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Background: Autoimmune diseases (ADs) are a category of conditions
characterized by misrecognition of autologous tissues and organs by the
immune system, leading to severe impairment of patients’ health and quality of
life. Increasing evidence suggests a connection between fluctuations in plasma
metabolites and ADs. However, the existence of a causal relationship behind
these associations remains uncertain.

Methods: Applying the two-sample mendelian randomization (MR) method, the
reciprocal causality between plasma metabolites and ADs was analyzed. We took
the intersection of two metabolite genome-wide association study (GWAS)
datasets for GWAS-meta and obtained 1,009 metabolites’ GWAS data using
METAL software. We accessed GWAS summary statistics for 5 common ADs,
inflammatory bowel disease (IBD), multiple sclerosis (MS), type 1 diabetes (T1D),
systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) from published
GWAS data. MR analyses were performed in discovery and replication stage
simultaneously. Meanwhile, the reverse MR analysis was conducted to investigate
the possibility of reverse causal association. Furthermore, a series of sensitivity
analyses were conducted to validate the robustness of the results. These
statistical analyses were conducted using R software. Finally, the web version
of MetaboAnalyst 5.0. was applied to analyze metabolic pathways. Ultimately, we
conducted ELISA assays on plasma samples from patients to validate the results.

Results: 4 metabolites were identified to have causal relationships with IBD, 2
metabolites with MS, 13 metabolites with RA, and 4 metabolites with T1D. In the
reverse MR analysis, we recognized causality between SLE and 22 metabolites,
IBD and 4 metabolites, RA and 22 metabolites, and T1D and 37 metabolites.
Additionally, 4 significant metabolic pathways were identified in RA by metabolic
pathway analysis in the forward MR analysis. Correspondingly, in the reverse, 11
significant metabolic pathways in RA, 8 in SLE, and 4 in T1D were obtained using
identical approaches. Furthermore, the protective role of glutamate was
confirmed through ELISA assays.
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Conclusions: Our research established a reciprocal causality between plasma
metabolites and ADs. Furthermore, diverse metabolic pathways correlated with
ADs were uncovered. Novel insights into the prediction and diagnosis were
provided, as well as new targets for precise treatment of these conditions

were discovered.

Mendelian randomization, plasma metabolites, autoimmune diseases, inflammatory
bowel disease, multiple sclerosis, type 1 diabetes, systemic lupus erythematosus,

rheumatoid arthritis

1 Introduction

Autoimmune diseases (ADs) are a group of disorders in which
the immune system mistakenly targets and destroys healthy tissues
and organs within the body. This can result in inflammation, tissue
damage, and dysfunction of multiple organ systems (1). The
number of people affected by autoimmune diseases is
approximately 10% of the population worldwide and is expected
to continue to increase globally (2). Autoimmune diseases
frequently impact multiple organs within the body, posing
significant challenges and financial burdens in terms of treatment.
This is undoubtedly a heavy pressure on both individuals and
society (3). The etiology of ADs is believed to involve an intricate
combination of hereditary, external, hormonal, mental stress and
immune factors (4). However, the exact causes of autoimmune
diseases are currently not understood completely.

Plasma encompasses a spectrum of small molecule metabolites
that frequently engage in diverse biological processes and contribute
to the pathogenesis of various diseases. The application of these
metabolites in the diagnosis of human diseases is increasingly
recognized and is a focal point of contemporary medical research
(5, 6). Plasma metabolites play a significant role in their native state.
Valine, as an example, is an essential amino acid in its natural state,
playing a crucial role in protein synthesis (7). Homocitrulline, as
another example, is a derivative of an amino acid that facilitates in
the cellular removal of excess ammonia, thereby maintaining
ammonia homeostasis (8). Although the pathogenesis of ADs is
still unclear, in recent years, more and more evidence has shown
that metabolic abnormalities are closely related to the development
of ADs. For example, a metabolomics study on systemic lupus
erythematosus (SLE) found a significant decrease in many serum
metabolites including valine (9). Similarly, in another study on
amino acid analysis in patients with inflammatory bowel disease
(IBD), significant changes in valine levels were also observed (10).
At the same time, previous studies have demonstrated significant
variations of plasma homocitrulline level in Type 1 diabetes (T1D)
patients with various symptoms (11). These previous studies have
suggested that there is some correlation between metabolites and
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ADs, and even that metabolite levels may be related to the severity
of disease symptoms. Nevertheless, due to the presence of
numerous confounding factors, it is hard to determine whether
the potential causal relationship exist between plasma metabolites
and ADs through traditional cross-sectional studies.

With the development of high-throughput technology, it has
become feasible to simultaneously evaluate a vast number of plasma
metabolites. Metabolomics is progressively assuming a crucial role in
the investigation of disease occurrence and progression in ADs (12).
Genome-wide association study (GWAS) greatly facilitates the
comprehensive investigation of the underlying genetic factors
contributing to complex diseases. Mendelian randomization (MR),
a statistical method, provides confounder-free estimates effectively. It
employs genetic variation as an unbiased instrumental variable (IV)
to study the casual relationship between exposure and outcome (13).
MR has been proved to be a powerful statistical approach, as the
outcomes are less susceptible to be affected by unknown confounding
variables or reverse causality (14). MR analysis has been extensively
utilized in diverse situations, encompassing some studies related to
plasma metabolites or ADs (15, 16).

In this study, we conducted a comprehensive two-sample
bidirectional MR analysis to (1) assess the causality of human
plasma metabolites on 5 ADs, including IBD, multiple sclerosis
(MS), TID, SLE and rheumatoid arthritis (RA). (2) reversely
determine the causal relationship of 5 ADs on plasma
metabolites. (3) explore potential metabolic pathways that may
contribute to elucidate the mechanisms of ADs.

2 Materials and methods

2.1 Study design

We conducted a comprehensive evaluation of the potential
causal relationship between human plasma metabolites and the
likelihood of ADs using a bidirectional two-sample MR design. A
well-executed MR study should adhere to three fundamental
assumptions: (1) instrumental variable assumption—the genetic

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1437688
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yuan et al.

variation should exhibit a direct association with exposure;
(2) independence assumption—the genetic variant is randomly
assigned and is independent of any confounding factors that may
affect the outcome; (3) exclusion restriction assumption—the
genetic variation have no direct effect on the outcome, and affect
the outcome variable only through the effect of the exposure
variable. To ensure data integrity, we acquired individual GWAS
datasets for plasma metabolites and ADs, thereby avoiding overlap
of samples. The summary of this study was depicted in Figure 1. The
overview of the research workflow.

10.3389/fimmu.2024.1437688

2.2 Human plasma metabolites GWAS
summary statistics

The genetic statistics for plasma metabolites come from two
different GWAS data: One is from a German Chronic Kidney
Disease (referred to as GCKD below) involving a cohort of 5023
German individuals, and summary statistics for study
GCST90264176-GCST90266872 (17) were obtained from the
NHGRI-EBI GWAS Catalog (18) on 05/06/2023. We only
selected plasma metabolites for further study and urine

Plasma Metabolites Autoimmune Diseases (ADs)
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R (Replication)
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('] 1 !
E ' 2.GCKD: n = 5,023 : 2.RA_GCST90132223: 2.RA_Finngen:
g : 1,296 plasma r;\etabolites 1 n.case = 22,350; n.control = 74,823 n.case = 12,555; n.control = 240,862
1
2 R 3.SLE_GCST003156: 3.SLE_GCST90014462:
‘g GWAS-meta n.case = 5,201; n.control = 9,066 n.case = 624; n.control = 324,074
o (RS 4.T1D_GCST010681: 4.T1D_Finngen:
fmmm === =¥ e e e o - 3 n.case = 9,266; n.control = 15,574 n.case = 8,671; n.control = 255,466
1 1,009 plasma metabolites ! 5w _|Eu; 5MS_Finngen:
| PN n.case = 47,429; n.control = 68,374 n.case = 2,182; n.control = 373,987
e 4 N\ .
= MR analysis
— 1.Metabolites — IBD (D+R); 2.Metabolites — RA (D+R); 3.Metabolites — SLE (D+R);
g 4 Metabolites — IBD (D+R); 5.Metabolites — MS (D+R)
o
= R
o Reverse MR analysis
-% 1.1BD (D+R) — Metabolites; 2.RA (D+R) — Metabolites; 3.SLE (D+R) — Metabolites;
o | 4.1BD (D+R) — Metabolites; 5.MS (D+R) — Metabolites
AN )
T
Selection of instrumental variables (SNPs)
= . Metabolites — ADs: P < 5x10® ; ADs — Metabolites: P < 5x108
o . . .
'ﬁ . LD clumping r2 < 0.001, window size = 10,000kb
S . Excluding SNPs with MAF < 0.01
g,' . Excluding SNPs for being palindromic with intermediate allele frequencies
Qo . Excluding SNPs with F-statistic < 10
©
-
3 . Excluding SNPs with a stronger association with the outcome than with the exposure
using steiger test
. Excluding ADs associated SNPs in MR analysis
N |
. : FPrRs -
> Two sample MR analysis . Sensitivity analysis
=
% . - Inverse variance weighted (main), + Heterogeneity: Cochran’ Q test
%.:% (Z. . MR Egger - MR-Egger regression tests
S%w . Weighted median . MR-PRESSO test
»n < :
o5 © « Simple mode
= = « Weighted mode
./

Use MetaboAnalyst 5.0 web tool
Contain KEGG database
P<0.05

Metabolite
Pathway
Analysis

FIGURE 1
The summary of the research process.

Frontiers in Immunology 03

l Excluding MR results with pleiotropy

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1437688
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yuan et al.

metabolites were excluded. The other is from a Canadian
Longitudinal Study of Aging (referred to as CLSA below)
including 8,299 Canadian individuals, and summary statistics for
study GCST90199621-GCST90200711 (19) were also acquired from
the NHGRI-EBI GWAS Catalog (18) on 05/06/2023. These are the
two large-scale GWAS data published to date for plasma
metabolites which were published in 2023 and they shared the
same platform called Metabolon HD4 thus perfectly increasing the
data consistency. We meta-analyzed summary statistics from
GCKD and CLSA cohorts using METAL software (20).

2.3 Autoimmune diseases GWAS summary
statistics (discovery samples)

During the discovery phase, summary statistics for each of the 5
ADs were obtained from the NHGRI-EBI GWAS Catalog:
GCST004131 (25,042 IBD cases and 34,915 controls) (21),
GCST90132223 (22,350 RA cases and 74,823 controls) (22),
GCST003156 (5,201 SLE cases and 9,066 controls) (23) and
GCST010681 (9,266 T1D cases and 15,574 controls) (24). In
order to facilitate correspondence with diseases, these GWAS
datasets were named as followed: IBD_GCST004131,
RA_GCST90132223, SLE_GCST003156 and T1D_GCST010681.
Data for MS was obtained from the IEU Open GWAS Project, so
we called MS_IEU (47,429 MS cases and 68,374 controls)
below (25).

2.4 Autoimmune diseases GWAS summary
statistics (replication samples)

For the replication phase, the FinnGen study provided the
replication outcome samples for IBD, RA, T1D, and MS. To
distinguish these GWAS datasets, we have all prefixed them with
the name of the disease: IBD_Finngen (8,704 IBD cases and 300,450
controls), RA_Finngen (12,555 RA cases and 240,862 controls),
T1D_Finngen (8,671 T1D cases and 255,466 controls) and
MS_Finngen (2,182 MS cases and 373,987 controls) (26). The
samples for SLE were obtained from the NHGRI-EBI GWAS
Catalog: GCST90014462 (624 SLE cases and 324,074 controls),
then we called it SLE _GCST90014462 below (27).

2.5 Selection of IVs

Initially, we identified single nucleotide polymorphisms (SNPs)
for each plasma metabolite, which met the association threshold of
P < 5 x 107 (28-30). The commonly employed threshold for
genome-wide significance, P < 5 x 107 is applied to select genetic
instruments. However, imposing such conditions will result in a
significant reduction in the quantity of metabolites that can be
analyzed. To obtain a more comprehensive evaluation, we relaxed
the threshold to P < 5 x 107 In reverse, as a standard practice,
SNPs were selected with association thresholds at P < 5 x 10 for
each AD analyzed. Next, link-age disequilibrium between the SNPs
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was calculated, and we only retained those SNPs with a r? < 0.001
(clumping window size = 10,000 kb). In addition, SNPs with minor
allele frequency (MAF) < 0.01, SNPs with alleles that form a
palindrome and have intermediate allele frequencies and SNPs
with F-statistics < 10 were all excluded. Then, we removed SNPs
associated with disease and potential confounding factors, which
were checked in the Phenoscanner of R software (31, 32). Finally,
SNPs that exhibited a stronger correlation with the outcome rather
than with the exposure were removed based on the Steiger Test (33).

2.6 MR analyses

In our MR analyses, the standard inverse variance weighted (IVW)
method, Simple mode test, MR Egger test, Weighted mode test and
Weighted-median method were employed to evaluate the causal
relationship between plasma metabolites and ADs, and IVW method
is the primary and most significant approach among them.
Subsequently, we carried out diverse sensitivity analyses
simultaneously to ensure the reliability and robustness of the results:
(1) Cochran’s Q was calculated to assess heterogeneity among the
individual causal correlation, where pleiotropy is considered present
when P < 0.05. (2) MR-Egger and MR-PRESSO regression tests were
applied to examine the potential impact of horizontal pleiotropy. In
both methods, we delete the data with a P < 0.05.

Statistical analyses were conducted using R software (version 4.3.1).
Forest plot was performed using package “forestploter” (version 1.1.0)
(https://CRAN.R-project.org/package=forestploter). We conducted
MR analyses using the “TwoSampleMR” package (version 0.5.6)
(34). We used “leugwasr” package (version 0.1.5) (https://
github.com/MRCIEU/ieugwasr) to analyze linkage disequilibrium.

2.7 Metabolic pathway analyses

Metabolic pathways were investigated using the web version of
MetaboAnalyst 5.0. (https://www.metaboanalyst.ca/) (35). To
identify potential metabolite groups or pathways that may be
associated with ADs’ biological process, pathway analyses
modules and functional enrichment analyses were employed. In
this study, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database was utilized, and a significance level of 0.05 was applied for
pathway analyses.

2.8 Patients

This study has been approved by the Ethics Committee of The
First Affiliated Hospital of Xiamen University (Xiamen, China;
approval number: XMYY-2022KY121). Informed consent was
obtained from all patients. Plasma samples were collected from a
control group of 12 patients without ADs who had internal fixation
removed (6 males, 6 females), as well as two groups of patients who
underwent joint replacement surgery: one group with 12 patients
with RA (4 males, 8 females), and another group with 12 patients
with SLE (3 males, 9 females).
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2.9 Glutamate ELISA

Glutamate concentrations were quantified in human plasma
according to manufacturer’s instructions (Glutamate ELISA kit
KA1909, Novus Biologicals).

2.10 Statistical analysis

Experimental data analysis was conducted using SPSS v29.0
(SPSS Inc.) or GraphPad Prism v10.0.2 (GraphPad Inc.). Data were
tested for normality and equal variances, followed by 2-sample, 2-
tailed t tests or 3-way ANOVA with Dunnett’s post hoc tests. P <
0.05 was considered significant. Mean + SD or box plots
representing interquartile range, median, and all data points are
presented in the figures.

3 Results
3.1 Selection of IVs

Our workflow is summarized in Figure 1. The genetic statistics
for plasma metabolites come from two different GWAS data, each
with 1,296 and 1,091 metabolites, respectively. 1,009 metabolites
were obtained after intersection using METAL software. To
investigate the impact of metabolites on diseases, we selected
SNPs as IVs after a set of quality assurance procedures. To be
specific, in the discovery stage, for IBD, 683 SNPs (P < 5.0 x 1075, 12
< 0.001) involved with 64 metabolites were extracted from
IBD_GCST004131. In the case of RA, 1,489 SNPs associated with
97 metabolites were selected from RA_GCST90132223. For SLE,
540 SNPS were selected from SLE_GCST003156, covering 55
metabolites. Regarding T1D, a total of 933 SNPs were chosen
from T1D_GCST010681, encompassing 69 metabolites. Lastly, in
the case of MS, 357 SNPs related to 47 metabolites were chosen
from the MS_IEU study. Then, in the replication stage, the same
screening criteria for selecting IVs are applied (Supplementary
Tables S1-S10).

At the same time, we also wanted to explore the effects of
autoimmune diseases on plasma metabolites, so a reverse MR
analysis was performed. Among the SNPs associated with each
genus, those that reached the locus-wide significance threshold (P <
5.0 x 107®) were selected as potential IVs (Supplementary Tables
S11-S20). Statistically, all F-statistics for the validity test were all
above the standard threshold of 10, indicating a strong
genetic instrument.

3.2 Causal effects of plasma metabolites
on autoimmune diseases

Next, we employed five methodologies, respectively, IVW, MR

Egger, Weighted median, Weighted mode, and Simple mode, to
assess the causal associations of plasma metabolites on ADs as
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shown in Figure 2 and Supplementary Figure S1. During the
discovery phase, 23 diverse metabolites were preliminarily
identified by IVW method to have significant causal relationship
with these autoimmune diseases, including 3 unknown components
and the remaining 20 known metabolites involved in 4 metabolic
pathways. Specifically, they were as follows:

4 metabolites from 2 pathways for IBD: 2-hydroxy-4-(methylthio)
butanoic acid (odds ratio (OR) = 1.095; 95% confidence interval (95%
CI) 1.025-1.171; P = 0.008), sphingomyelin (d18:2/16:0, d18:1/16:1)*
(OR = 0.704; 95% CI 0.557-0.890; P = 0.003), sphingosine (OR = 0.886;
95% CI 0.801-0.979; P = 0.018), X-12839 (OR = 1.161; 95% CI 1.049-
1.285; P = 0.004).

2 metabolites from 2 pathways for MS: N-acetylcitrulline (OR =
1.526; 95% CI 1.183-1.968; P = 0.001), threonate (OR = 0.757; 95%
CI 0.589-0.972; P = 0.029).

13 metabolites from 2 pathways for RA: 1-(1-enyl-palmitoyl)-2-
arachidonoyl-GPC (P-16:0/20:4)* (OR = 1.160; 95% CI 1.066-1.262;
P = 0.001), 1-arachidonoyl-GPC (20:4n6)* (OR = 1.184; 95% CI
1.050-1.335; P = 0.006), 1-oleoyl-2-linoleoyl-GPE (18:1/18:2)* (OR
= 0.900; 95% CI 0.845-0.958; P = 0.001), 1-palmitoleoyl-2-
linolenoyl-GPC (16:1/18:3)* (OR = 0.885; 95% CI 0.797-0.982; P
= 0.021), 1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) (OR = 0.615;
95% CI 0.423-0.895, P = 0.011), 1-palmitoyl-2-linoleoyl-GPE
(16:0/18:2) (OR = 0.898; 95% CI 0.838-0.961; P = 0.002), 1-
stearoyl-2-arachidonoyl-GPC (18:0/20:4) (OR = 1.317; 95% CI
1.172-1.480; P = 0.000), 1-stearoyl-2-linoleoyl-GPE (18:0/18:2)*
(OR = 0.897; 95% CI 0.816-0.986; P = 0.024), 1-stearoyl-2-oleoyl-
GPE (18:0/18:1) (OR = 0.893; 95% CI 0.798-1.000; P = 0.050),
5alpha-androstan-3beta,17beta-diol monosulfate (2) (OR = 0.890;
95% CI 0.813-0.974; P = 0.011), androsterone sulfate (OR = 0.937;
95% CI 0.891-0.985; P = 0.011), metabolonic lactone sulfate (OR =
0.946; 95% CI 0.905-0.989; P = 0.014), X-26109 (OR = 0.923; 95%
CI 0.881-0.967; P = 0.001).

4 metabolites from 2 pathways for T1D: beta-
hydroxyisovaleroylcarnitine (OR = 0.709; 95% CI 0.531-0.946; P
=0.020), 1-palmitoyl-2-dihomo-linolenoyl-GPC (16:0/20:3n3 or 6)
*(OR =0.622; 95% CI 0.427-0.905; P = 0.013), glycohyocholate (OR
=1.236; 95% CI 1.045-1.463; P = 0.014), X-21310 (OR = 0.653; 95%
CI 0.516-0.825; P = 0.000).

These causal relationships were further supported by the
replication samples, as depicted in Figure 3. Two samples were
used to enhance the confidence of causal association. We only
established a causal relationship between a metabolite and an AD
when the metabolite was identified as a protective factor or a risk
factor simultaneously by discovery and replication sets, and both sets
of results have statistical significance (P < 0.05). The graphs showing
the intersection of discovery and replication samples in the forward
analysis are listed in Supplementary Figure S3.

3.3 Causal effects of autoimmune diseases
on plasma metabolites

After exploring the causal effects of autoimmune diseases on
plasma metabolites, we further conducted a reverse MR analysis, as
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Inverse variance MR Egger

FIGURE 2

Circle diagrams of the discovery sample in the forward MR analysis. The complete results of the forward MR analysis, showing the causal effects of
plasma metabolites on ADs. (A) IBD, (B) MS, (C) RA, (D) T1D. Five statistical methods, respectively, IVW, MR Egger, Weighted median, Weighted mode,

and Simple mode, are represented by five circles from inner to outer.
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depicted in Figure 4 and Supplementary Figure S2. According to the
preliminary identification by IVW, IBD had a causal relationship
with 4 metabolites, 2 of which were from the amino acid metabolic
pathway and 1 was from the lipid metabolic pathway.

Furthermore, our analysis also demonstrated a significant
causal correlation between RA and 22 metabolites. These
metabolites encompassed 8 from the amino acid pathways, 8
from the lipid metabolism pathways, 1 from the energy pathways,
and 1 from the xenobiotic pathways.

Similarly, SLE was found to have a causal link with 22
metabolites. These metabolites compromised 7 from the lipid
metabolism pathways, 4 metabolites from the amino acid
pathways, 3 from the nucleotide pathways, 3 from the xenobiotic

Frontiers in Immunology

pathways, 2 from the carbohydrate pathways and 1 from the
peptide pathways.

Additionally, a causal relationship between 37 plasma
metabolites and T1D was identified. Among them, 22 were from
the lipid metabolism pathways, 10 were from the amino acid
pathways, 2 were from the partially characterized molecules
pathways, 2 were from the xenobiotic pathways and 1 was from
the carbohydrate pathways. Figures 5-7.

Consistent with the preceding, as was the case with forward MR
analysis, these findings were supported by replication samples. The
graphs displaying the intersection of discovery and replication
samples in the reverse analysis are listed in Supplementary
Figure S$4.
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disease  pathway exposure outcome method nsnp OR (95%Cl) pval
IBD Amino Acid 2-hydroxy-4-(methylthio)butanoic acid IBD_GCST004131 Inverse variance weighted 13 -t 1.095 (1.025t0 1.171) 0.008

1BD_Finngen Inverse variance weighted 13 ——— 1.103 (1.015t0 1.198) 0.020
Lipid sphingomyelin (d18:2/16:0, d18:1/16:1)* IBD_GCST004131  Inverse variance weighted 14 +—e—i 0.704 (0557 10 0.890) 0.003
1BD_Finngen Inverse variance weighted 16 +—e— 0.751 (057710 0.979) 0.034
sphingosine IBD_GCST004131  Inverse variance weighted 17 —— 0.886 (0.801100.979) 0.018
1BD_Finngen Inverse variance weighted 20 —— 0.891 (0.797 10 0.997) 0.045
Unknown X-12839 IBD_GCST004131  Inverse variance weighted 10 —e—  1.161(1.049101.285) 0.004
1BD_Finngen Inverse variance weighted 13 —— 1.125 (1.034 10 1.225) 0.007
'S Amino Acid N-acetylcitruline MS_IEU Inverse variance weighted 4 ———> 1526 (118310 1.968) 0.001
MS_Finngen Inverse variance weighted 15 ——t 1.123 (1.020 to 1.236) 0.018
Cofactors and Vitamins threonate MS_IEU Inverse variance weighted 7 —— 0.757 (0.589 t0 0.972) 0.029
MS_Finngen Inverse variance weighted 14 —— 0.670 (0.478 t0 0.940) 0.021
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RA_Finngen Inverse variance weighted 18 — 1.112 (1.005 to 1.231) 0.039
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1-stearoyl-2-inoleoyk GPE (18:0/18:2)" RA_GCST0132223  Inverse variance weighted 17 ——— 0.897 (0.816 10 0.986) 0.024
RA_Finngen Inverse variance weighted 18 — 0.890 (0.816 10 0.971) 0.009
1-stearoyl-2-oleoyl-GPE (18:0/18:1) RA_GCST90132223  Inverse variance weighted 16 ——] 0.893 (0.798 10 1.000) 0.050
RA_Finngen Inverse variance weighted 18 ot 0.898 (0.837 10 0.964) 0.003
5alpha-androstan-3beta, 17beta-diol monosulfate (2) ~ RA_GCST90132223  Inverse variance weighted 13 ot 0.890 (0.8130 0.974) 0.011
RA_Finngen Inverse variance weighted 14 oy 0.958 (0.91910 0.999) 0.047
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T1D_Finngen Inverse variance weighted 11 +—e— 0.712 (055410 0.915) 0.008
glycohyocholate TID_GCST010681  Inverse variance weighted 14 —e—— 1.236 (1.045t0 1.463) 0.014
T1D_Finngen Inverse variance weighted 14 ——t 1.146 (1.022 t0 1.285) 0.020
Unknown X-21310 TID_GCST010681  Inverse variance weighted 16 +—e— 0.653 (0516 10 0.825) 0.000
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P<0.05 was considered statistically significant 05 1 15

A
protective factor risk factor
FIGURE 3

Forest plots showing the causal relationships between plasma metabolites and ADs outcomes. All causal relationships were derived from the fixed-
effect IVW analysis and can be supported by both discovery and replication samples.

3.4 Sensitivity analyses

A series of sensitivity analyses were conducted to minimize the
impact of horizontal pleiotropy on the MR estimate as possible,
aiming to obtain more robust results. We utilized MR-Egger and
MR-PRESSO regression tests to examine the potential horizontal
pleiotropy impact. Through screening, samples with P < 0.05 in
both methods were deleted to provide more reliable results.
Horizontal pleiotropy was not found in all relevant metabolites
applied in Figures 3, 5-7.

At the same time, in order to quantify the heterogeneity among
the individual causation effects Cochran’s Q was calculated.
Through this test, in the forward MR analysis, Cochran’ Q-
derived P values indicated the absence of detected heterogeneity
in the causal relationships 11 metabolites with RA, 3 metabolites
with T1D and all metabolites with IBD and MS (Supplementary
Table S21-5S28). At the same time, in the reverse MR analysis, no
heterogeneity was detected in the causal association in 21
metabolites with SLE, 36 metabolites with T1D and all
metabolites with IBD and RA (Supplementary Tables S29-36).

3.5 Metabolic pathway analyses

In the forward MR analysis, metabolic pathway analysis
revealed that, only in RA, 4 significant metabolic pathways were
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found, as shown in Figure 8A. Our results show that the
“Glycosylphosphatidylinositol (GPI)-anchor biosynthesis”, “alpha-
Linolenic acid metabolism”, “Linoleic acid metabolism”, and
“Glycerophospholipid metabolism” pathways were found to be
involved in the pathogenetic process of RA (Supplementary
Table S37).

In the reverse MR analysis, as shown in Figures 8B-D, 14
significant metabolic pathways involved 3 ADs were identified
(Supplementary Tables S38-S40). Specifically, “Arginine
biosynthesis”, “Aminoacyl-tRNA biosynthesis”, “Arginine and
proline metabolism”, “Alanine, aspartate and glutamate
metabolism”, “Butanoate metabolism”, “Cysteine and methionine
metabolism”, “D-Glutamine and D-glutamate metabolism”,
“Glycine, serine and threonine metabolism”, “Nitrogen metabolism

»

pathways”, “Valine, leucine and isoleucine biosynthesis” and “Valine,
leucine and isoleucine degradation” were noticed to be involved in the
pathogenetic process of RA. Meanwhile, SLE is observed to be
associated with the “Aminoacyl-tRNA biosynthesis”, “alpha-
Linolenic acid metabolism”, “D-Glutamine and D-glutamate
metabolism”, “Glycerophospholipid metabolism”, “Linoleic acid
metabolism”, “Nitrogen metabolism”, “Valine, leucine and
isoleucine degradation” and “Valine, leucine and isoleucine
biosynthesis” pathways. And T1D is associated with the “alpha-
Linolenic acid metabolism”, “Arginine biosynthesis”,
“Glycerophospholipid metabolism” and “Linoleic acid
metabolism” pathways.
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FIGURE 4

Circle diagrams of the discovery sample in the reverse MR analysis. The complete results of the reverse MR analysis, showing the causal effects of
ADs on plasma metabolites. (A) IBD, (B) RA, (C) SLE, (D) T1D. Five statistical methods, respectively, IVW, MR Egger, Weighted median, Weighted
mode, and Simple mode, are represented by five circles from inner to outer.

3.6 Differential plasma glutamate
concentrations in normal controls and
ADs patients

To validate our findings, we experimentally confirmed the role
of glutamate, identified as a protective factor in both SLE and RA
from our previous results (Figures 5, 6). In previous studies,
glutamate has been identified as a pivotal excitatory
neurotransmitter in the central nervous system, essential for
cognitive function, memory, mood regulation, stress response,
and immune modulation via its anti-inflammatory properties and
involvement in glutathione synthesis (36-39). Using an ELISA kit,
we found that the glutamate concentration in the control group
(healthy individuals) was the highest at 57.18 + 13.54 uM,
significantly higher than those in the RA group (39.70 + 10.95
uM, P < 0.01, n=12) and the SLE group (43.52 + 9.321 uM, P < 0.05,
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n=12) (Figure 9A). Additionally, no significant differences in
glutamate concentrations were observed between male and female
plasma (Figure 9B). The consistency of these experimental results
with our MR data corroborates the reliability and robustness of
our findings.

4 Discussion

During this study, a bidirectional two-sample MR analysis was
performed to assess the reciprocal causal correlation between
plasma metabolites and 5 prevalent ADs (IBD, MS, T1D, SLE and
RA). Furthermore, the results of pleiotropy at the gene level were
excluded by sensitivity analysis, rendering the results of the study
more robust and reliable. Through the Combination of evidence
from both discovery and replication samples, we identified 4
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method nsnp B (95%Cl) pval

Inverse variance weighted 93 —— -0.029 (-0.047 t0 -0.012) 0.001
Inverse variance weighted 23 — ! -0.048 (-0.084 t0 -0.012) 0.008
Inverse variance weighted 93 —— 0.018 (0.001 to 0.036)  0.039
Inverse variance weighted 23 ——rt 0.037 (0.002 to 0.071)  0.037
Inverse variance weighted 93 —0—1: -0.027 (-0.051 to -0.004) 0.023
Inverse variance weighted 23 —— ! -0.061 (-0.108 t0 -0.014) 0.011
Inverse variance weighted 93 —— -0.041 (-0.068 to -0.015) 0.002
Inverse variance weighted 24 —— -0.068 (-0.123 10 -0.014) 0.014
Inverse variance weighted 53 —— -0.026 (-0.049 to -0.004) 0.020
Inverse variance weighted 21 —— -0.047 (-0.080 to -0.014) 0.006
Inverse variance weighted 53 ——t -0.017 (-0.032 10 -0.002) 0.025
Inverse variance weighted 21 ——y -0.022 (-0.043 0 -0.001) 0.044
Inverse variance weighted 53 — : -0.035 (-0.059 t0 -0.012) 0.003
Inverse variance weighted 21 —— | -0.049 (-0.083 t0 -0.014) 0.006
Inverse variance weighted 53 —.— -0.030 (-0.050 t0 -0.010) 0.003
Inverse variance weighted 21 — -0.054 (-0.086 t0 -0.021) 0.001
Inverse variance weighted 53 ——| -0.026 (-0.047 to -0.005) 0.017
Inverse variance weighted 21 —— -0.056 (-0.086 to -0.026) 0.000
Inverse variance weighted 53 ——t -0.021 (-0.040 t0-0.001) 0.036
Inverse variance weighted 21 —_— -0.042 (-0.068 to -0.015) 0.002
Inverse variance weighted 53 - 0.020 (0.003 0 0.037)  0.020
Inverse variance weighted 21 — 0.031 (0.006 to 0.056) 0.014
Inverse variance weighted 53 »—0—4: -0.019 (-0.033 to -0.005) 0.009
Inverse variance weighted 21 —— -0.025 (-0.044 t0 -0.005) 0.015
Inverse variance weighted 53 ——— -0.027 (-0.045 to0 -0.009) 0.004
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Inverse variance weighted 53 oy -0.015 (-0.029 to -0.002) 0.027
Inverse variance weighted 21 —— -0.024 (-0.042 10 -0.005) 0.014
Inverse variance weighted 53 —— ; -0.043 (-0.068 10 -0.017) 0.001
Inverse variance weighted 21 —— -0.039 (-0.075 t0 -0.003) 0.033
Inverse variance weighted 53 —— -0.026 (-0.049 t0 -0.004) 0.022
Inverse variance weighted 21 —— -0.056 (-0.088 to -0.023) 0.001
Inverse variance weighted 53 == -0.024 (-0.043 o -0.004) 0.020
Inverse variance weighted 21 — -0.035 (-0.063 to -0.008) 0.012
Inverse variance weighted 53 —— 0.020 (0.003 to 0.036)  0.018
Inverse variance weighted 21 : —— 0.039 (0.011t0 0.067)  0.007
Inverse variance weighted 53 ——t! -0.024 (-0.042 to -0.007) 0.006
Inverse variance weighted 21 —— -0.039 (-0.063 t0 -0.015) 0.002
Inverse variance weighted 53 —.—t 0.025 (0.004 to 0.046)  0.021
Inverse variance weighted 21 —— 0.030 (0.001 to 0.060)  0.043
Inverse variance weighted 53 —— -0.032 (-0.053 0 -0.010) 0.004
Inverse variance weighted 21 — -0.045 (-0.081 t0 -0.009) 0.015
Inverse variance weighted 53 .—0—4: -0.027 (-0.050 to -0.004) 0.021
Inverse variance weighted 21 — -0.046 (-0.079 10 -0.013) 0.007
Inverse variance weighted 53 —— -0.020 (-0.038 t0 -0.002) 0.027
Inverse variance weighted 21 b—O—q‘ -0.029 (-0.057 t0 -0.001) 0.044
Inverse variance weighted 53 —— -0.042 (-0.068 t0-0.017) 0.001
Inverse variance weighted 21 ——! -0.051(-0.089 0 -0.012) 0.010
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Forest plots presenting the results of reverse MR analysis (1). Causal effects of IBD and RA on plasma metabolites using IVW method, which were

supported by both discovery and replication samples.

metabolites that have causal relationships with IBD, 2 with MS, 13
with RA, and 4 with T1D. In the reverse MR study, we recognized
causal relationships between SLE and 22 metabolites, IBD and 4
metabolites, RA and 22 metabolites, and T1D and 37 metabolites.

For the last few years, ADs have been increasingly
acknowledged as a metabolism-related disease and changes in
metabolites related to various ADs have been continuously
discovered through metabolomics (12, 40-43). However, the
existing studies have not been able to clarify the specific
relationship between metabolites and ADs. Our research not only
confirmed the presence of specific plasma metabolites causally
related to ADs but also identified key metabolic pathways of ADs.
The finding oftered new perspectives into the prediction and
diagnosis of ADs, along with providing potential targets for
precision treatment.

In the results of the study, we first focused on the causality
between lipid metabolites and ADs. Our research results have
shown that there is a causal relationship between lipid-related
metabolites and every type of ADs. In our study, sphingosine was
found to be a protective factor for IBD. Sphingosine can generate
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S1P through a phosphorylation reaction, which is a bioactive lipid
molecule (44). Several studies have shown that sphingosine-1-
phosphate (S1P) has a regulatory effect in IBD, and selective S1P
agonists have anti-inflammatory properties, which also indirectly
validated our study (45, 46). These findings suggested novel targets
for IBD therapy, and our study provided further support for this
notion, highlighting the crucial role of sphingosine as a protective
factor in the management of IBD progression.

In addition, our study indicated that 11 plasma metabolites of
the lipid metabolism pathway participated in the pathogenesis of
RA. In another study of inflammatory bowel disease serum
metabolome, three metabolites overlapped with ours. Contrary to
their study, we believed that 1-oleoyl-2-linoleoyl-GPE (18:1/18:2)*
and 1-stearoyl-2-linoleoyl-GPE (18:0/18:2)* are protective factors
for RA, but they confirmed that they are risk factors for Crohn’s
disease. Interestingly, as revealed in our study, 1-stearoyl-2-
arachidonoyl-GPC (18:0/20:4) was considered to be a risk factor
for RA while they indicated it would be a protective factor for
Crohn’s disease (47). Although the causality between these
metabolites and different diseases is not completely consistent, it
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Forest plots presenting the results of reverse MR analysis (2). Causal effects of SLE on plasma metabolites using IVW method, which were supported

by both discovery and replication samples.

is jointly confirmed that these metabolites do have a causal
connection with the occurrence and development of
autoimmune diseases.

Our results also found a causal relationship between alterations
in other metabolites involved in lipid metabolism and ADs, for
example, for TID, glycohyocholate is a risk factor. In multiple
metabolomic studies related to asthma, it has also been observed
that there are significant differences in levels of glycohyocholate
between diseased children and the control group (48, 49). In a study
on nonalcoholic fatty liver disease, after all confounding factors are
excluded, the proportion of glycohyocholate remains significantly
correlated with the presence of nonalcoholic fatty liver disease (50).
All these pieces of evidence collectively indicated the causal link
between abnormal levels of glycohyocholate and the occurrence of
autoimmune-related diseases.

Undoubtedly, lipid metabolism imbalance plays a crucial role in
the self-immune response, although the specific mechanisms by
which lipid metabolism imbalance leads to inflammatory reactions
and aberrant activation of immune system remain unclear (51-53).
Based on these known evidences and our findings, these plasma
metabolites may hold therapeutic targets for the treatment of ADs
and promising research direction.

At the same time, not only in lipid metabolism, changes in other
metabolites belonging to other pathways such as metabolites from
cofactors and vitamin metabolism pathway are also causally related
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to ADs. According to our research, threonate is a protective factor
for MS. As a chronic autoimmune disease, MS mainly impacts the
central nervous system, which includes brain and spinal cord (54).
In previous studies, threonate was often used as an important
component of L-Threonic acid Magnesium salt, which was crucial
in the treatment of orthopedic diseases and Alzheimer’s disease
(55-57). Research findings point that threonine is a unique
molecule that effectively regulates the structural and synaptic
architecture and function of the central nervous system (58).
According to the research, supplemental intake of threonate may
help improve neurodegenerative conditions and cognitive function
in MS patients. Correspondingly, threonate also has antioxidative
and anti-inflammatory properties, which may potentially benefit
the prevention and treatment of MS.

Furthermore, pathway analyses revealed diverse metabolic
pathways related to autoimmune responses. Our results have
shown that metabolic pathways involved in autoimmune diseases
are often not singular, proving that an AD is often associated
with multiple metabolisms. Furthermore, we have observed an
overlap of metabolic pathways among various autoimmune
diseases, indicating a tendency for the metabolic pathways
involved in ADs to intersect. According to our research,
“Glycerophospholipid metabolism”, “alpha-Linolenic acid
metabolism” and “Linoleic acid metabolism” pathways were all
involved in the pathogenetic process of RA, SLE and T1D.
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FIGURE 7

Forest plots presenting the results of reverse MR analysis (3). Causal effects of T1D on plasma metabolites using IVW method, which were supported

by both discovery and replication samples.

Interestingly, all of these metabolic pathways are interconnected
with lipid metabolism. Lipid metabolites, as elucidated above, exert
a pivotal influence in the etiology and progression of
autoimmunity disorders. In a study based on multi-omics
analysis, glycerophospholipid metabolism was revealed to play a
key role in the occurrence and development of RA (59). Similarly,
in another UPLC-MS/MS-based plasma lipidomics study,
glycerophospholipid metabolism of lipid metabolites was
demonstrated to be upregulated in SLE patients, further
supporting our findings (60). Meanwhile, the previous study has
reported the amelioration of ®-3 polyunsaturated fatty acids on
T1D (61). Alpha-Linolenic acid, as a type of ®-3 polyunsaturated
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fatty acids, aligns with our findings, providing further evidence that
this metabolic pathway plays a significant role in ADs. Equally,
through another MR Study, the researchers demonstrated that
linoleic acid exerts a protective function in the development of RA
and SLE (62). Human body can consume these lipids from
common food, so these metabolism researches provided dietary
guidelines for the prevention of ADs. The opportunity for
individuals to prevent ADs to some extent through the moderate
intake of lipids in the daily dietary makes this discovery highly
significant. Combined with previous perceptions, we speculated
that it may be due to the occurrence of metabolic pathway
disorders, especially lipid related metabolism disorders, leading
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to metabolic changes and immune dysfunction (63-66). Whereas, At the level of genetic variation, identifying the causal effects of
it also suggests that we can get new directions for prevention and  metabolites and metabolic pathways on ADs reveals potential
treatment of ADs through the intervention of these metabolic  targets for treatment or intervention. Subsequent validation in
pathways and crucial metabolites in the pathways. cellular and animal models, such as gene overexpression or
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Glutamate concentrations in patients’ plasma. (A) Compared to the control group (healthy individuals, n = 12), the plasma glutamate concentrations
in patients with RA (n = 12) and SLE (n = 12) were significantly reduced. (B) There are no differences in male (n = 13) and female (n = 23) plasma
glutamate concentrations. Data are presented as the mean + SD; ns: not significant, *P < 0.05, **P < 0.01.
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knockdown experiments, along with metabolite intervention
studies, can further confirm these causal relationships. Based on
these findings, the development of drugs targeting specific
metabolites or pathways can be pursued, potentially involving
small molecule compounds or biologics to modulate the activity
of these metabolites. On the other hand, understanding the causal
influence of disease on metabolites enables the proactive prediction
of individuals at risk of developing autoimmune conditions. Further
development of risk scoring systems or the assessment of
representative biomarkers can be employed to achieve this.
According to the results of these risk predictions, dietary advice
or pharmacological interventions can be provided to high-risk
individuals to delay or prevent the onset of ADs. Of course, the
efficacy and safety of these interventions need to be tested in human
subjects through randomized controlled trials and other clinical
study designs. After clinical application, long-term monitoring of
high-risk individuals can be conducted to assess the onset and the
long-term effects of intervention measures in real-time.

There were several strengths to this MR study. First, the most
up-to-date and extensive databases of metabolites were selected.
Meta-analysis of the two groups of data was conducted employing
METAL software, resulting in 1,009 metabolites obtained through
intersection (20). Meanwhile, the whole-genome data of 5 common
ADs were acquired from 10 GWAS datasets, with each AD
consisting of discovery and validation sets. This enabled us to
conduct a comprehensive and systematic analysis of the metabolic
profiles associated with the development of ADs. Second, our MR
design investigated the causal relationship between plasma
metabolites and ADs from the perspective of forward and reverse
respectively, analyzing both the influence of metabolites on ADs
and the impact of ADs on metabolites, which are mutually causal.
This design facilitates the study more comprehensive, while the
extensive sensitivity analysis ensures the reliability and robustness
of our inferences. Ultimately, we conducted ELISA assays using
plasma samples from the patients. The findings from these assays
were in concordance with the results of the MR analysis, further
substantiating the reliability of our analytical outcomes.

Our study still possessed certain limitations. Firstly, our study
reported the causal relationship between ADs and metabolites,
covering a relatively comprehensive metabolite spectrum, but the
mechanism and function of many metabolites in diseases have not
been fully elaborated, and require further investigation. Secondly,
the data primarily originated from a European population, which
limits the extrapolation of our results across ethnic groups. Thirdly,
beyond the ELISA results, we did not explore gender disparities
within our study. To address this gap, future research should
incorporate a gender-based analysis and consider additional
factors associated with gender, thereby enhancing our
understanding of the mechanisms underlying ADs.

5 Conclusions

From the perspective of genetics, our systematic investigation
revealed the causal relationship between plasma metabolites and
diverse ADs, offering valuable insights into their etiology and
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underlying mechanisms. Furthermore, our findings provided
potential inspiration for further accurate diagnosis and precision
treatment strategies.
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