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Alternative splicing (AS) functions as a crucial program in transcriptional

modulation, leading to proteomic diversity and functional alterations of

proteins. These splicing actions induce various neoantigens that hold

prognostic significance and contribute to various aspects of cancer

progression, including immune responses against cancer. The advent of

immunotherapy has remarkably revolutionized tumor therapy. In this regard,

AS-derived neoantigens are potent targets for cancer vaccines and chimeric

antigen receptor (CAR) T cell therapies. In this review, we outline that AS-derived

neoantigens serve as promising immunotherapeutic targets and guide

immunotherapy strategies. This evidence contributes to a deeper

comprehension of the complexity of proteomic diversity and provides novel

perspectives and techniques for precision medicine in immunotherapy.

Moreover, we underscore the obstacles that are awaited to be addressed for

this novel approach to become clinically applicable.
KEYWORDS

alternative splicing, neoantigen, cancer, immunotherapy, CAR-T
1 Introduction

Since the initial identification of eukaryotic “split” genes in 1977, featuring intervening

sequences, it has become clear that these introns can be excised by the action of the

spliceosome complex (1). Emerging studies have demonstrated that about 94% of human

genes possess intronic regions during the pre-messenger RNA (mRNA) processing phase,

and a significant portion of eukaryotic genes undergo alternative splicing in a manner

dependent on both timing and spatial context (2). As a result, a single gene can give rise to

alternatively spliced mRNAs that encode multiple proteins, each with unique functions, a

strategy commonly utilized to maintain cellular homeostasis and to modulate cellular

differentiation and development (3, 4). This adds a layer of complexity to mRNA, thereby
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increasing the variability in protein functions, which are commonly

deployed to maintain cellular homeostasis and to modulate disease

progression (1, 3, 4). The regulation and mechanics of the splicing

process are crucial for comprehending the characteristic features of

cancer, which hold immense potential for cancer therapy (5).

The accumulation of genetic mutations in cancers leads to the

generation of tumor-specific antigens (TSAs) or neoantigens (6). These

antigens can be presented by the tumor cells’major histocompatibility

(MHC) molecules (6). T cells recognize these specific peptide-MHC

complexes, initiating an anti-cancer immune response in patients (7, 8).

The introduction of immunotherapy has revolutionized the therapeutic

strategies of numerous cancer types (9). Notable clinical outcomes have

been achieved with cancer vaccines, adoptive T cell therapies, and

antibodies that enhance T lymphocyte function (10). Furthermore,

there is growing evidence that adaptive immunity plays a significant

role in the enduring clinical benefits of traditional anticancer

treatments like chemotherapy and radiotherapy (11, 12). Although

cancer immunotherapy has led to remarkably durable response rates in

some patients, a significant barrier to its wider use is the current

shortage of known targetable neoantigens for many types of cancer (13,

14). Neoantigens provide a unique advantage due to their tumor-

specific nature and absence in normal tissues, making them ideal

targets for highly personalized tumor treatments. Expanding the

population of neoantigen-specific T cells, due to their ability to

circumvent central T cell tolerance, enhances tumor-specific immune

responses (13, 14). Additionally, the potential of immunotherapy to

boost neoantigen-specific T cell responses, providing lasting effects and

post-treatment immunological memory, raises the possibility of long-

term protection against disease recurrence (15, 16).

The focus on tumor cell neoantigens, predominantly from somatic

mutations, frequently causes the neglect of potential neoepitopes

produced through aberrant RNA splicing processes (8). Notably,

mRNA splicing events have been demonstrated to contribute to tumor

development, potentially expanding the target space for immunotherapy

by producing neoepitopes (17, 18). The advent of next-generation

sequencing technologies enables the widespread investigation of

alternative splicing events in cancer and the economical identification

of tumor-specific neoepitopes in individual patients (17, 18). Moreover,

the creation of algorithms to predict the binding of epitopes to MHC

molecules has facilitated the identification of potentially immunogenic

neoepitopes, which may provide fresh perspectives on cancer

immunotherapy and is expected to improve the clinical prognosis of

cancer patients (19, 20). This review offers a comprehensive overview of

the origins and biological roles of neoantigens produced by alternative

splicing and the clinical uses of neoantigen-based immunotherapy

approaches. Additionally, we explore the potential and challenges of

applying neoantigen-based immunotherapies in clinical settings and

prospect several possible solutions.
2 Concise view of the alternative
splicing in cancer

The splicing program is facilitated through the combined efforts

of various subunit complexes (1). At the core of the spliceosome
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presents five small ribosomal proteins (U1, U2, U5, and U4/U6)

alongside a plethora of other proteins (2, 4). Cis-acting modulatory

sequences, splicing factors, and additional RNA-binding proteins

(RBPs) that identify and attach to splice sites are essential in

forming and preserving patterns of alternative splicing (21, 22).

These components are organized into specific precursor mRNAs

(pre-mRNAs), facilitating the dynamic enzymatic process of

splicing programs (21). This splicing reaction is initiated by the

spliceosome identifying and attaching to critical cis-acting elements

at exon-intron junctions (5′-splice and 3′-splice sites) in the pre-

mRNA transcript, including branch points and polypyrimidine

tracts within introns (23). This facilitates exon recognition and

enables the spliceosome to carry out two subsequent

transesterification reactions, leading to the excision of introns and

the joining of exons (24, 25). In addition to the constitutive pre-

mRNA splicing mechanism, the selective utilization of splice sites

within a pre-mRNA can lead to the generation of mRNA and

protein variants that differ both structurally and functionally

(24, 25). This process, known as alternative splicing, contributes

to biological complexity. Consequently, alternative splicing is

pervasive, with over 90% of human pre-mRNAs undergoing this

modification (1, 26). Various forms of alternative splicing have been

characterized, such as the inclusion or exclusion of cassette exons,

usage of alternative 5′ and 3′ splice sites, mutually exclusive exons,

retention of introns, and the selection of alternative promoters and

polyA sites (27, 28).

Growing evidence indicates that disruptions in the splicing

process can play a significant role in the onset, development, and

treatment resistance of cancer by altering the isoform expression of

crucial proteins (28–30). For example, the alternative isoform of

CD44, which is extensively studied across various cancer types, is

linked to the epithelial-to-mesenchymal transition (31). The

utilization of alternative 5′ splice sites in Bcl-x pre-mRNA results

in the formation of the anti-apoptotic Bcl-x(L) and pro-apoptotic

Bcl-x(S) protein isoforms (32, 33). Bcl-x(L) is transcriptionally

upregu la ted in numerous cancer s and i s l inked to

chemoresistance, as well as to the RAS-induced expression of

stemness regulators and the preservation of a cancer-initiating

cell phenotype (34). Indeed, the simultaneous expression of

mutant versions of SF3B1 and SRSF2 in hematopoietic

progenitors has been demonstrated to induce cell death (35, 36).

Conversely, the co-expression of mutant SRSF2 and the epigenetic

modifier IDH2 leads to more significant splicing alterations than

those caused by each mutation individually (37, 38). These

mutations have synergistic impacts on both the epigenome and

RNA splicing, which collectively enhance the progression of

leukemia (37, 39).

It is commonly recognized that modifications in the splicing

machinery can confer advantages to tumor cells, for instance, by

producing atypical protein isoforms or modifying the proportions

of standard cellular isoforms, albeit at the cost of diminished

splicing efficiency or precision (40, 41). This fragile equilibrium is

susceptible to disruption from further perturbations in splicing

activity, such as mutations, the use of inhibitors, or heightened

demand, leading to cytotoxic outcomes and thus highlighting

splicing as a potential weak point in cancer cells (42, 43).
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3 Alternative splicing as the source of
tumor neoantigens

Recent studies have demonstrated that peptides originating from

tumor-specific mRNA splicing events possess the capability to

interact with MHC class I (MHC I) molecules, acting as

neoepitopes (44, 45). A comprehensive The Cancer Genome Atlas

(TCGA) study across various cancers suggested the involvement of

alternative splicing programs in neoantigen generation by

pinpointing cancer-specific exon-exon junctions and validating the

presence of splicing-derived peptides through proteomics databases

(46, 47). Furthermore, intron retention has been highlighted as a

crucial mechanism for neoantigen prediction, as numerous intron-

retaining neoantigens have been identified through transcriptome

sequencing and mass spectrometry analyses (48). An examination of

RNA sequencing data from 400 pediatric B-cell acute lymphoblastic

leukemia (B-ALL) samples revealed a higher occurrence of the

skipping event of the CD22 exon 5–6, a finding that was

subsequently validated in 18 primary B-ALL samples (49).

Additionally, this specific CD22 isoform, rather than the full-length

version, could be targeted using a new, highly precise monoclonal

antibody in the experimental mouse models (50). PTIR1 was

specifically induced in human cancers through the alternative

splicing of RIG-I (DDX58), and its induction correlated closely

with unfavorable outcomes in cancer patients (51). In contrast to

RIG-I, PTIR1 could bind to the C-terminus of UCHL5 and activate

its ubiquitinating function, leading to the inhibition of

immunoproteasome activity and the restriction of neoantigen

processing and presentation, thereby impeding T cell recognition

and immune attack on cancer (51). In medulloblastoma, a cancer

known for its low mutation rate, neoantigens were predominantly

formed through abnormal splice junctions connecting two non-

exonic sequences (52). The manipulation of splicing programs

through pharmacological interventions also impacts the production

of neoepitopes (53). The application of splicing modulators like

indisulam in both laboratory settings and living organisms across

different cancer types has led to the creation of splicing-induced

neoantigens that positively influence tumor immunogenicity (53).

This strategy indicates the potential for targeting alternative splicing

in human cancers to augment existing immune responses (Figure 1).
4 AS-derived neoantigens in
tumor immunotherapy

Neoantigens, which are unique to cancer and not present in

normal tissues, serve as prime targets for immune surveillance

against tumors by T cells (44). However, the effectiveness of

current immunotherapies focusing on neoantigen-specific T-cell

responses is hindered by limited neoantigen expression levels, a lack

of common antigen targets among patients, and the diverse genetic

makeup within tumors (54). In a recent preprint manuscript, Kwok

and colleagues analyzed RNA sequencing data from TCGA and

their repository of brain cancer samples, they pinpointed shared

junction reads across patients and multiple sites within the same
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tumors (44). Employing computational models for antigen

processing, the researchers pinpointed HLA-A*02:01-restricted

peptides derived from neojunctions for further scrutiny. Mass

spectrometry analysis of HLA-I ligands validated the endogenous

processing and presentation of these antigens (44). They engineered

CD8+ T cells with modified T cell receptors (TCRs) aiming at

these mutations and effectively eliminated tumor cells specific

to the neoantigens. Moreover, the alterations in splicing factors

specific to certain cancer subtypes that could potentially regulate the

expression of neojunction-derived antigens were reported (44, 54).

These findings offer an extensive overview of preserved neoantigens

resulting from AS events, capable of eliciting robust T-cell reactions.

In vivo investigations are essential to assess tumor infiltration and

regulation by T cells responsive to these AS-derived antigens. The

ability to induce the expression of neoantigens in mice would

facilitate the investigation of innate neoantigen-specific T-cell

responses in the context of cancer. However, this has proven

challenging to achieve due to the unintended leakage of antigen

expression in the thymus, leading to the development of central T

cell tolerance. Recently, Damo et al. introduced the concept of

inversion-induced joined neoantigen (NINJA), utilizing RNA

splicing, and a sophisticated regulatory system to prevent

unintended expression and ensure precise control over

neoantigen presentation (55). By the NINJA tool, they

successfully established tumor cell lines with controllable

neoantigen expression, and genetic modulatory programs in

NINJA mice inhibited both central and peripheral tolerance

processes, leading to robust activation of CD8+ T cells upon

neoantigen stimulation (55). Moreover, Masahiko et al. identified

a small splicing modulator-RECTAS that acted specifically to rectify

abnormal splicing by enhancing the function of Serine/arginine-

rich splicing factor 6 (SRSF6) (56). In the colorectal cancer mouse

models, RECTAS treatment triggered AS programs that induced six

potential neoantigens, which could exacerbate T cell responses

capable of eliminating cancer cells in laboratory settings and lead

to tumor growth suppression in vivo (57).

The expression of PD-L1 by tumors suppresses the anti-tumor

immune response, allowing tumors to escape immune surveillance

(58). The targeting of PD-1 and its ligand PD-L1 has demonstrated

remarkable clinical efficacy in clinical studies (59, 60). PD-1

undergoes alternative splicing to generate isoforms that exist as

either transmembrane signaling receptors responsible for inducing

T cell death through interaction with the ligand PD-L1 or as an

alternatively spliced soluble variant devoid of the transmembrane

domain (61). And skipping exon 3 could generate the soluble PD-1,

which was naturally produced in peripheral blood mononuclear

cells and T cells, preventing cancer cells from suppressing T cell

activity, which was regulated by SRSF1 and SR protein kinase 1

(SRPK1) (62). Notably, inhibiting SRPK1 altered the splicing

program to produce the antagonistic isoform of PD-1, boosting

T-cell destruction of cancer cells, and implying the potential

application of small molecules targeting SRPK1 as innovative

pharmacological immunotherapies (62). Kathleen et al. presented

a secreted splice variant of PD-L1 (secPD-L1) that hindered the

activation of T cells in laboratory settings (63). This variant was

present in PD-L1-positive tumor cells as well as in PD-L1-positive
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normal tissues. SecPD-L1 necessitated higher concentrations in

laboratory conditions, indicating its potential for heightened

activity in the tumor microenvironment, which provided a novel

mechanism for mediating immunosuppression within the tumor

microenvironment in a paracrine manner (63). Moreover, the AS

program plays a significant role in the resistance to immune

checkpoint inhibitors. For instance, secPD-L1 could compete with

PD-L1 antibodies for binding, leading to resistance to PD-L1

antibody therapy. The chemical activation of SRSFs induced by

splicing modulator RECTAS produced several neoantigens that

enhanced the effectiveness of PD-1 blockades (57), suggesting the

investigations of splicing modifications in tumors could provide
Frontiers in Immunology 04
indicators for utilizing immune-checkpoint inhibitors like anti-PD-

1 or anti-CTLA-4 antibodies.

The discovery of neoantigens derived from splicing could also

serve as a valuable predictive marker for how patients respond to

immune checkpoint inhibitor (ICI) therapy (64, 65). Studies have

indicated a link between tumor mutational burden (TMB) and the

presence of neoantigens on MHC molecules (66). While TMB has

correlated with responses to ICI therapy in various cancers, it’s not

the sole determinant (67–69). Some high-TMB patients responded

poorly, while some low-TMB patients responded well to ICIs

(70, 71). A load of splicing-derived neoepitopes could potentially

be a clinical biomarker for ICI response (72). Challenges remain in
FIGURE 1

Alternative splicing as the source of neoantigens. A single pre-mRNA can be variably spliced into unique mature transcripts, resulting in the
production of various proteins. Proteins derived from alternative splicing can be processed into small peptides. These peptides are then loaded onto
major histocompatibility complex (MHC) class I. The peptide-MHC complexes can be recognized by T cells.
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identifying tumor-specific splicing events and validating the

immunogenicity and specificity of these neoantigens (64, 72).

The emergence of neoantigens through modified splicing

processes, such as intron retention, intron polyadenylation, and

fusion transcript formation, offers significant prospects for the

advancement of cancer vaccines and therapies involving chimeric

antigen receptor (CAR) T cells and T cell receptor-engineered T

(TCR-T) cells (73, 74) (Figure 2). For instance, U2AF1Q157R

neoantigens were derived from the mutations in the spliceosome

(75). The lentiviral transfer of U2AF1Q157R neoantigen-specific

TCRs imparted epitope specificity to CD8+ T cells from other

donors. These U2AF1Q157R neoantigen-specific TCR-T cells

effectively targeted and eliminated U2AF1Q157R -expressing

malignant myeloid cell lines in vitro, while sparing non-malignant

hematopoietic stem/progenitor cells (75). Furthermore, in a cell

line-derived xenograft murine model, U2AF1Q157R neoantigen-

specific TCR-T cells also demonstrated the ability to kill

neoplastic myeloid cells harboring the U2AF1Q157R mutation

effectively (75). These findings suggest that U2AF1Q157R

neoantigens hold promise as targets for precision medicine

approaches, including TCR-T cell therapy, in individuals with

myeloid neoplasms, harboring these mutations.

Fibronectin (FN) produced from the alternative splicing of FN1

serves as a valuable source of antigens. Extra domain A (EDA) was

an AS-related neoantigen generated by FN, which was

overexpressed in multiple types of human cancers. Based on this
Frontiers in Immunology 05
specific FN isoform, EDA CAR-T cells were established for killing

EDA-expressing cancer cells and achieved remarkable antitumor

activity and no toxicity in experimental mouse models (76).

Elisabeth et al. developed a vaccine targeted EDB, which could

significantly reduce tumor size in vaccinated mice, providing

promising candidates for the development of therapeutic vaccines

aimed at targeting solid tumors (77). CD44v6 is a spliced isoform of

CD44, induced by the inclusion of the sixth variant exon. CD44v6 is

implicated in diverse biological functions such as cell proliferation,

and angiogenesis. Recent studies have revealed that CD44v6

functions as a potent for CAR-T therapy. CD44v6-targeted CAR-

T cells expressing a suicide gene had effectively eliminated acute

myeloid leukemia (AML) in vivo (78). And it might specifically

target AML patients harboring FMS-like tyrosine kinase 3 (FLT3)

or DNA methyltransferase 3A (DNMT3A) mutations (79), which

holds immense potential for clinical application but awaits further

in-depth investigations.
5 Challenges and perspectives
for AS-based neoantigens in
cancer immunotherapy

Modulating splicing to alter the production of neoantigens at the

RNA level offers several advantages. Splicing modulation has the

potential to generate a large number of neoantigens, in contrast to
FIGURE 2

Workflow for designing immunotherapy strategies based on cancer neoantigens derived from alternative splicing. (A) Bioinformatics tools are
utilized to detect alternative splicing (AS) events, analyze peptides derived from AS, and forecast their immunogenicity. (B) Novel cancer vaccines, (C)
T cell receptor-engineered T (TCR-T) cells, and (D) chimeric antigen receptor T (CAR-T) cells are designed utilizing immunogenic AS-
derived neoantigens.
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thelimited canonical neoantigens resulting from somatic mutations

(53). While canonical neoantigens are often similar to their wild-type

counterparts, splicing-derived peptides are frequently novel to the

immune system, leading to significantly enhanced immune responses,

as demonstrated in the study where 28–43% of predicted splicing-

derived neoantigens were found to be immunogenic compared to an

estimated 6% for mutation-derived neoantigens (53, 80).

Recent advancements in technology have enabled the

identification of tumor-specific mRNA splicing-derived

neoantigens. These neoantigens have the potential to introduce a

novel category of targets for cancer immunotherapy. However, there

are several challenges that persist in the development and

implementation of immunotherapies aimed at targeting these

mRNA splicing-derived neoantigens. (1) How to identify tumor-

specific splicing events. Accurately identifying mRNA splicing events

specific to tumors will be crucial for the effectiveness of

immunotherapies targeting neoantigens (81). The advancement of

RNA sequencing (RNA-seq) technologies provided available tools for

screening AS events, However, the technique lacks the ability to

detect splicing effects at the subclone level (82, 83). Consequently,

therapies targeting events present in only a fraction of the tumor may

prove ineffective. The emergence of single-cell RNA-seq (scRNA-seq)

holds promise for detecting splicing events across all tumor cells

(84, 85). However, integrating alternative splicing analysis with

scRNA-seq remains technically challenging, as scRNA-seq is

constrained by a limited starting material, potentially limiting the

analysis to highly abundant transcripts (86). Addressing this issue

may be possible through the development of machine learning

algorithms like the recently introduced DARTS, which has

enhanced the characterization of splicing variations in transcripts

with minimal coverage (87). (2) How to improve specificity. AS

program exhibits variability due to the dynamic action of the

spliceosome, leading to stochastic fluctuations, which can target the

splicing isoform in healthy tissues (88, 89). Therefore, it is essential to

implement adequate controls during the process of identifying

tumor-specific peptides derived from splicing or significantly

enriching the targeted splicing-derived peptides within tumors

(90, 91). (3) Ensuring effectiveness and safety in the clinical setting.

Since splicing inhibition could have the risk of causing side effects

such as inflammatory responses and developmental defects, safety

needs to be carefully monitored in additional species thanmice before

clinical trials are initiated (92, 93). Furthermore, emerging evidence

has revealed several immune escape mechanisms that interfered with

the immunological presentation of AS-derived neoantigens (66, 94).

It remains to be established whether memory T-cells are generated in

response to these AS-derived neoantigens and whether any immune

response persists after the cessation of the splicing inhibitors (95, 96).
6 Conclusion

Increasing evidence suggests that alternative mRNA splicing-

derived neoepitopes hold immense potential as immunotherapeutic
Frontiers in Immunology 06
targets that may significantly improve the prognosis of cancer

patients. Despite significant progress in broadening the

immunotherapy target landscape using RNA-seq technologies,

extensive work is still required. Therefore, there is a demand for

new technologies that enable rapid, robust, and precise

identification of tumor-specific immunogenic epitopes to

accurately evaluate their therapeutic potential. Furthermore,

incorporating AS-derived neoepitopes as potential targets for cell-

based and/or vaccination-based immunotherapeutic anticancer

strategies may extend the benefits of such treatments to a broader

range of patients.
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