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Envenoming resulting from Apis honeybee stings pose a neglected public health

concern, with clinical complications ranging from mild local reactions to severe

systemic manifestations. This review explores the mechanisms underlying

envenoming by honeybee sting, discusses diagnostic approaches, and reviews

current pharmacological interventions. This section explores the diverse clinical

presentations of honeybee envenoming, including allergic and non-allergic

reactions, emphasizing the need for accurate diagnosis to guide appropriate

medical management. Mechanistic insights into the honeybee venom’s impact

on physiological systems, including the immune and cardiovascular systems, are

provided to enhance understanding of the complexities of honeybee sting

envenoming. Additionally, the article evaluates emerging diagnostic technologies

and therapeutic strategies, providing a critical analysis of their potential

contributions to improved patient outcomes. This article aims to provide current

knowledge for healthcare professionals to effectively manage honeybee sting

envenoming, thereby improving patient care and treatment outcomes.
KEYWORDS

bee venom, bee sting, clinical envenoming, clinical management, venomous animals,
Africanized bee, honeybee
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1 Introduction

Africanized bees have displayed remarkable adaptability in the

Americas representing a great public health concern for humans

due to their propensity to attack even in mildly provoked situations.

They tend to exhibit a high number of bees that attack from

unusually far distances from the hive, persistently pursue their

targets for extended periods, and release larger volumes of venom

compared to other bee species (1–3). Accidents involving

Africanized bees can lead to various clinical manifestations,

determined by an individual’s sensitivity to the venom and the

number of stings. The most common scenario occurs when an

individual not sensitized to the venom receives a few stings. In such

cases, the symptoms are typically limited to a localized

inflammatory reaction, characterized by redness, pain, and local

warmth. Often, these symptoms resolve without the need for

medical intervention. Another presentation arises when an

individual previously sensitized to one or more components of

the venom experiences an immediate Gell and Coombs type I

hypersensitivity reaction. This is a severe occurrence that can be

triggered by just one sting, necessitating urgent medical attention.

Manifestations include swelling of the glottis, bronchospasm, and

anaphylactic shock. The third form of presentation results from

multiple stings, leading to envenoming with a substantial amount of

venom in the body. Alongside local signs such as pain, bleeding,

bruising, redness, jaundice, and increased blood flow (hyperemia),

these instances are frequently reported (4–8). In addition, systemic

manifestations like difficulty breathing (dyspnea), neuroparalytic

symptoms, intense burning headaches, nausea, vomiting, weakness

(asthenia), muscle and joint pain, severe tremors, kidney failure,

rhabdomyolysis, and shock (4–8) can occur due to the diverse

fractions of the venom. Incidents leading to these symptoms are not

uncommon (2, 9).

2 Epidemiology, bee venom, and
clinical manifestations

Africanized bees emerged in Brazil during the 1950s when

beekeepers introduced African bees (Apis mellifera scutellata) to the

country. Renowned for their high productivity and disease resistance

(10), these bees accidentally escaped and hybridized with European

honey bees (Apis mellifera mellifera), established in Brazil since the

early 19th century. The resulting hybrids demonstrated exceptional

adaptability to the tropical climate, rapidly spreading throughout the

Americas, excluding Canada (9, 11).

The success of Africanized bees in the Americas is attributed to

ecological and genetic advantages over native pollinators, including

higher reproductive rates, shorter development cycles, increased drone

production, swarming frequency, enhanced disease resistance, and less

selective nesting site choice (2, 10). A concerning trend is the escalating

incidence of honeybee encounters in urban environments. This

increase is primarily linked to pesticide use, deforestation, and

declining floral resources, exacerbated by the proximity of bee

habitats to human settlements (12). Africanized bee stings occur four

to ten times more frequently than those of European bees, often
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involving group attacks (3, 11). Their extended pursuit of threats and

increased venom delivery compared to other bee species (3) pose

significant public health risks, leading Brazilian health authorities to

classify bee-related incidents as a public health surveillance

priority (13).

In Brazil, between 2013 and 2023, there were 206.746 reported

cases of bee stings, with a notable increase in the year 2023, where

33,317 cases were reported, exceeding the number of snake cases

(32,420 cases) leading to 649 direct fatalities and an additional 50

deaths indirectly attributed to bee stings (Figure 1A). As with

envenoming by other venomous animals, the number of cases of

envenoming by bees varies between Brazilian states (Figures 1B, C),

although clinical and epidemiological studies are scarce (7, 14). It is

estimated that the lethality rate is about 0.29%, with an annual rate

average incidence of 6.89 per 100,000 inhabitants (15), although a

temporal increase in reported cases is observed (6, 13, 14, 16, 17). In

Amazonas State, the geographical landscape is cited as a

contributing factor to the worsening of patients’ conditions (18).

This assertion holds merit, considering the geographic obstacles and

challenges encountered in route to medical assistance, often leading

to fatal outcomes before reaching proper medical care (19). Most

reported cases are concentrated in the Northeast, Southeast, and

South regions (Figures 1B, C), affecting mainly men (Figure 1D)

people of color (Figure 1E). However, the majority of cases are mild

(Figure 1F) and progress towards cure (Figure 1G). However, the

impact on patient health in moderate and severe cases is unknown.

This is substantiated by the high population density and the

diminishing presence of natural vegetation on mountains, in

landfills, slums, and urban conglomerates, which can serve as

habitats for bees. Consequently, these conditions may provoke

bee swarms to launch extensive attacks (20, 21).

The Apis genus is responsible for most accidents, often resulting

in severe outcomes and fatalities (22). Their venom is a complex

mixture of proteins, low-molecular-weight peptides, amines, water,

and mineral salts. Notably, melittin, phospholipase A2 (PLA2),

hyaluronidase, apamin, and mast cell degranulating peptide are

highly toxic components (23, 24). Various analytical methods,

including electrophoresis, HPLC, HPLC-MS, GC-MS, liquid

scintillation counting, ICP-MS, and stripping voltammetry, have

been employed to characterize bee venom (25). Size-exclusion

chromatography (SEC-HPLC) under isocratic conditions can

identify melittin, apamin, and MCDP. However, due to the

melittin/apamine ratio (30:1) and the venom’s chemical

complexity, reverse-phase chromatography with C18 columns

(RP-18) is necessary for comprehensive analysis, enabling the

identification of apamin, hyaluronidase, MCDP, melittin, PLA2,

procamine, tertiapin, and secapin (26). The abundance of A.

mellifera venom components is reflected in the intensity of

chromatographic peaks, with melittin being the most prominent,

followed by PLA2, apamin, and other constituents (27) (Figure 2).

Immediately following a bee sting, the venom delivery system

remains embedded in the skin for approximately 30 seconds, allowing

for venom release, with at least 90% injected within the first 20

seconds (28). While removing the stinger is a common initial

response, it is unlikely to significantly reduce venom toxicity or

quantity absorbed. On average, a bee sting injects 140-150 mg of
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1437413
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cavalcante et al. 10.3389/fimmu.2024.1437413
venom, and the median lethal dose (LD50) is 2.8-3.5 mg/kg of body

weight (26, 28). Thus, a non-allergic person weighing 60-70 kg could

theoretically experience a 50% risk of fatality from 1,000-1,500 stings.

However, fatalities have been reported with as few as 200-500 stings.

Various factors influence envenoming severity, including time to

medical care, age, weight, sting count, and individual characteristics

(e.g., immune status, comorbidities, previous sensitization) (29).

Individuals with asthma, allergic rhinitis, or a history of bee sting

allergies are at increased risk for severe complications (30).
Frontiers in Immunology 03
Typically, the clinical manifestations of bee envenomation can

be categorized into local inflammatory reactions, allergic reactions,

anaphylactic shock, and systemic toxic reactions (3, 9, 29). Initial

symptoms are confined to the sting site, often presenting as pain,

swelling, redness, and itching. Allergic reactions, classified as type I

hypersensitivity reactions, usually occur within 10 minutes of the

sting. These reactions can manifest as systemic urticaria, itching,

angioedema, vomiting, or diarrhea. In severe cases, allergic

reactions may progress to anaphylactic shock, causing
FIGURE 1

Reported bee accidents and related deaths in Brazil (2013–2023) by state. (A) Bee accidents in Brazil per year. Except for 2020 and 2021, the others
showed an increasing trend in cases. This drop refers to the years of the pandemic caused by the Sars-Cov-2 virus. (B) Annual reported bee
accidents related to bee stings per region. (C) Distribution of cases of bee accidents according to state. (D) Distribution of cases of accidents caused
by bees according to sex. (E) Distribution of cases of accidents caused by bees according to race. (F) Distribution of cases of accidents caused by
bees according to clinical classification. (G) Distribution of cases of accidents caused by bees according to outcome. Graphs were produced using
GraphPad Prism 9.0 software.
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bronchoconstriction (26). Importantly, even individuals without

allergies can experience anaphylaxis due to systemic mastocytosis.
3 Bee venom: molecular basis
of physiopathology

A typical bee sting elicits a local inflammatory response

characterized by pain, edema, and erythema. Melittin, a primary

bee venom allergen, is a potent inducer of acute pain (31). It has

been demonstrated that intradermal melittin (5 mg in 50 mL saline)

caused severe, 3-minute pain accompanied by local heat and

swelling (32–35). Pain intensity and duration correlate with

melittin dose, inducing mechanical hyperalgesia at the sting site

and heat-thermal hyperalgesia in the surrounding area (34, 35).

Animal studies extend these findings to include mechanical and

thermal hyperalgesia, edema, and plasma extravasation lasting 72-

96 hours (36–39).

Melittin activates the transient receptor potential vanilloid 1

(TRPV1) channel, a nonselective cation channel in peripheral

sensory neurons, contributing to pain (40). TRPV1 also mediates

pruritus (itching) (41, 42). Histamine, IL-31, IL-4, and cyclooxygenase

(COX), lipoxygenase (LOX), and PLA2 pathway products stimulate

TRPV1, promoting itching (31, 43). Another mechanism by which

melittin induces itching is via serotonin release due to pore formation

and mast cell degranulation (31), as well as by increased

transcriptional regulation of voltage-gated sodium channels in

neurons associated with itch (44, 45). Additionally, melittin

enhances nociceptor activity by modulating G protein-coupled

receptors (GPCRs), leading to hyperalgesia and allodynia (31).
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Another critical effect of venom components, particularly

allergens, is hemorrhage. While primarily associated with IgE-

mediated anaphylaxis, allergens can also trigger non-IgE-

dependent inflammatory responses (46). Bradykinin (BK), whose

production increases during envenomation due to melittin’s action,

contributes to anaphylactic symptoms. Melittin directly activates

PLA2, mimicking BK’s effects on tracheal tone and inducing

angioedema (47), leading to airway obstruction, asphyxia, and

severe gastrointestinal symptoms resembling acute abdomen (46).

A complex interplay between inflammation and coagulation

arises, as plasma kinin formation cascade activation results in factor

XII binding, autoactivation, and conversion of prekallikrein to

kallikrein. Kallikrein cleaves high-molecular-weight kininogen,

releasing vasoactive BK (48). BK subsequently activates and

modulates coagulation, particularly factor XII (49). Both BK and

BK 1-5 inhibit thrombin-induced platelet aggregation, while

thrombin plays a crucial role in coagulation and platelet

activation (50, 51). Additionally, BK enhances nitric oxide (NO)

production in endothelial cells, inhibiting thrombocyte adhesion

through angiotensin II blockade (52)

Interestingly, BK induces prolonged thrombolysis via the

bradykinin B2 receptor (B2) and prostacyclin (PGI2) (53, 54).

This reveals BK’s potential to activate plasminogen, which can be

antagonized by angiotensin-converting enzyme (ACE) inhibitors

through amplified tissue plasminogen activator effects (53, 55). ACE

inhibition modulates fibrinolytic balance, with angiotensin II-

mediated increases in plasminogen activation inhibitor-1 playing

a crucial role (56). Consequently, coagulation disorders, including

decreased fibrinogen activity and prolonged prothrombin and

partial thromboplastin times, have been reported in experimental

and clinical bee venom envenomation (57).
FIGURE 2

High-performance liquid chromatography of Apis mellifera venom.
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In summary, melittin induces BK release and ACE dysfunction,

leading to coagulation and fibrinolysis imbalances. Additionally,

impaired vascular smooth muscle contractility following

envenomation exacerbates hemorrhagic episodes (57, 58).

Elevated BK levels contribute to reduced vascular tone through

epithelial effects (48, 52), while melittin and PLA2 may further

decrease muscle contractility, potentially inducing hemorrhage.

Bee venom PLA2 hydrolyzes phosphatidylcholine, phosphati

dylethanolamine, phosphatidylinositol, and phosphatidylserine 2-

acyl bonds, disrupting plasma membrane integrity. This process

releases lysophospholipids and fatty acids, inducing inflammation

and further membrane damage. Notably, purified PLA2 lacks

hydrolytic activity against erythrocyte membrane phospholipids,

but its combination with melittin synergistically enhances

hemolysis beyond that achievable by either component alone (59).

Skeletal and cardiac muscle cell membranes exhibit greater

resistance to PLA2, although both crude venom and melittin exert

toxic effects on the cardiovascular system. The exact mechanisms

underlying these effects and potential contributions from other

venom components remain unclear (60). Melittin initially increases,

then decreases the spontaneous beating rate of cultured cardiac

myocytes, ultimately causing their degeneration (61).

Wistar rats exhibited electrocardiographic (ECG) changes,

enzyme alterations, and morphological lesions resembling acute

myocardial infarction (AMI) type 8, suggesting a direct toxic effect

of the venom on cardiac muscle, primarily attributed to melittin (62,

63). Bee venom induces extensive endothelial damage, collagen

degradation, and smooth muscle cell migration within the aorta

(64). Melittin and apamin provoke coronary artery vasospasm,

facilitating platelet aggregation and thrombosis. At lower

concentrations, melittin induces transient relaxation through an

endothelium-dependent mechanism involving NO production and

activation of smooth muscle charybdotoxin-sensitive K+ channels,

but at higher concentrations, it causes contraction. Apamin, while not

directly affecting coronary artery contraction or relaxation, inhibits

NO and prostanoid production, modulating the coronary artery’s

relaxation response to melittin via smooth muscle apamin-sensitive K

+ channels (65). Although bee venom triggers endogenous

vasodilatory amine release, paradoxical coronary vasoconstriction

remains possible, especially in the context of endothelial damage,

potentially leading to acute coronary syndrome (66).

Africanized bee venom induces myonecrosis both in vivo and in

vitro (67). Specifically, melittin triggers phospholipid breakdown,

generating free fatty acids and diacylglycerol in equine and human

skeletal muscle primary cultures. At higher concentrations, it also

breaks down triglycerides. Additionally, melittin alters calcium (Ca2

+) release thresholds in skeletal muscle terminal cisternae fractions

(68). Membrane rupture initiates a cascade of intracellular changes,

with increased intracellular calcium levels being a critical factor in

subsequent cellular dysfunction and death. Melittin and PLA2

synergistically contribute to skeletal muscle cell myonecrosis (69).

Apis mellifera venom contains a protein with a conserved C1q

domain (70). C1q activates the classical complement pathway by

binding to antibody Fc regions, leading to C1r and C1s activation.

Subsequently, C1s cleaves C4, generating pro-inflammatory
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anaphylatoxins C4a and C4b (71). While C1q is present in A.

mellifera venom, recombinant C1q failed to recognize IgE from bee

venom allergic patients (70), suggesting a need for further

investigation into its role in complement activation during

bee stings.

Interestingly, melittin’s hydrophilic head shares similarities

with the C1q sequence. Envenomation induces melittin-mediated,

antigen-independent IgG and C1q aggregation, triggering the

classical pathway and producing anaphylatoxins C3a and C5a

(72). C5a rapidly induces physiological responses, including mast

cell degranulation, potentially leading to fatal anaphylaxis (73). Bee

sting envenomation elicits acute allergic and inflammatory

responses. A. mellifera venom and melittin activate the NLRP3

inflammasome, leading to procaspase-1 cleavage and neutrophil

recruitment to the sting site. Mast cells play a protective role by

degrading and neutralizing A. mellifera toxins post-degranulation

(74). Melittin activates the 5-lipoxygenase pathway in neutrophils,

releasing arachidonate and inducing neutrophilia (75, 76).

Additionally, PLA2 from Apis mellifera lamarckii (Egyptian

honeybee) venom hydrolyzes phosphatidylcholine, inhibits

platelet aggregation, and impairs blood coagulation by inhibiting

the extrinsic pathway (77).
4 Role of oxidative stress,
inflammation, and coagulation

Redox homeostasis alterations in venomous animal

envenomation victims contribute to secondary or long-term

complications, with oxidative stress being a key factor. Bee sting

envenomation disrupts hepatic metabolism, elevating plasma

alanine transaminase (ALT) and aspartate aminotransferase

(AST)levels, indicating hepatotoxicity. Additionally, it induces

caspase-1 activation and pro-inflammatory molecule secretion

through H2O2 overproduction (78).

One of the most reported clinical complications following bee

sting envenomation is ischemic stroke with hemorrhagic

transformation. Although the pathophysiology remains unclear,

proposed mechanisms involve systemic immune-mediated

vasoconstriction and a prothrombotic state, leading to ischemia

and subsequent stroke (79), similar to other venomous animal

envenomations (80). These events occur through platelet

aggregation, coagulation cascade activation via tissue

thromboplastin release from damaged tissue phospholipids (81),

and rapid declines in platelet count with coagulopathy (82).

Combined with hemolysis and endothelial damage, widespread

fibrin thrombi formation can lead to vessel occlusion, progressing

to hemorrhagic or occlusive transformations.

Apis mellifera venom targets various cells, with hemolysis and

rhabdomyolysis being particularly damaging due to oxidative stress,

primarily mediated by melittin and PLA2. Hemolysis can occur

directly through venom action or indirectly, while rhabdomyolysis

is primarily venom-induced but may also involve inflammation,

vascular congestion, and edema (83). PLA2-mediated hemolysis
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results from red blood cell membrane lipid disruption, releasing free

hemoglobin (Hb) (83, 84). Free Hb induces macrophage

programmed death, shifting macrophage polarization towards a

cytotoxic phenotype, exacerbating inflammation and tissue damage

(85–87). Additionally, Hb spontaneously oxidizes and reacts with

NO, converting hemoglobin to methemoglobin (MtHb).

MtHb is highly pro-oxidant, readily releasing ferric heme,

which easily crosses cell membranes and increases oxidative

damage. Rhabdomyolysis, another significant contributor to

oxidative stress, releases myoglobin, reactive oxygen species

(ROS), and uric acid into the bloodstream. Myoglobin undergoes

oxidation similar to Hb, releasing free iron and inducing free radical

formation. These events can collectively damage the liver and

kidneys (83).

Ferroptosis, a ROS-dependent cell death characterized by iron

accumulation and lipid peroxidation, may contribute to liver and

kidney damage (88). Ferroptosis inducers like erastin or RSL3

increase intracellular iron, generate excessive ROS, and enhance lipid

peroxidation through lipoxygenase (ALOX) or EGLN prolyl

hydroxylases (PHDs) (88, 89). Hepatocellular death, occurring

through apoptosis, necrosis, or pyroptosis, is a common response to

various liver diseases (90). Animal studies reveal A. mellifera venom-

induced sinusoidal and centrilobular congestion, eosinophilia,

cytoplasmic vacuolation, intraparenchymal hemorrhage, centrilobular

necrosis, and apoptosis (83). Clinically, bee sting envenomation

patients exhibit elevated ALT, AST, and bilirubin levels, consistent

with hemolysis, thrombotic microangiopathy, and acute liver injury

(91). Hepatic vessel occlusion due to microthrombi formation can also

lead to ischemia and necrosis (92). Additionally, venom-induced

oxidative stress, evidenced by increased malondialdehyde (MDA)

and glutathione (GSH) levels, contributes to liver damage (93).

Elevated MDA and GSH levels indicate lipid peroxidation in

liver tissue, a process mediated by ROS generated through various

mechanisms, including neutrophil activity (94). This lipid

peroxidation serves as a pivot for inflammation, as evidenced by

increased TNF-a levels in liver tissue (93). The potential

involvement of neutrophil extracellular traps (NETs) in this

process warrants further investigation. Nox enzyme-dependent

NET formation is well-characterized, involving increased ROS

production, neutrophil granule and nuclear membrane

disintegration, and the release of neutrophil elastase (NE) and

myeloperoxidase (MPO) (95). NE and MPO interact with the

neutrophil nucleus, cleaving histones and facilitating chromatin

decondensation, ultimately leading to the release of DNA decorated

with granular content into the extracellular environment for

antigen capture (96, 97). While NET formation has been observed

in snakebite envenomation (98), its role in multiple bee sting

envenomation remains unexplored.

Oxidative stress induced by bee venom contributes to acute

kidney injury. Bee venom and melittin disrupt renal cell redox

homeostasis by inhibiting a-MG uptake through a PLA2-oxidative

stress-Ca2+ pathway (99). This process involves increased

arachidonic acid and lipid peroxide production, along with

elevated Ca2+ uptake, suggesting a link between PLA2 activation,

Ca2+, and oxidative stress in renal cells (99). Acute kidney injury,

primarily affecting proximal tubules, is a common complication of
Frontiers in Immunology 06
bee sting envenomation (100, 101). Redox imbalance, characterized

by lipid peroxidation and membrane protein denaturation, leading

to altered membrane fluidity, enzyme function, and ion transport,

plays a crucial role in renal failure pathogenesis. The kidney’s high

sensitivity to oxidative stress due to its rich polyunsaturated fatty

acid content renders it susceptible to tubular necrosis caused by bee

venom-induced redox imbalance (102).

Disseminated intravascular coagulation (DIC) with associated

thrombocytopenia presents another potential mechanism for kidney

injury. Despite its prevalence, effective treatment and management

strategies remain limited. Given platelets’ sensitivity to external

stimuli, including ROS, their interplay with oxidative stress is

plausible, especially considering platelet apoptosis exacerbates

oxidative stress induced by the hemorrhagic, hemolytic, and

necrotic effects of bee venom components. Numerous case studies

have documented initial thrombocytopenia and alterations in

hemostatic and renal systems. Platelets play a crucial role in

thromboinflammation (80), explaining the pathogenesis of renal

changes in bee sting envenomation.

Roodt et al. (83) reported pulmonary congestion, septal

enlargement, atelectasis, emphysema, intra-alveolar hemorrhagic

foci, and arterial lesions with acute edema in mice following

experimental envenomation with Apis mellifera mellifera venom

from different regions of Buenos Aires, Argentina. While

pulmonary alterations in bee envenomation remain unclear

clinically, proposed mechanisms include pro-thrombotic state-

induced congestion due to platelet aggregates, fibrin deposition, and

erythrocyte accumulation, similar to snake envenomation. Pulmonary

edema may result from catecholamine-induced myocarditis,

myocardial ischemia due to coronary vasoconstriction, and direct

cardiotoxin effects on the myocardium (103–106). Additionally, blood

leukocyte mobilization, as observed in other venomous animal

envenomations, could contribute to acute lung injury.
5 Clinical complications in honeybee
stings envenoming

A wide array of clinical complications can arise from multiple

bee stings (Figure 3). These complications manifest locally or

systemically, with variable onset, organ involvement, and overall

impact. While frequently reported, the underlying pathogenesis of

rarer reactions remains largely undefined (Table 1).

Melittin, phospholipase A2, apamin, and hyaluronidase are the

primary toxic components of Apis mellifera bee venom. These

substances significantly contribute to the development of clinical

complications following multiple bee stings (192). The

cardiovascular system is particularly vulnerable, with ischemic

events, including acute myocardial infarction and Kounis

syndrome (allergy-induced acute coronary syndrome), being

common sequelae. Other potential cardiac complications include

takotsubo cardiomyopathy, atrial fibrillation, and cardiac damage

(193, 194).

Hemorrhage can occur in various locations following a bee sting,

including the digestive, nervous, and respiratory systems, potentially
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leading to gastrointestinal, subarachnoid, or pulmonary hemorrhage,

respectively. Additionally, hematological complications such as

ischemia, anemia, thrombosis, hemolysis, disseminated

intravascular coagulation (DIC), and shock, often culminating in

hypovolemia, may arise. While hemolysis occurs in 17-22% of wasp

sting cases, DIC is less common but can trigger thromboplastin

release and microthrombi formation (192, 194).

Bee stings can induce hepatitis due to liver damage, manifested by

elevated transaminases, alkaline phosphatases, and bilirubin levels.

However, rhabdomyolysis and cardiac damage can also increase

transaminases, complicating liver injury diagnosis. Severe liver damage

may progress to liver failure. In rats,melittin has been implicated in liver

injury through vasoconstriction and glycogenolysis (194).

Anaphylactic shock, an IgE-mediated immune response causing

hypoperfusion and vasodilation, poses a severe risk to individuals

with previous bee sting exposure or allergies. This life-threatening

condition can lead to organ injury and death. Additionally, mast cell

activation syndrome, characterized by excessive mast cell

production and inflammatory effects, can trigger multisystem

complications, organ failure, and mortality rates exceeding those

of anaphylaxis (194).
Frontiers in Immunology 07
Rhabdomyolysis, characterized by skeletal muscle breakdown,

is frequently associated with bee envenoming, evidenced by elevated

creatine phosphokinase (CPK) and bilirubin levels, and can

contribute to acute kidney injury (AKI) (18, 192). Hemiparesis, or

muscle weakness following ischemic stroke, is another potential

muscular complication leading to immobilization or reduced

physical activity (195).

Bee sting envenomation can lead to various neurological

complications, including stroke (both ischemic and hemorrhagic),

behavioral changes, ataxia, areflexia, encephalomyelitis, and

Guillain-Barré syndrome. Ischemic and hemorrhagic strokes pose

significant risks due to their potentially fatal outcomes.

Subarachnoid intracranial hemorrhage often complicates ischemic

stroke, undergoing hemorrhagic transformation. While the exact

mechanisms remain unclear, two primary theories have been

proposed: 1) an immune-mediated systemic reaction causing

vasoconstriction and a prothrombotic state leading to ischemia

and subsequent stroke; and 2) disseminated intravascular

coagulation (DIC) triggered by tissue thromboplastin release,

coupled with hemolysis, resulting in vessel occlusion, ischemic

stroke, and eventual hemorrhagic transformation (9, 34).
FIGURE 3

Spectrum of severe systemic effects from bee stings. Multiple bee stings trigger highly severe systemic reactions, exhibiting a broad spectrum of
clinical manifestations.
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TABLE 1 Complications associated with honeybee stings envenoming.

System/Organ Clinical
complications

Reference

Cardiovascular Acute
myocardial ischemia

(107–109)

Acute
myocardial injury

(110)

Atrial fibrillation (111)

Hypertension (112, 113)

Kounis
syndrome (KS)

(111, 114–120)

Left
ventricular
hypertrophy

(121)

Left ventricular
systolic dysfunction

(108, 122)

Mobitz type 2
heart block

(123)

Myocardial damage (112, 124)

Pericardial effusion (125)

Pericarditis
epistenocardica

(126)

Subendocardial
hemorrhage

(121)

Takotsubo
cardiomyopathy

(127)

Digestory Boerhaave’s
syndrome

(107)

Gastrointestinal
hemorrhage

(113, 128)

Hematologic Acute limb ischemia (129)

Acute
femoral thrombosis

(129)

Anemia (130)

Bleeding (4)

Brachial
artery thrombosis

(131)

Deep vein
thrombosis (DVT)

(132)

Disseminated
intravascular
coagulation

(112)

Hematochezia (133)

Hemolysis (29, 91, 112, 134)

Shock (18, 112, 125, 135, 136)

Thrombotic
microangiopathy

(91)

Thrombotic
thrombocytopenic
purpura (TTP)

(137)

(Continued)
F
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TABLE 1 Continued

System/Organ Clinical
complications

Reference

Hepatic Acute liver injury (91)

Adrenal hemorrhage (138)

Hepatic damage (124)

Hepatic dysfunction (29, 112)

Ischemic hepatitis (133)

Immune Anaphylactic shock (4, 73, 107, 108, 114, 121,
122, 133, 139–143)

Mast cell
activation syndrome

(116)

Multisystem Cardiopulmonary
arrest

(143)

Multiorgan failure (79, 92, 134, 136,
144–146)

Multiorgan injury (147)

Muscular Hemiparesis (148, 149)

Rhabdomyolysis (18, 29, 112, 135, 148,
150–155)

Nervous Acute bilateral
cerebellar infarction

(156)

Axonal
motor
polyneuropathy

(157, 158)

Cavernous
sinus thrombosis

(159)

Coma (112, 136)

Convulsion (159)

Encephalitis (128)

Guillain-
Barre syndrome

(160)

Hemorrhagic/
Ischemic stroke

(134, 136, 148, 149,
161–165)

Intracerebral
hemorrhage

(136)

Multiple acute
cerebral infarcts

(148, 149, 159)

Subarachnoid
hemorrhage

(4, 121, 149)

Subdural hemorrhage (149)

Tonsillar herniation (133)

Transcortical
motor aphasia

(166)

Renal Acute kidney injury (29, 91, 108, 113, 135,
150, 153, 155, 159, 167)

Acute kidney failure (18, 112, 134, 136, 147,
148, 151, 154)

(Continued)
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Furthermore, behavioral changes, ataxia, and areflexia typically

accompany degeneration or obstruction in specific regions of the

brain and cerebellum. In this context, some cases displaying these

complications have also experienced strokes, indicating a potential

connection (196). It is well-established that the execution of any

movement entails the coordinated action of agonist and synergist

muscles, which contract to facilitate the movement, while

antagonist muscles relax to allow it, and fixator muscles stabilize

posture and prevent unintended shifts (196). Hence, considering

that bee venom, particularly melittin, induces rhabdomyolysis, it is

plausible that the partial loss of motor function in these cases may

also be linked to rhabdomyolysis (18, 192).

Rhabdomyolysis, hemolysis, and hypotension can adversely

affect the renal system, elevating creatine kinase and bilirubin

levels, and ultimately leading to acute kidney injury (AKI) and

renal failure. Multiple bee sting envenomation often causes

glomerular and peritubular vasoconstriction, potentially resulting

in ischemic injury and acute tubular necrosis. The accumulation of

myoglobin, Tamm-Horsfall proteins, and uric acid within the

tubules contributes to cast formation, further obstructing tubules

and inducing ischemia. Anuria and hematuria are additional

associated renal complications (192).

Clinical respiratory complications include acute pulmonary

edema, pulmonary hemorrhage, and acute respiratory distress

syndrome (ARDS). Bee venom’s ability to increase vascular

permeability contributes to edema formation in various tissues,

including the lungs, trachea, conjunctiva, and subcutaneous areas

(194). Alveolar capillary damage can precipitate diffuse alveolar

hemorrhage (DAH), potentially progressing to ARDS (197, 198).

The pathogenesis of ARDS in bee sting envenomation remains
TABLE 1 Continued

System/Organ Clinical
complications

Reference

Respiratory Acute
pulmonary
emphysema

(141)

Acute respiratory
distress
syndrome (ARDS)

(18, 112, 115, 125, 134,
135, 168)

Bronchial obstruction (141)

Laryngeal congestion (138)

Laryngeal edema (138, 139)

Pulmonary
congestion

(139, 141, 169)

Pulmonary edema (113, 125, 127, 139, 141)

Pulmonary
hemorrhage

(141)

Traquea congestion (138)

Traquea edema (138)

Skin Angioedema (169, 170)

Grover’s
Disease (GD)

(171)

Urinary Anuria (115, 125)

Hematuria (130, 133)

Hemoglobinuria (29)

Visual Cataract (172, 173)

Central retinal artery
occlusion (CRAO)

(124, 140)

Conjunctival
chemosis

(136, 174–178)

Conjunctival
congestion

(172)

Conjunctival
hyperemia

(177–179)

Conjunctival
injection

(175)

Conjunctival
ischemia

(175)

Corneal abrasions (179–182)

Corneal
decompensation

(172)

Corneal edema (172, 175, 181, 183–186)

Cornea
epithelial defect

(172)

Corneal infiltration (172, 175, 180)

Corneal scarring (172, 186)

Descemet
membrane fold

(174)

(Continued)
TABLE 1 Continued

System/Organ Clinical
complications

Reference

Endophthalmitis (184, 187)

Episcleral hyperemia (178)

Eyelid edema (175, 179)

Glaucoma (172)

Keratoconjunctivitis (188)

Keratopathy (180, 186)

Optic disc hyperemia (189)

Optic neuritis (190)

Optic neuropathy (185)

Retinal striae (189)

Scleritis (184)

Striate keratopathy (177)

Subconjunctival
hemorrhage

(176, 185, 187)

Uveitis (189, 191)

Vitritis (189)
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unclear, although melittin and phospholipase A2 are suspected

contributors to acute lung injury. Venom-induced inflammation

can cause extensive tissue damage, culminating in severe cases of

ARDS and multisystemic cardiorespiratory arrest (199, 200).

Ocular complications, though uncommon, encompass a wide

range of issues. These include eyelid edema, conjunctival congestion,

corneal abrasions, optic neuropathy, ptosis, purulent ocular

secretions, conjunctival and episcleral hyperemia, symblepharon,

macular retinal striae, ciliary congestion, corneal edema with

Descemet’s membrane folding, and even vision loss. Additionally,

lens abscess, partial iris atrophy, and cataract formation have been

reported. The retained stinger’s direct venom action, coupled with the

rapid immune response, primarily causes corneal injury (201, 202).

Clinical complications from bee sting envenomation can be

severe, life-threatening, and multi-systemic. These complications,

potentially triggered by a single sting, allergies, or anaphylaxis, can

impact various bodily systems. Moreover, a high number of bee stings

can exacerbate these complications, affecting the cardiovascular,

nervous, hematological, or respiratory systems (Table 2).

Defining envenomation by sting number remains challenging,

as the lethal venom dose is 2.8-3.5 mg/kg body weight (26, 28).

Severe complications like disseminated intravascular coagulation,

hematuria, ischemic hepatitis, myocardial damage, and death have

been reported in adults with fewer than 30, even as few as one sting,

particularly in sensitized individuals (Table 2). This highlights the

unpredictable nature of bee sting envenomation.
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Differentiating the causes and assessing the risks of death linked

to either the direct toxic effects of venom or the allergic syndrome

triggered by honeybee stings poses a formidable challenge,

demanding thorough investigation and vigilant patient monitoring.

Consequently, all incidents involving bee stings should be regarded as

envenoming, and their significance, even in instances involving only a

few stings, should not be underestimated. This recognition was

underscored during the Apilic antivenom’s phase I/II clinical trial,

wherein a recommendation was made to administer two vials of

antivenom to patients with more than five stings. For those with

fewer than five stings, the use of apilic antivenom is not advised,

except when dictated by medical judgment (5).
6 Prevention of bee stings

Preventing severe systemic reactions to bee stings requires a

multi-faceted approach. Clothing choices, such as wearing light-

colored, smooth-textured garments, can deter bees. Avoiding

scented products and maintaining personal hygiene by wearing

clean clothes and showering regularly can also reduce the risk of

stings. Minimizing exposure to bee-attracting factors, including

flowering plants and food remnants, is crucial (204).

When confronted by a solitary stinging insect, remaining calm

and still is crucial to avoid provocation. However, if multiple insects

attack, swiftly retreating indoors or to a sheltered area is essential.
TABLE 2 Clinical complications associated with honeybee stings envenoming in the entire patient cohort and in patients who died.

Case Age Sex Country Number
of Stings

Time
to

Treatment

Time
to Death

Comorbidity Clinical
complications

System Reference

1 10 Male Turkey 5989 3 h 12 days – Acute kidney failure
Acute respiratory distress

syndrome (ARDS)
Convulsion
Hemolysis

Hypertension
Ischemic stroke

Multiorgan failure

Nervous
Hematologic
Respiratory
Urinary

Multiorgan

(134)

2 8 Male Nigeria – 50 min 36 h Sickle
cell anemia

Hematuria
Hemolysis

Hematologic (130)

3 25 Male Australia 1 – 40 h – Acute respiratory distress
syndrome (ARDS)
Anaphylactic shock

Bleeding
Cerebral tonsillar herniation
Disseminated intravascular

coagulation (DIC)
Hematuria

Ischemic hepatitis
Myocardial damage

Cardiovascular
Hepatic

Hematologic
Immune
Nervous
Urinary

Respiratory

(133)

4 38 Male South
Africa

32 – – – Subarachnoid hemorrhage
Subendocardial hemorrhage

Cardiovascular
Nervous

(121)

5 58 Male South
Africa

1 – – – Laryngeal edema
Left ventricular hypertrophy

Pulmonary congestion
Pulmonary edema

Cardiovascular
Respiratory

(121)

(Continued)
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TABLE 2 Continued

Case Age Sex Country Number
of Stings

Time
to

Treatment

Time
to Death

Comorbidity Clinical
complications

System Reference

6 58 Male South
Africa

10 No
medical care

– – Anaphylactic shock Immune (121)

7 38 Female Hungary 1 No
medical care

4 min – Acute respiratory distress
syndrome (ARDS)
Anaphylactic shock

Immune
Respiratory

(73)

8 25 Male Australia 1 – Asthma Cardiorespiratory arrest
Laryngeal edema

Pulmonary congestion

Cardiovascular
Respiratory

(139)

9 36 Female Australia 40-50 15 min >29 min Asthma
Psoriasis

Cardiorespiratory arrest
Laryngeal edema

Cardiovascular
Respiratory

(139)

10 54 Male Australia 1 15 min >15 min Osteoporosis Cardiorespiratory arrest
Laryngeal edema

Pulmonary congestion
Pulmonary edema

Cardiovascular
Respiratory

(139)

11 70 Male Brazil – 20 h – Diabetes
Hypertension

Acute respiratory distress
syndrome (ARDS)

Anuria
Cardiorespiratory arrest

Cardiovascular
Respiratory
Urinary

(18)

12 39 Male Honduras – 3 h 37 h – Anaphylactic shock
Anuria

Rhabdomyolysis

Immune
Multiorgan
Muscular
Urinary

(145)

13 19 Male Brazil 2000 0 h 23 days – Acute respiratory distress
syndrome (ARDS)

Anuria
Cardiorespiratory arrest
Pericardial effusion
Pulmonary edema

Shock

Cardiovascular
Hematologic
Urinary

Respiratory

(125)

14 46 Female Brazil 1 2 h 2 h Obesity Anaphylactic shock
Bleeding

Subarachnoid hemorrhage
Pulmonary edema

Pulmonary hemorrhage

Hematologic
Immune

(4)

15 48 Male Turkey – – 3 days – Encephalitis
Hepatitis

Gastrointestinal haemorrhage

Digestory
Hepatic
Nervous

(128)

16 59 Male Italy – – – – Bronchial obstruction
Cardiorespiratory arrest

Laryngeal edema
Pulmonary congestion
Pulmonary edema

Pulmonary emphysema
Pulmonary hemorrhage

Cardiovascular
Respiratory

(141)

17 67 Male Iran 20 3 days 5 days Type-2
diabetes

Hypertension
Myocardial
infarction
Ventricular
aneurysm

Cardiorespiratory arrest
Thrombotic thrombocytopenic

purpura (TTP)

Cardiovascular
Hematologic
Respiratory

(137)

18 59 Male India – – 5 days Parkinson
disease

Adrenal hemorrhage
Laryngeal congestion
Laryngeal edema

Tracheal congestion
Tracheal edema

Pulmonary congestion
Pulmonary edema
Rhabdomyolysis

Muscular
Urinary

Respiratory

(138)

(Continued)
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Submerging in water to escape is ill-advised, as some bee species,

like Africanized honeybees, may continue to sting upon

resurfacing (205).

Individuals with a history of severe allergic reactions to insect

stings should carry an epinephrine auto-injector and wear medical

identification. Prompt medical attention is crucial in case of an

allergic reaction (206). Integrating these preventive measures into

daily routines significantly reduces the risk of severe systemic

reactions from bee stings, enhancing safety in various environments.
7 Clinical complications diagnostic

Preventive exams identify diseases in asymptomatic individuals.

Bee sting envenomations often present with multiple, late-

diagnosed complications. Early diagnosis is crucial for effective

management and improved outcomes (Supplementary Table 1).

Although warning signs exist, monitoring challenges persist for

general clinicians (207).
8 Pharmacological interventions

Current management and treatment protocols for honeybee

sting envenomation primarily address analgesia and allergic

reactions, with limited guidance on other complications.

Consequently, treatment options and associated risks for these

complications remain scarce. Given the diverse clinical

manifestations of honeybee sting envenomation, adapting

treatment protocols from other conditions may be beneficial. It

is essential to consider both potential benefits and risks

when implementing treatment plans, as some interventions may

exacerbate complications or cause adverse effects. A comprehensive

understanding of treatment options and their associated risks for

various clinical complications is crucial for optimal patient care

(Supplementary Table 2).

Symptomatic treatments for severe bee sting envenomations

often prove ineffective. To address this, the Center for the Study of

Venoms and Venomous Animals, Brazil initiated the development

of a bee sting antivenom. Initial efforts focused on venom

biochemical characterization to understand its composition.

Traditional horse-based antivenom production faced challenges
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due to high allergic reaction rates and anaphylactic shock in

horses. To mitigate these risks, researchers explored various

strategies, including cobalt-60 irradiation (208). Irradiation

significantly altered the chromatographic profiles of native Apis

venom. While irradiated venom combined with IFA or SBA-15

produced similar antibody titers compared to native venom and

IFA, these titers were notably lower. Importantly, irradiation

reduced venom toxicity while preserving its immunogenicity, and

IFA enhanced antibody production (208). However, successful

immunization required removing all allergenic components from

the venom, leaving only melittin and PLA2 for immunization.

Apilic antivenom demonstrated partial neutralization of venom

effects , inc luding hematocr i t , vascular permeabi l i ty ,

myeloperoxidase activity, edema, plasma CK activity, venom

phospholipase and hyaluronidase activity, and cytotoxicity in

kidney cell cultures (209, 210). These findings indicate the

antivenom’s potential efficacy against Africanized bee (A.

mellifera) venom and melittin in vivo and in vitro. Subsequent

phase I/II clinical trials were initiated to evaluate the antivenom’s

safety and efficacy. Given the absence of established clinical

protocols for antivenom evaluation, a new protocol was

developed and approved by ethics regulatory (The Brazilian

Committee of Ethics in Research – CONEP) and sanitation

agencies (Brazilian Health Regulatory Agency – ANVISA). This

protocol outlined specific, adjuvant, symptomatic, and

complementary treatments, in addition to standard clinical trial

guidelines for heterologous antivenoms. It represented the first

clinical trial specifically designed to assess the efficacy and safety

of an Africanized bee venom antivenom (5).

The Apilic antivenom proved to be safe and demonstrated

efficacy in neutralizing various venom effects, including hematocrit,

vascular permeability, and enzyme activity, both in vivo and in vitro.

These findings highlight the antivenom’s potential for treating

Africanized bee (A. mellifera) envenomation. At the time, the

pharmacokinetics of Africanized bee venom in humans was

reported for the first time. The concentrations of melittin and

PLA2 varied between 0.03 ng/mL and 587.35 ng/mL during

hospitalization and follow-up, and interestingly, it was possible to

observe that the blood concentration of PLA2 and mainly melittin

increases again, especially after 10 days hospitalization, but without

any clinical symptoms (8)). Mass spectrometry assays, allowed to

determine the presence and relative levels of melittin in the
TABLE 2 Continued

Case Age Sex Country Number
of Stings

Time
to

Treatment

Time
to Death

Comorbidity Clinical
complications

System Reference

19 42 Male Iran – – 30 min –

1 h
– Anaphylactic shock

Cardiorespiratory arrest
Cardiovascular

Immune
Respiratory

(143)

20 41 Female India 1 3 h 7 days – Disseminated intravascular
coagulation (DIC)

Hemiparesis
Hemorrhagic/Ischemic stroke

Hematologic
Nervous

(149)

21 66 Male Argentina >500 – 36 h Hypertension Anaphylactic shock
Multiorgan failure

Immune
Multiorgan

(203)
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participants. It should be noted that these issues were expected, as

accidents involving AHB are peculiar and different from all other

accidents involving venomous animals described. A phase III

clinical trial is essential to confirm these observations, optimize

dosing, and fully evaluate the antivenom’s efficacy (8).

The Apilic antivenom production process aligns with

established antivenom manufacturing standards (211). However,

producing pilot batches compliant with Good Manufacturing

Practices (GMP) has presented challenges. Small-scale production

for clinical trials is particularly difficult for pharmaceutical

industries due to the associated risks and investments.

Collaborating with Contract Development and Manufacturing

Organizations (CDMOs) could facilitate technology transfer and

small-batch production (212).
9 Final remarks

The increasing incidence of bee sting envenomation necessitates

a comprehensive understanding of its underlying mechanisms,

clinical manifestations, and potential complications to inform

effective public health interventions. This review elucidates the

intricate effects of bee venom and its associated health

consequences. While existing research provides valuable insights

into venom composition and its impact, clinical management

guidelines for bee sting envenomation remain limited.

This review fills a critical knowledge gap by providing a

comprehensive overview of the clinical implications of bee venom

exposure. Our analysis underscores the complexity of venom-

human interactions and the severity of potential outcomes. The

development of novel treatment strategies, including an antivenom,

is imperative to reduce mortality and long-term complications.

However, until such interventions become available, alternative

pharmacological approaches must be explored, considering their

associated risks.
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