), each comprising five animals. The exercise group

underwent a 21-day regimen of voluntary running (no speed or

distance limitation), whereas the non-exercise group was maintained

under normal husbandry conditions without dietary restrictions. After

21 days, the mice were euthanized, and tumor tissues were collected for

mRNA sequencing analysis. Animal experiments were granted by

Ethics Committees at Nanjing Medical University.
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2.3 mRNA sequencing and
bioinformatics analysis

21 days subsequent to administering the treatments, tumor

samples from mice were carefully collected for mRNA sequencing

analysis (30). Following various treatments, cell samples were

diligently harvested. The extraction of total RNA from these

samples was performed using the highly regarded RNeasy Mini

Kit (Qiagen, Hilden, Germany). After RNA extraction, the

construction of paired-end libraries was carried out using the

TruSeq RNA Sample Preparation Kit (Illumina, USA), adhering

meticulously to the protocol provided by TruSeq RNA Sample

Preparation. The Shanghai Biotechnology Corporation was tasked

with the responsibility of constructing and sequencing the libraries.

For the precise mapping of clean reads to the Rnor 6.0 reference

genome, allowing up to two mismatches, the widely acclaimed

Hisat2 software (version 2.0) was utilized. Subsequent to genome

mapping, the esteemed Stringtie software (version 1.3.0) was

employed to generate and annotate Fragments per kilobase of

exon per million (FPKM) values. Gene expression data were

normalized using the trimmed mean of M-values (TMM) method

to correct for library size differences and compositional biases. Top-

10 genes were shown.

Statistical significance was determined with a P-value threshold

set according to the false discovery rate (FDR). mRNAs exhibiting a

fold change of ≥ 2 and an FDR ≤ 0.05 were identified as

differentially expressed. To further investigate the biological

pathways involved, meticulous KEGG pathway analysis was

performed using the revered KEGG database (http://

www.genome.ad.jp/kegg) within the R environment. Additionally,

Gene Set Enrichment Analysis (GSEA) was conducted using R

BiocManager to delve deeper into the molecular mechanisms

influenced by the treatments.
2.4 Pan-cancer analysis

2.4.1 Gene expression and datasets obtained
We utilized the Human Protein Atlas (HPA) to collate

comprehensive RNA and protein expression profiles of CD300E

in human samples. Furthermore, detailed data on CD300E

expression across various tissues and cell lines were sourced from

the Harmonizome database. We expanded our dataset by

incorporating CD300E mRNA expression data from cancerous,

paracancerous, and normal tissue samples provided by TCGA and

GTEx databases. Our study spanned a diverse set of 33 cancer types

including, Adrenocortical carcinoma (ACC), Bladder Urothelial

Carcinoma (BLCA), Breast invasive carcinoma (BRCA), Cervical

squamous cell carcinoma and endocervical adenocarcinoma

(CESC), Cholangiocarcinoma (CHOL), Colon adenocarcinoma

(COAD), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

(DLBC), Esophageal carcinoma (ESCA), Glioblastoma multiforme

(GBM), Head and Neck squamous cell carcinoma (HNSC), Kidney

Chromophobe (KICH), Kidney renal clear cell carcinoma (KIRC),

Kidney renal papillary cell carcinoma (KIRP), Acute Myeloid
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Leukemia (LAML), Brain Lower Grade Glioma (LGG), Liver

hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD),

Lung squamous cell carcinoma (LUSC), Mesothelioma (MESO),

Ovarian serous cystadenocarcinoma (OV), Pancreatic

ad enoca r c i noma (PAAD) , Pheoch romocy toma and

Paraganglioma (PCPG), Prostate adenocarcinoma (PRAD),

Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin

Cutaneous Melanoma (SKCM), Stomach adenocarcinoma

(STAD), Testicular Germ Cell Tumors (TGCT), Thyroid

carcinoma (THCA), Thymoma (THYM), Uterine Corpus

Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS),

Uveal Melanoma (UVM).

For statistical analysis, we utilized R software (version 4.2.2) and

employed the ggplot2 package to depict CD300E expression across

the cancer spectrum. We adopted the median expression level as the

threshold for differential expression analyses. Differences between

expression groups were assessed using the Wilcoxon rank-sum test.

2.4.2 Survival analysis of CD300E in the
33 cancers

We also conducted survival analyses to explore the prognostic

potential of CD300E expression in cancer (18). Using the survival

package in R, we performed Kaplan-Meier analyses and employed

Cox regression to compare survival outcomes between groups with

high and low expression of CD300E. The impact of CD300E

expression on survival was visually represented through forest

plots using the survminer and ggplot2 packages.

2.4.3 Genetic alteration analysis of CD300E
An investigation into the genetic alterations associated with

CD300E was conducted through the cBioPortal. This analysis

included an examination of somatic mutation frequencies and

detailed genomic information, helping to elucidate the mutation

landscape of CD300E in various cancers.

2.4.4 Immunogenomic analyses of CD300E in
the 33 cancers

In our immunogenomic analysis across 33 different cancers, we

utilized the “GSVA” package and the “ssGSEA” algorithm to assess

the relationship between CD300E expression and various immune

components, including tumor-infil trating lymphocytes,

immunostimulators, immunoinhibitors, MHC molecules,

chemokines, and chemokine receptors. The correlations were

determined using Spearman’s correlation coefficient, and p-values

less than 0.05 were deemed significant. To effectively display these

correlations, we generated heatmaps using the “ggplot2” package.

2.4.5 Functional enrichment analysis of CD300E
We carried out Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analyses to

examine the functions and pathways associated with genes

interacting closely with CD300E. These genes were identified

through STRING and analyzed using the “clusterProfiler” and

“org.Hs.eg.db” packages in R. We set a stringent cutoff threshold

of a p-value < 0.01 for both GO and KEGG enrichment analyses.
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The outcomes of these analyses were visually represented using

bubble charts created with the “ggplot2” package.
2.5 Cellular experiments

2.5.1 Knockdown of CD300E gene
To knock down CD300E gene expression in tumor cells, we

designed and synthesized small interfering RNAs (siRNAs)

targeting CD300E using In vivogen-based method (Detailed

sequencing can be found in the Supplementary Table 1). These

siRNA sequences were algorithmically predicted and selected as the

most likely to effectively target CD300E mRNA. The specific steps

are as follows: siRNA transfection: siRNA transfection was

performed using Lipofectamine 2000 (Invitrogen) according to

the manufacturer’s instructions. Briefly, cells were incubated with

a mixture of Lipofectamine 2000 and siRNA to form a complex 24

hours after inoculation and then added to the cells. Gene

knockdown efficiency assessment: 48 hours after transfection,

CD300E mRNA and protein levels were analyzed by real-time

quanti ta t ive PCR (qPCR) to veri fy the efficiency of

siRNA knockdown.

2.5.2 Overexpression of CD300E gene
cDNAs of mouse CD300e (GenBankTM accession number

NM_172050.3) were isolated by PCR from a cDNA library of

mouse BM cells. To overexpress CD300E, we constructed a

plasmid containing the complete CD300E coding region. This

plasmid drives the expression of CD300E under the control of

CMV promoter. The steps of the overexpression experiment are

as follows:

Plasmid construction: the cDNA of CD300E was cloned into

the expression vector pCMV, and the correctness of the insert

sequence was verified by gene sequencing. Plasmid transfection:

transfection of plasmid DNA was performed using Lipofectamine

2000. Cells were transfected 24 hours after inoculation, following

similar steps as described above for siRNA transfection. Expression

verification: 48 hours after transfection, mRNA and protein

expression of CD300E were detected by qPCR to confirm the

effect of gene overexpression.

2.5.3 Proliferation/apoptosis/migration/invision
To evaluate the proliferation of cancer cells, we cultured the

cells in suspension and then seeded them at a density of 5 × 10^3

cells/mL (100 mL per well) in a 96-well plate. The plate was

maintained at 37°C. Subsequently, we added 10 mL of CCK-8

reagent (catalog KGA9305, KeyGEN, Nanjing, China) to each

well and allowed the plate to incubate for two hours before

measuring the optical density at 450 nm using a microplate reader.

For the assessment of cell migration and invasion, we utilized

Transwell chambers, applying a Matrigel coating for invasion assays

and no coating for migration assays. We introduced cancer cells

(5×10^4) in 200 mL of serum-free medium into the upper chamber,
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while the lower chamber was filled with 600 mL of medium

supplemented with 10% FBS.

To determine levels of cell apoptosis, we analyzed the apoptosis

rate using an Annexin V-FITC/PI Kit (Cat. KGA1102, KeyGEN,

Nanjing, China), following the protocol provided by the

manufacturer. This method facilitated a precise evaluation of the

apoptotic stages within the cancer cell populations.

2.5.4 Real-time quantitative polymerase
chain reaction

To assess mRNA abundance at the cellular level, total RNA was

meticulously extracted from cells and muscle tissues using the Trizol

reagent (Invitrogen) and was precisely quantified with a Nanodrop

instrument (Thermo Scientific, USA). Following this, cDNA was

synthesized and served as a template for quantifying mRNA

expression levels in quantitative PCR (qPCR) assays. These assays

were performed using the TB Green™ Premix Ex Taq™ II kit (Takara;

RR820A), with GAPDH used as an internal control for normalization.

Specific qPCR primers, essential for the amplification of mRNA, were

synthesized by Bioengineering (Shanghai, China). The relative

expression levels of the mRNA in each sample were calculated using

the comparative Ct method (2^-DDCt), ensuring the accuracy of the

results through at least three independent experimental replicates. To

provide a consistent baseline for comparison, all values were

normalized against the control condition. Details of the primer

sequences used are available in Supplementary Table 1.
2.6 Statistical methods

Statistical analysis and figure generation were performed with R

language version 4.0.2 and Graphpad Prism 9.0. For the comparison of

continuousvariablesbetweentwogroups,thechoicebetweentheStudent

t-test and the Mann-Whitney test depended on specific conditions.

When comparing multiple groups, either one-way ANOVA or the

Kruskal-Wallis test with subsequent multiple comparisons was used,

depending on the circumstances. The prognostic significance of

categorical variables was determined using the log-rank test. Statistical

significance was set at a P value <0.05 across all analyses.
3 Results

3.1 Impact of voluntary running on tumor
growth and gene expression

Following the intervention of exercise, a significant reduction in

tumor size and weight was observed at day 21, with minimal

changes in the body weight of the mice (Supplementary

Figures 1A, B). We then conducted mRNA sequencing analysis

on five matched pairs (Figure 1A). The quality control results

confirmed normal parameters, with high intra-group consistency

and notable expression differences between groups (Supplementary
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Figures 2A–E). Volcano plots and heatmaps revealed differential

expression of 22 genes, among which CD300E expression was

significantly reduced in the exercise group (E), representing only

46% of that in the non-exercise group (NE), with a p-value of 0.008

(Figures 1B–D). Gene enrichment analysis highlighted significant

alterations in extracellular components, with the most pronounced

changes observed in the MicroRNAs in cancers and Calcium

signaling pathway (Figures 1E, F).
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3.2 Pan-cancer analysis

3.2.1 Expression variability of CD300E in
pan-cancer

To evaluate the expression of CD300EmRNA in normal human

tissues, we analyzed data from the GTEx, HAP, and Consensus

datasets. CD300E showed higher expression in tissues such as

blood, lung, bone marrow, appendix, and bladder (Supplementary
B C

D

E F

A

FIGURE 1

Voluntary wheel running exercise inhibits breast cancer growth. (A) Schematic diagram of the experiment. (B) Heatmap of Hierarchical clustering analysis of
changed mRNAs. (C, D) Volcano plot and column of mRNAs differentially expressed between NE and E group. n = 5. (E, F) Bubble plot showing GO and
KEGG enrichment by all the differentially expressed mRNAs expressed in tumors, including biological process, cellular component, and molecular function.
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Figure 1). Further in-depth evaluation using RNA-seq data from

TCGA and GTEx databases revealed significant expression

differences in CD300E across 33 types of cancer. In unmatched

samples (Figure 2A), CD300E was notably upregulated in cancers

like BRCA, COAD, ESCA, GBM, HNSC, KIRC, and STAD, and

downregulated in KICH, LIHC, LUAD, LUSC, and PAAD. In

matched samples (Figure 2B), upregulation was significant in
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BRCA, COAD, ESCA, HNSC, KIRC, and STAD, while

downregulation was noted in COAD, KICH, LIHC, LUAD, and

LUSC. The Human Atlas database further assessed the protein

expression of CD300E across various cancers, showing upregulation

in Myeloma, Diffuse large B-cell lymphoma, Ovarian cancer, Lung

cancer, and Colorectal cancer without significant downregulation in

any cancer type (Figure 2C).
B

C

A

FIGURE 2

Differential expression pattern of CD300E. (A) Differential CD300E mRNA expression between paired samples in TCGA cancers. The red dot
represents cancer samples, and the blue dot represents paired normal samples. Radargrams visualize and compare CD300E expression in different
tumors. *p < 0.05, **p < 0.01, and ***p < 0.001. (B) Differential CD300E mRNA expression between TCGA cancers and GTEX normal tissues. The red
column represents cancer samples, and the blue column represents normal samples. The normal group was normal tissue in TCGA and GTEX
databases. *p < 0.05, **p < 0.01, and ***p < 0.001. (C) CD300E protein expression in different cancer types in Human Atlas.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1437068
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2024.1437068
3.2.2 Prognostic impact of CD300E in
pan-cancer

For overall survival (OS) and disease-specific survival (DSS),

CD300E posed a risk factor in THCA, LUSC, LGG, LAML, KIRC,

and GBM, while it acted as a protective factor only in SKCM

(Figures 3A, B). For disease-free interval (DFI), progression-free

interval (PFI), and disease-free survival (DFS), CD300E was a risk
Frontiers in Immunology 07
factor in KIRP, PAAD, and GBM, and a protective factor in LGG

and CHOL (Figure 3A).

3.2.3 Correlation analysis of CD300E in
pan-cancer

Copy number variations (CNVs), a common form of genomic

instability in cancer, can lead to altered gene expression affecting
B

A

FIGURE 3

High expression of CD300E reduced patient survival period. (A) Forest plot of hazard ratios (HR) for overall survival (OS), PFI, DSS, DFS, and DFI for
different cancer types associated with CD300E expression. Dots indicate log-transformed hazard ratios, red indicates significant risk, blue indicates
protective associations, and gray indicates non-significant associations. (B) Individual OS figures for each cancer type.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1437068
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2024.1437068
cell proliferation, differentiation, and death. Bar graphs (Figure 4A)

showed changes in CD300E copy numbers across various cancers,

with significant variations in KICH and READ. Further correlation

analysis indicated a negative relationship between CD300E copy

numbers and cancer progression in KIRP and THCA, and a positive

correlation in KICH and STAD (Figure 4B). Promoter methylation,

a critical epigenetic regulatory mechanism affecting gene expression

without altering the DNA sequence, was analyzed to explore its

relationship with CD300E expression across multiple cancer types.

Both unmatched and matched tumor samples showed a negative

correlation between CD300E expression and methylation,

particularly in KIRC and THCA (Figures 4C, D). Additionally,

the relationship between tumor mutational burden (TMB) and
Frontiers in Immunology 08
CD300E expression was investigated, revealing a positive

correlation in SARC, OV, COAD, BRCA, BLCA, and THYM, and

a negative correlation in LAML, LIHC, and PAAD (Figures 4E, F).

3.2.4 Analysis of CD300E on the immune
microenvironment across cancers

Heatmap analysis from Figure 5A intricately details the

correlations between CD300E expression and various immune

cell subtypes across different types of cancers. Notably, in cancers

such as BRCA (Breast Cancer) and COAD (Colorectal

Adenocarcinoma), a significant positive correlation exists between

CD300E expression and M2 macrophages, typically associated with

a tumor-promoting immunosuppressive environment. This
B

C D

E F

A

FIGURE 4

Correlation analysis of CD300E in pan-cancer. (A) Bar graphs illustrate CD300E copy number variation in different cancers. (B) CD300E copy
number and pan-cancer direct correlation analysis. (C, D) The correlation between the methylation status of gene promoter regions and CD300E in
multiple cancer types (E, F) The correlation between tumor mutational burden (TMB) and CD300E expression.
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suggests that elevated expression of CD300E may foster an

immunosuppressive state conducive to tumor growth and

metastasis. Conversely, in Lung Adenocarcinoma (LUAD),

CD300E exhibits a negative correlation with natural killer (NK)

cells, although this association generally lacks statistical
Frontiers in Immunology 09
significance. This trend implies that in certain cancer contexts,

CD300E expression may inversely affect the immunosurveillance

capabilities of NK cells, potentially contributing to mechanisms of

immune escape. Additionally, in certain cancer types like BRCA,

CD300E shows a positive correlation with regulatory T cells (Tregs),
B

C

A

FIGURE 5

Analysis of immune microenvironmental cellular regulation of pan-cancer by CD300E. (A) Heatmap of immune cell infiltration in pan-cancer
analyzed using the Cibersort method. Each cell represents the correlation between CD300E expression and the level of a specific immune cell type,
and the intensity and sign of the color correspond to the strength and direction of the correlation, respectively. Statistical significance is indicated by
the box around the cell. (B) CD300E pan-cancer immuno-infiltration analysis using Cibersort. (C) Gene Commons data analysis of correlations
between single genes and immune infiltration results, using heatmap format to present results.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1437068
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2024.1437068
which play a critical role in modulating the immune system,

particularly in maintaining immune tolerance and suppressing

excessive immune responses. Increased CD300E expression might

enhance the functionality of Tregs, thereby fostering an immune-

suppressive tumor microenvironment favorable for tumor survival

and progression.

EPIC analysis , a vital tool in studying the tumor

microenvironment, enables researchers to understand the

dynamic variations of different cell types within tumors, which is

crucial for advancing tumor immunology and developing new

therapeutic strategies (Figure 5B). From the heatmap, it is evident

that CD300E’s correlations with various immune cells vary,

illustrating the heterogeneity of tumor microenvironments. For

instance, in breast and colorectal cancers, Cancer-associated

fibroblasts (CAFs) show a strong positive correlation with

CD300E expression, suggesting their significant role in supporting

or enhancing tumor growth and invasion, closely linked with the

expression of this gene. Moreover, in cancers like LUAD, the

activity of CD8+ T cells significantly correlates with CD300E
Frontiers in Immunology 10
expression, reflecting their importance in the tumor immune

response and the potential regulatory role of this gene. Further

analysis using the TCGA database’s pan-cancer dataset revealed a

broadly positive correlation between CD300E and various immune

cells across different cancer types (Figure 5C).

3.2.5 Pathway enrichment and key gene mutation
analysis of CD300E across cancers

Our further evaluation of CD300E’s function in pan-cancer

contexts revealed significant findings via the GSEA methodology.

CD300E notably suppresses oxidative stress pathways, potentially

facilitating conditions favorable for tumor growth. Additionally,

CD300E significantly enhances pathways such as TNF-a signaling,

inflammatory response pathways, IL6-JAK signaling, and epithelial-

mesenchymal transition (EMT), all of which are documented to

potentially promote tumor growth and metastasis (Figure 6).

A heatmap depicting the frequency of key gene mutations

across various cancers highlights the high mutation rates of genes

such as TP53 in LUAD, APC in COAD, and PTEN in UCEC,
FIGURE 6

Pathway enrichment of CD300E in pan-cancer. Dot plots represent pan-cancer GSEA results using the official immunization gene set (GMT file) as a
reference. Functional pathways are from GM7 files and are shown on the y-axis, with different cancer types shown on the x-axis. Dot color indicates
correlation with CD300E expression; red indicates positive correlation and blue negative correlation. The size of the dots represents the -log10(FDR)
value, indicating the significance of the enrichment.
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indicating their common involvement in these cancers. Specific

cancer types like BRCA, LGG, and HNSC show frequent mutations

in genes like TP53, PIK3CA, and CDKN2A, providing insights that

may guide therapeutic strategies (Supplementary Figure 5A).
3.3 Impact of CD300E on breast
cancer cells

Finally, our study delves into the cellular functions of CD300E.

We validated the expression of the CD300E gene after siRNA or

plasmids intervention (Supplementary Figures 6A, B). Compared to

control cells, overexpression of CD300E in MDAMB468 and

MDAMB231 breast cancer cells leads to increased proliferation

and cell viability, while suppression of CD300E expression reduces

proliferation and cell viability (Figures 7A, B). Furthermore,

overexpression of CD300E significantly promotes the migratory

and invasive capabilities of these tumor cells, whereas its inhibition

reduces these properties (Figures 7C, D). Overall, targeting CD300E

could directly inhibit tumor cells, significantly impeding cancer

progression and presenting a novel therapeutic target (Figure 8).
4 Discussion

This research explored the impact of exercise on tumor growth

and gene expression within a murine model, focusing particularly

on the expression patterns, functions, and potential clinical

significance of the CD300E gene across various cancers. Our

findings indicate that CD300E may adversely affect prognosis and

promote tumor progression across a range of cancers. Additionally,

exercise appears to inhibit breast cancer progression potentially by

downregulating CD300E.

Exercise as well as widespread is believed to promote human

health and improve a wide range of diseases (31–33). The

phenomenon of exercise against cancer has been widely explored

in recent years, but there is still a large number of exercise-

responsive molecules whose roles need to be explored (34–38).

Our study confirmed the positive impact of physical activity on

inhibiting tumor growth. Exercise intervention significantly

reduced tumor size and weight in the murine model without

markedly affecting body weight. These outcomes suggest that

moderate physical activity might suppress tumor growth by

modifying the tumor microenvironment or regulating specific

signaling pathways. Analysis of differentially expressed genes

revealed significant downregulation of CD300E in the exercise

group, indicating its role in tumor growth regulation, particularly

within an active context. Furthermore, gene enrichment analysis

showed significant changes in extracellular components and

associated signaling pathways, such as MicroRNAs in cancers and

the Calcium signaling pathway, providing clues on how exercise

might influence tumor biology through molecular mechanisms.

In our pan-cancer analysis, CD300E exhibits significant

expression variability across multiple cancer types, underscoring

its potential role in various malignancies. Notably, CD300E is

upregulated in cancers such as Myeloma, Diffuse Large B-cell
Frontiers in Immunology 11
Lymphoma, Ovarian Cancer, Lung Cancer, and Colorectal

Cancer, suggesting its involvement in the progression of these

diseases. Prognostic analyses reveal that CD300E acts as a risk

factor in several cancers, providing valuable insights that may guide

clinical prognostic assessments and therapeutic decision-making.

Studies on the variability of CD300E copy numbers and their

correlation with tumor mutational burden offer critical

perspectives on its role in cancer progression. These findings

support the notion that CD300E may promote cancer

development by impacting genetic stability and the interactions

within the immune microenvironment.

Analysis of the relationships between CD300E and various

immune cell subpopulations indicates that CD300E may influence

tumor growth and immune escape by modulating immune

cells within the tumor microenvironment, particularly

immunosuppressive M2 macrophages and regulatory T cells. Past

studies have also shown that CD300E and T cells are associated with

the regulation of immune function in macrophages, and more

mechanistic studies are needed to explore this (22–24). But, the

results also illustrated that CD300E showed a significant positive

correlation with most other immune-promoting immune cells,

including CD8 T cells, neutrophils, NK cells, etc. The literature

reports that these cells more or less affect the heating and cooling of

the immune microenvironment. It has been reported in the

literature that these cells more or less affect the heat and cold of

the immune microenvironment (26). The increased expression of

CD300E re su l t ed in bo th Immunosuppre s s i v e and

immunopromoting cells, affecting the tumor microenvironment,

which could potentially affect the prognosis and the degree of

response to immunotherapy. These insights lay a theoretical

foundation for targeting CD300E in immunotherapeutic strategies.

Furthermore, our analysis elucidates the role of CD300E in

regulating key signaling pathways related to cancer progression,

especially in suppressing oxidative stress pathways and activating

several pathways that promote tumor progression. The inhibition of

oxidative stress pathways may provide cancer cells with

mechanisms to evade programmed cell death, thereby covertly

supporting tumor growth and survival (39–41). Concurrently,

CD300E significantly activates pathways such as the TNF-a
pathway, inflammatory response pathways, the IL6-JAK pathway,

and the epithelial-mesenchymal transition pathway, all closely

associated with the invasiveness and metastatic potential of

tumors (42–45). These pathways’ activation might facilitate the

dissemination of tumor cells within the host. Analysis of the

frequency of key gene mutations reveals frequent mutations in

genes such as TP53, APC, and PTEN across various cancers,

highlighting these genes as critical factors in tumor development

and progression (46). These mutations may affect cell cycle

regulation, DNA repair mechanisms, and pathways of cell death,

further substantiating the potential role of CD300E in pan-

cancer contexts.

Additionally, our cellular experiments clearly demonstrate that the

overexpression of CD300E in breast cancer cells is closely associated

with enhanced cellular proliferation, reduced apoptosis rates, and

increased migration and invasion capabilities. These findings not

only confirm the role of CD300E as a tumor-promoting factor but
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also highlight its potential as a therapeutic target. Experiments aimed at

inhibiting CD300E expression further validate its significant role in

tumor cell proliferation and survival, offering a potential therapeutic

strategy to curb the progression of breast cancer. Studies have reported

that CD300E can modulate apoptosis in monocytes by affecting

calcium channels, which is consistent with our biological predictions.

In addition, altered calcium signaling affects the behavior of immune
Frontiers in Immunology 12
cells (including T cells and macrophages), influencing their activation

and cytokine production, thereby altering the immune

microenvironment (47–49). Therefore, we hypothesize that the

ability of CD300E to promote tumor cell value-addition and

migration is reached by regulating calcium channels.

Mechanically, how exercise regulates CD300E lowering this

process was not explored in this study. However, a large body of
B

C

D

A

FIGURE 7

CD300E promotes breast cancer tumor cell growth. (A) The viability of control, CD300E-inhibited, and CD300E-overexpressed tumor cells was
examined at 48h after transfection by CCK-8 assay. The statistical significance of the differences between various treatments is determined by one-way
ANOVA with Bonferroni post-test (n = 3). Data are presented as mean ± SD. *P < 0.05 **P < 0.01. (B) The proliferative capacity of control, CD300E-
inhibited, and CD300E-overexpressed tumor cells was examined at 24h after transfection by BRDU. The statistical significance of the differences
between various treatments is determined by one-way ANOVA with Bonferroni post-test (n = 3). Data are presented as mean ± SD. *P < 0.05 **P < 0.01
***P < 0.001. (C, D). The migratory and invasive capacity of control, CD300E-inhibited, and CD300E-overexpressed tumor cells were examined at 24h
after transfection by Boyden chamber assay. Total original magnification, 200×. The statistical significance of the differences between various treatments
is determined by one-way ANOVA with Bonferroni post-test (n = 3). Data are presented as mean ± SD. *P < 0.05 **P < 0.01.
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literature has reported that exercise can bring about a series of

physiological changes, including changes in the metabolome,

proteins, and related molecules in the genome (12, 50, 51).

Specifically, we hypothesize that exercise-induced changes in

systemic factors, such as serum circulating exosome, muscle

derived cytokines, and hormones, could impact transcription

factors like NF-kB and STAT3, known regulators of gene

transcription (41, 52–54). Additionally, the role of epigenetic

modifications, including DNA methylation and histone acetylation,

in the regulation of gene expression in response to physical activity

could also influence the expression of CD300E (55). In addition, the

direct upstream transcription factor(s) by which exercise regulates

CD300E expression in tumor cells remains unknown. We proposed

that exercise activates AMP-activated protein kinase (AMPK) and

peroxisome proliferator-activated receptor gamma coactivator 1-

alpha (PGC-1alpha), which are central to tumor cell expression

(56, 57). These molecules may influence the transcription factors

and co-regulators that control CD300E expression. Furthermore,

exercise can also modulate the expression of cellular miRNA,

which may post-transcriptionally regulate CD300E (58, 59). For

example, miR-4270 has been reported to directly target CD300E

(60), but these are speculations based on the literature, and future

studies will need to further explore the mechanisms by which exercise

regulates CD300E.

As for the clinical translational perspective, we believe that

patients with high CD300E expression may benefit from more

intensive or specific types of exercise therapies that are particularly

effective in downregulating CD300E. Conversely, patients with low
Frontiers in Immunology 13
CD300E expression may require different exercise regimens or

adjunctive therapies to achieve optimal results. To test these

hypotheses, we recommend that future studies design clinical trials

that stratify patients according to CD300E expression levels. These

trials should include a variety of exercise regimens from moderate to

high intensity and monitor changes in CD300E expression, tumor

progression, and clinical prognosis. In addition, patient-reported

outcomes and quality-of-life measures should be included to assess

the broader impact of tailored exercise interventions. Moreover, we

recommend longitudinal studies to track CD300E expression and

tumor progression in response to sustained exercise therapy. These

studies will help determine the sustainability of exercise-induced

changes in gene expression and their long-term impact on cancer

prognosis (44, 61, 62).

Limitations and perspectives: Sample Size and Type

Limitations: This study is primarily based on animal models and

specific cancer cell lines, which may restrict the generalizability of

the findings and their direct applicability to human cancer patients

(63). While murine models provide valuable insights into tumor

biology, they cannot fully replicate the complexity and

heterogeneity of human tumors (64–66). Singular Focus of Study

Design: Although we observed the impact of exercise on tumor

growth and CD300E expression, there is a lack of exploration into

variables such as exercise intensity, frequency, and duration.

Moreover, the study focuses predominantly on the role of a single

gene, CD300E, while tumor development involves multiple genes

and signaling pathways interacting (67). Complexity in Data

Interpretation: While gene expression and pathway enrichment
FIGURE 8

Schematic graph of this study. Exercise decreased CD300E expression of cells in breast cancer through a circulatory effect, which promotes
immune cell infiltration, decreased tumor cell metastases/proliferation, warms the tumor microenvironment, and improves the prognosis of
tumor patients.
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analyses have unveiled potential biological mechanisms, the exact

causal relationships remain unclear. For instance, the direct link

between changes in CD300E expression and specific tumor

behaviors has not been fully established. Future experimental

designs should consider the effects of various types and intensities

of exercise on tumor growth and how these variables interact with

gene expression and immune responses within the tumor

microenvironment (68). Additionally, investigating the role of

CD300E across different cancers and immune backgrounds may

reveal its multifunctional potential as a therapeutic target. Further

mechanistic studies should delve into how CD300E activates or

inhibits cancer-related pathways, particularly how it influences key

tumor behaviors such as cell cycle progression, apoptosis,

migration, and invasion. While current research focuses on

exploring tumor therapy at the level of a single gene, future

studies could use single-cell sequencing and spatial transcriptome

analysis to identify a broader range of genes affected by exercise

(69–72). These studies could use integrated bioinformatics

approaches to elucidate gene-gene interactions and pathways co-

regulated by exercise.
5 Conclusions

In summary, CD300E not only plays a potentially crucial role in

the process of exercise-mediated tumor growth inhibition but also

exhibits viability as a therapeutic target based on its expression and

function across various cancers. Future research should further explore

the specific molecular mechanisms of CD300E and its role in different

cancers to advance the development of novel anti-cancer strategies.
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