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Introduction: Off-season upsurge of respiratory syncytial virus (RSV) infection

with changed characteristics and heightened clinical severity during the post-

COVID-19 era are raising serious concerns. This study aimed to develop and

validate a nomogram for predicting the risk of severe acute lower respiratory

tract infection (SALRTI) in children hospitalized for RSV infection during the post-

COVID-19 era using machine learning techniques.

Methods: A multicenter retrospective study was performed in nine tertiary

hospitals in Yunnan, China, enrolling children hospitalized for RSV infection at

seven of the nine participating hospitals during January–December 2023 into the

development dataset. Thirty-nine variables covering demographic, clinical, and

laboratory characteristics were collected. Primary screening and dimension

reduction of data were performed using Least Absolute Shrinkage and

Selection Operator (LASSO) regression, followed by identification of

independent risk factors for RSV-associated SALRTI using Logistic regression,

thus finally establishing a predictive nomogram model. Performance of the

nomogram was internally evaluated by receiver operating characteristic (ROC)

curve, calibration curve, and decision curve analysis (DCA) based on the

development dataset. External validation of our model was conducted using

samemethods based on two independent RSV cohorts comprising pediatric RSV

inpatients from another two participating hospitals between January–

March 2024.
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Results: The development dataset included 1102 patients, 239 (21.7%) of whom

developed SALRTI; while the external validation dataset included 249 patients (142

in Lincang subset and 107 in Dali subset), 58 (23.3%) of whom were diagnosed as

SALRTI. Nine variables, including age, preterm birth, underlying condition, seizures,

neutrophil-lymphocyte ratio (NLR), interleukin-6 (IL-6), lactate dehydrogenase

(LDH), D-dimer, and co-infection, were eventually confirmed as the

independent risk factors of RSV-associated SALRTI. A predictive nomogram was

established via integrating these nine predictors. In both internal and external

validations, ROC curves indicated that the nomogram had satisfactory

discrimination ability, calibration curves demonstrated good agreement between

the nomogram-predicted and observed probabilities of outcome, and DCA

showed that the nomogram possessed favorable clinical application potential.

Conclusion: A novel nomogram combining several common clinical and

inflammatory indicators was successfully developed to predict RSV-associated

SALRTI. Good performance and clinical effectiveness of this model were

confirmed by internal and external validations.
KEYWORDS

RSV, severe acute lower respiratory tract infection, children, nomogram, post-COVID-
19 period, machine learning
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1 Introduction

Respiratory syncytial virus (RSV) is well-known as the principal

pathogen of acute lower respiratory tract infection (ALRTI) among

children (1). Due to its high contagiousness, RSV affects about 70%

of infants before the first year of life and almost all children by the

age of two years (2). The authoritative epidemiology data indicated

that there were estimated 33.0 million [uncertainty range (UR):

25.4–44.6 million] episodes of RSV-attributable ALRTI in 2019

globally, leading to 3.6 million (UR: 2.9–4.6 million)

hospitalizations and 101,400 (UR: 84,500–125,200) in-hospital

deaths among children aged < 5 years (3). Importantly, about

20.8%–25.5% of RSV-ALRTI will progress to severe ALRTI

(SALRTI), which is widely accepted as the major cause of RSV-

associated in‐hospital deaths in pediatric population and poses a

huge threat to children’s health (4, 5).

The influence of COVID-19 pandemic and its associated

containment measures on the seasonal circulation of other

respiratory pathogens is a serious concern for public health, even

extending beyond the immediate consequences of the SARS-CoV-2

infection (6). A series of respiratory viruses have shown significant

resurgences during the post-pandemic period, particularly those

with a lack of licensed vaccines for children, including RSV,

metapneumovirus, and rhinovirus, etc (6–8). Among these, RSV,

the most common cause of pediatric ALRTI, is perhaps the most

affected one. Despite the presence of several monoclonal antibodies

for pediatric RSV infection, such as Palivizumab (FDA-approved

drugs but not currently available in mainland China) and

Nirsevimab (the first monoclonal antibody approved for the

prevention of RSV in infants in mainland China recently), they

have not yet been widely used in the population (9, 10). Based on

this and the absence of licensed vaccines as well as the gradual

decrease of maternally-derived neutralizing antibodies with

increasing age (11), seasonal exposure to RSV is still the

predominant way for children to produce immunological

protection against RSV infection. Therefore, the susceptibility to

RSV in children would theoretically increase due to the lack of

seasonal viral exposures during the COVID-19 pandemic, thereby

causing more intense rebound after easing the containment

measures. In fact, as predicted, upsurges of RSV activity have

been reported successively in numerous countries and regions

worldwide during the post-COVID-19 era (12–15). Even more

worrisome, compared to the pre-COVID-19 period, RSV

infection among children during the post-pandemic era showed

an enhanced clinical severity, reflected by the increased RSV

hospitalization rate and proportion of SALRTI with more

pediatric intensive care unit (PICU) admission and longer PICU

length of stay (LOS) (8, 12), which may be partially attributed to the

waning population immunity for RSV and long-lasting impairment

of the immune system in individuals after SARS-CoV-2 infection

(16, 17). These potential immunological changes and increased

severity in RSV infection during the post-COVID-19 era present a

significant challenge for the clinical management of such patients,

especially for severe cases.

Considering these grim situations during the post-COVID-19

era, it is urgently needed and of great significance to establish a
Frontiers in Immunology 03
novel, simple, and accurate prediction tool for SALRTI in children

hospitalized for RSV infection. Consequently, this multicenter

retrospective study summarized and analyzed the clinical and

laboratory characteristics of pediatric RSV inpatients from nine

tertiary hospitals in Yunnan, China, during post-COVID-19 period,

aiming to develop and validate a nomogram model for predicting

RSV-associated SALRTI.
2 Methods

2.1 Study population and design

This was a multicenter study carried out in nine public tertiary

hospitals in Yunnan, China. Children (≤ 14 years) hospitalized for

RSV infection at seven of the nine participating hospitals in Yunnan

between January–December 2023 were retrospectively included

into the development dataset of this study and no exclusion

criteria were set for this study. All enrolled patients were divided

into severe and non-severe groups, depending on the presence or

absence of SALRTI, respectively (Figure 1).

SALRTI was defined as pneumonia or bronchiolitis

accompanied by at least one of the following presentations (18,

19): 1) a reduction in feeding amount to less than half of the normal,

dehydration, or refusal to feed; 2) impaired consciousness; 3)

manifestations of hypoxemia, including cyanosis, age‐specific

tachypnea (≥60 breaths/min for children under 2 months; ≥50

breaths/min for children aged 2 months to 1 year; ≥40 breaths/min

for children aged >1 to 5 years; ≥30 breaths/min for children older

than 5 years), three concave signs, nasal flaring, grunting,

intermittent apnea, or oxygen saturation <88%; 4) persistent high

fever for more than 5 days; 5) pulmonary imaging suggesting ≥2/3

unilateral lung infiltration, multilobar pulmonary infiltration,

pleural effusion, pneumothorax, atelectasis, pulmonary necrosis,

or pulmonary abscess; 6) extrapulmonary complications.

Ethical approval for this study was granted by the Ethics

Committees of Kunming Children’s Hospital (approval number:

2023-05-012-K01), who also waived the written informed consent

due to the retrospective design of the study.
2.2 Potential prediction variables

A total of 39 relevant indicators collected from electronic

medical records were used as potential prediction variables,

including general characteristics [age, gender, low birthweight,

preterm birth, personal and family histories of atopy, non-

exclusively breastfeeding (non-EBF)], clinical characteristics

(duration of symptoms prior to admission, underlying condition,

fever, fever peak, cough, rhinorrhea, nasal congestion, wheezing,

acute otitis media, seizures, poor appetite, diarrhea, vomiting),

laboratory parameters [leucocyte count, neutrophil-to-lymphocyte

ratio (NLR), CD4+/CD8+ T cell ratio, erythrocyte sedimentation

rate (ESR), c-reactive protein (CRP), procalcitonin (PCT),

interleukin 6 (IL-6), IL-10, alanine transaminase (ALT), aspartate

transaminase (AST), lactate dehydrogenase (LDH), creatinine (Cr),
frontiersin.org
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urea, D-dimer, creatine kinase myocardial band (CK-MB), co-

infection], and outcome measures (mechanical ventilation, PICU

admission, LOS).

In the above variables, low birthweight was defined as

birthweight < 2500 g; preterm birth was defined as birth at < 37

weeks’ gestation; underlying condition included congenital heart

disorders, bronchopulmonary dysplasia, pectus excavatum,

malignant tumors, inborn errors of immunity, or severe

malnutrition; according to the World Health Organization

(WHO) (20), EBF was defined as individuals who were fed

exclusively with breastmilk in the first 6 months of life, while

others were classified as non-EBF. In addition, nasal and throat

swabs were collected from patients within 24h of admission for

pathogen detection, which was conducted using multiple real-time

polymerase chain reaction (RT-PCR) (Adicon, Hangzhou, China)
Frontiers in Immunology 04
covering RSV, influenza A/H1N1, influenza A/H3N2, influenza

B, parainfluenza virus (types 1–3), adenovirus, bocavirus,

metapneumovirus, rhinovirus, seasonal coronavirus, Mycoplasma

pneumoniae, and Chlamydia pneumoniae. Co-infection was defined

as confirmed RSV infection concurrent to the presence of one or

more of the above pathogens. All data were reviewed and cross-

checked by two trained Ph.D. students.
2.3 Statistical analysis

R software version 3.5.1 (R Foundation for Statistical

Computing, Vienna, Austria; https://cran.r-project.org/) was

employed for statistical analysis and visualization. A two-tailed P-

value < 0.05 was considered statistically significant.
FIGURE 1

Flow chart of the study.
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2.3.1 Descriptive statistics
The distribution of continuous variables was evaluated using

the Shapiro-Wilk test. Continuous variables with skewed

distribution were presented as medians [interquartile range

(IQR)] and compared using Mann-Whitney U test, while

categorical variables were described as frequencies (n)

[percentages (%)] and compared using Pearson’s chi-square or

Fisher’s exact test. It should be pointed out that median

imputation (for continuous variables) and mode imputation (for

categorical variables) were adopted to handle missing data.

2.3.2 Candidate predictors selection
To minimize potential multicollinearity and overfitting, Least

Absolute Shrinkage and Selection Operator (LASSO) regression, a

penalized regression model with L1 regularization, was employed to

select candidate prediction variables via the R package ‘glmnet’

(https://cran.r-project.org/web/packages/glmnet/). Specifically,

LASSO regression shrinks coefficients of irrelevant variables

toward zero, while variables with non-zero coefficients will be

retained as candidate predictors, thus reducing the data

dimensionality. Except for the three outcome measures

(mechanical ventilation, PICU admission, LOS), the remaining 36

variables were entered into the LASSO model. The optimal

shrinkage parameter lambda was determined through 10-fold

cross-validation adopting the built-in function ‘cv.glmnet’ from

‘glmnet’. In our study, the lambda.1se (within one standard error

of minimum lambda) was selected as optimal lambda, since its

ability to choose the most concise variables with good

predictive performance.

2.3.3 Model development and internal validation
The candidate predictors obtained from LASSO regression were

included into multivariable logistic regression analysis, thus

determining the independent risk factors for RSV-associated

SALRTI and their corresponding regression coefficients (b) as

well as intercept value. A nomogram was generated based on the

results of multivariable logistic regression analysis using the R

package ‘rms’ (http://cran.r-project.org/package=rms). Then, the

patients in the development dataset were randomly divided into

70% as a training set and 30% as an internal validation set utilizing

the ‘caret’ package (https://cran.r-project.org/web/packages/caret/).

Receiver operating characteristic curve (ROC), calibration curve,

and decision curve analysis (DCA) were realized using the ‘pROC’

(https://cran.r-project.org/web/packages/pROC/), ‘rms’ (http://

cran.r-project.org/package=rms), and ‘rmda’ (https://cran.r-

project.org/web/packages/rmda/), respectively, to evaluate

performance of the nomogram in both training and internal

validation sets.

2.3.4 External validation
For externally validating our nomogram, an external validation

dataset was constructed, including two independent pediatric RSV

cohorts during January–March 2024. One is the Lincang subset,

consisting of 142 inpatients, provided by the People’s Hospital of

Lincang, and the other is the Dali subset, consisting of 107
Frontiers in Immunology 05
inpatients, provided by the Third Affiliated Hospital of Dali

University. The same assessment approaches as used in internal

validation, including ROC curve, calibration curve, and DCA, were

employed for the external validation of the nomogram.
3 Results

3.1 General characteristics of patients

A total of 1102 children hospitalized for RSV infection with a

median (IQR) age of 15.1 (10.5, 21.6) months and a male

proportion of 57.0% (628/1102) were enrolled in the development

dataset, comprising 239 (21.7%) in the severe group and 863

(78.3%) in the non-severe group (Figure 1). As shown in Table 1,

the median (IQR) age in the severe group was 11.2 (9.3, 17.9)

months, younger than the 17.3 (14.1, 22.5) months in the non-

severe group. Meanwhile, compared to the non-severe group, the

severe group showed higher proportions of low birthweight (20.1%

vs. 12.4%, P = 0.002), preterm birth (16.7% vs. 11.1%, P = 0.02), and

personal history of atopy (28.9% vs. 20.9%, P = 0.009).
3.2 Clinical and laboratory characteristics

For the entire development dataset (Table 1), cough (90.1%),

fever (52.8%), rhinorrhea (44.9%), nasal congestion (41.0%), and

wheezing (40.7%) were the most common clinical manifestations,

accompanied by a series of abnormal laboratory indicators

(Table 1). Noteworthily, there were significant differences

regarding the clinical and laboratory characteristics between the

severe and non-severe groups. Compared to the non-severe group,

more frequent underlying condition, wheezing, and seizures, as well

as higher fever peak were observed in the severe group, with higher

levels of leukocyte count, NLR, CRP, PCT, IL-6, IL-10, D-dimer,

and more frequent co-infection (all P < 0.05). In terms of outcome

measures, 86 (36.0%) and 101 (42.3%) patients in the severe group

required mechanical ventilation and PICU admission, respectively,

while no patients in the non-severe group needed theses.

Meanwhile, the severe group showed a longer LOS than that in

the non-severe group [7.0 (6.0, 9.0) vs. 6.0 (4.0, 7.0) days; P < 0.001].
3.3 Variable selection and development of
the nomogram

Since the aim of this study was to develop a prediction model for

severe RSV infection, three outcome measures (mechanical

ventilation, PICU admission, LOS) representing the disease severity

were excluded and the remaining 36 variables were included into the

LASSO regression. Based on the value of lambda.1se, 16 variables

with non-zero coefficients were selected as candidate predictors,

including age, low birthweight, preterm birth, personal history of

atopy, underlying condition, wheezing, seizures, poor appetite,

leucocyte count, NLR, ESR, CRP, IL-6, LDH, D-dimer, and co-
frontiersin.org
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TABLE 1 Characteristics of patients in development dataset.

Characteristics Total
(n=1102)

Severe
(n=239)

Non-severe
(n=863)

P-value

General characteristics

Age, months, median (IQR) 15.1 (10.5, 21.6) 11.2 (9.3, 17.9) 17.3 (14.1, 22.5) <0.001

Male, n (%) 628 (57.0) 139 (58.2) 489 (56.7) 0.679

Low birthweight, n (%) 155 (14.1) 48 (20.1) 107 (12.4) 0.002

Preterm birth, n (%) 136 (12.3) 40 (16.7) 96 (11.1) 0.020

Personal history of atopy, n (%) 249 (22.6) 69 (28.9) 180 (20.9) 0.009

Family history of atopy, n (%) 168 (15.2) 45 (18.8) 123 (14.3) 0.082

Non-EBF, n (%) 505 (45.8) 116 (48.5) 389 (45.1) 0.342

Clinical characteristics

Duration of symptoms prior to admission, days,
median (IQR)

1.0 (1.0, 1.0) 1.0 (1.0, 2.0) 1.0 (1.0, 1.0) 0.581

Underlying condition, n (%) 163 (14.8) 51 (21.3) 112 (13.0) 0.001

Fever, n (%) 582 (52.8) 136 (56.9) 446 (51.7) 0.152

Fever peak, °C, median (IQR) 37.9 (37.2, 38.5) 38.1 (37.7, 39.2) 37.8 (37.1, 38.3) 0.017

Cough, n (%) 993 (90.1) 219 (91.6) 774 (89.7) 0.373

Rhinorrhea, n (%) 495 (44.9) 115 (48.1) 380 (44.0) 0.261

Nasal congestion, n (%) 452 (41.0) 103 (43.1) 349 (40.4) 0.460

Wheezing, n (%) 448 (40.7) 111 (46.4) 337 (39.0) 0.039

Acute otitis media, n (%) 284 (25.8) 66 (27.4) 218 (25.3) 0.461

Seizures, n (%) 131 (11.9) 41 (17.2) 90 (10.4) 0.004

Poor appetite, n (%) 351 (31.9) 79 (33.1) 272 (31.5) 0.652

Diarrhea, n (%) 56 (5.1) 11 (4.6) 45 (5.2) 0.703

Vomiting, n (%) 72 (6.5) 17 (7.1) 55 (6.4) 0.682

Laboratory findings, median (IQR)

Leukocyte count, ×109/L 13.8 (11.0, 16.7) 16.4 (13.2, 19.8) 12.9 (10.7, 15.6) <0.001

NLR 4.2 (3.5, 6.2) 5.6 (3.9, 8.8) 4.0 (3.3, 5.9) <0.001

CD4+ /CD8+ T cell ratio 1.2 (0.8, 1.5) 1.1 (0.7, 1.3) 1.2 (1.0, 1.6) 0.063

ESR, mm/H 21.0 (14.0, 29.0) 23.0 (16.0, 33.0) 20.0 (13.0, 27.0) 0.182

CRP, mg/L 12.3 (8.9, 19.6) 16.3 (14.8, 22.5) 11.4 (8.1, 14.3) <0.001

PCT, ng/mL 0.4 (0.1, 1.2) 0.5 (0.3, 1.6) 0.4 (0.2, 0.9) 0.032

IL-6, pg/mL 19.5 (12.4, 32.8) 22.8 (18.1, 36.7) 17.9 (11.2, 30.5) 0.002

IL-10, pg/mL 16.8 (13.7, 21.3) 21.4 (17.6, 27.0) 15.6 (13.3, 20.1) <0.001

ALT, U/L 24.0 (19.0, 33.0) 24.0 (20.0, 41.0) 24.0 (19.0, 32.0) 0.416

AST, U/L 26.0 (19.0, 35.0) 28.0 (20.0, 38.0) 26.0 (19.0, 34.0) 0.337

LDH, U/L 398.6 (351.2, 568.9) 402.7 (369.1, 577.2) 395.8 (346.3, 552.1) 0.146

Cr, umol/L 31.6 (26.3, 38.2) 34.5 (29.3, 41.2) 30.4 (25.7, 36.9) 0.484

Urea, mmol/L 3.0 (2.1, 4.5) 3.1 (2.6, 4.8) 3.0 (2.0, 4.4) 0.391

D-dimer, mg/L 1.0 (0.8, 1.3) 1.3 (1.0, 1.6) 1.0 (0.8, 1.2) <0.001

(Continued)
F
rontiers in Immunology
 06
 frontiersin.org

https://doi.org/10.3389/fimmu.2024.1437834
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1437834
infection (Figures 2A–C). These 16 candidate predictors were entered

into multivariable logistic regression, eventually identifying nine

independent risk factors, including age, preterm birth, underlying

condition, seizures, NLR, IL-6, LDH, D-dimer, and co-infection

(Figure 3A). The logistic regression equation for predicting RSV-

associated SALRTI was as follows: Logit (P) = −3.376 − 0.268 × Age

(month) + 0.642 × Preterm birth (yes) + 0.744 × Underlying

condition (yes) + 0.813 × Seizures (yes) + 0.366 × NLR + 0.130 ×

IL-6 (pg/mL) + 0.007 × LDH (U/L) + 1.086 × D-dimer (mg/L) +

0.434 × Co-infection (yes). To make the prediction model more
Frontiers in Immunology 07
intuitive and convenience, this model was visualized as a nomogram

integrating these nine independent predictors (Figure 3B). For

example, in our nomogram, a 15-month-old (59.1 points) RSV

inpatient without preterm birth history (0 point) and seizures (0

point) had underlying condition (16.3 points), a NLR level of 4.0

(23.8 points), an IL-6 level of 20.0 pg/mL (57.4 points), a LDH level of

400.0 U/L (43.9 points), a D-dimer level of 2.5 mg/L (47.7 points),

and co-infection (9.5 points). A total point of 257.7 would be

calculated in this patient and the corresponding predicted risk of

SALRTI is 0.626.
TABLE 1 Continued

Characteristics Total
(n=1102)

Severe
(n=239)

Non-severe
(n=863)

P-value

Laboratory findings, median (IQR)

CK-MB, U/L 51.0 (41.4, 60.8) 54.7 (44.1, 69.6) 50.2 (40.5, 58.3) 0.307

Co-infection, n (%) 439 (39.8) 110 (46.0) 329 (38.1) 0.027

Outcome measures

Mechanical ventilation, n (%) 86 (7.8) 86 (36.0) 0 <0.001

PICU admission, n (%) 101 (9.2) 101 (42.3) 0 <0.001

LOS, days, median (IQR) 6.0 (4.0, 8.0) 7.0 (6.0, 9.0) 6.0 (4.0, 7.0) <0.001
ALT, alanine aminotransferase; AST, aspartate aminotransferase; CK-MB, creatine kinase myocardial band; Cr, creatinine; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; IL-6,
interleukin 6; IQR, interquartile ranges; LDH, lactate dehydrogenase; LOS, length of hospital stay; NLR, neutrophil-to-lymphocyte ratio; Non-EBF, non-exclusively breastfeeding; PCT,
procalcitonin; PICU, pediatric intensive care unit.
A

B

C

FIGURE 2

Candidate predictor selection using LASSO regression. (A) LASSO coefficient profiles of all 39 potential prediction variables. (B) and (C) Tuning
parameter (lambda) selection in LASSO model using 10-fold cross-validation based on one standard error of the minimum criteria (lambda.1se).
Sixteen variables with non-zero coefficients were selected as candidate predictors. LASSO, Least Absolute Shrinkage and Selection Operator.
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3.4 Internal validation of the nomogram

For internal validation, patients in the development dataset

were divided into training and internal validation sets according to

the ratio of 7:3. The ROC curves of the nomogram indicated an

AUC of 0.865 (95%CI: 0.833–0.897, P < 0.001), with a sensitivity of

75.8% as well as a specificity of 80.8% in the training set (Figure 4A),

and showed an AUC of 0.819 (95%CI: 0.782–0.855, P < 0.001), with

a sensitivity of 78.1% as well as a specificity of 76.2% in the internal

validation set (Figure 4B), suggesting a good discrimination. As

shown in Figures 4C, D, the nomogram had favorable calibration

according to the Hosmer–Lemeshow test that was graphically

represented by calibration curves, which demonstrated good

consistency between the nomogram-predicted and actual

probabilities of RSV-associated SALRTI in both training and

internal validation sets (both P > 0.05). DCA, taking the

threshold probability as the abscissa and the net benefit rate as

the ordinate, was also conducted to assess the clinical usefulness of

this nomogram. According to Figures 4E, F, the nomogram could

provide greater net benefits than the “all” and “none” schemes in
Frontiers in Immunology 08
both training (threshold probability: 0.00–0.83) set and internal

validation set (threshold probability: 0.00–0.80), revealing a great

potential for clinical utility.
3.5 External validation of the nomogram

A total of 249 RSV patients hospitalized at two other hospitals

during January–March 2024 were included as the overall external

validation dataset, comprising 142 cases in the Lincang subset and

107 cases in the Dali subset (Table 2). RSV-associated SALRTI was

finally confirmed in 58 (23.3%) cases of these patients, whose

characteristics were summarized in Table 2. The ROC curves of the

nomogram showed an AUC of 0.808 (95%CI: 0.760–0.856, P < 0.001)

in Lincang subset, an AUC of 0.857 (95%CI: 0.816–0.897, P < 0.001)

in Dali subset, and an AUC of 0.822 (95%CI: 0.778–0.867, P < 0.001)

in the overall validation dataset (Figures 5A–C), demonstrating a

good discriminative ability. Meanwhile, the calibration curves

presented favorable consistency between the predicted and actual

probabilities of RSV-associated SALRTI in the overall validation
A

B

FIGURE 3

Identification of independent risk factors and construction of prediction nomogram. (A) Nine variables, including age, preterm birth, underlying
condition, seizures, NLR, IL-6, LDH, D-dimer, and co-infection, were confirmed to be independently associated with RSV-SALRTI. (B) A prediction
nomogram combining these nine independent predictors was established. IL-6, interleukin 6; LDH, lactate dehydrogenase; NLR, neutrophil-to-
lymphocyte ratio; RSV, respiratory syncytial virus; SALRTI, severe acute lower respiratory tract infection.
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dataset and its two subsets, since the bias-corrected curves were close

to the ideal 45°curves (all P > 0.05) (Figures 5D–F). Besides, as shown

in the DCA performed in the validation dataset and its subsets, the

net benefits obtained from application of our nomogram within a
Frontiers in Immunology 09
wide range of threshold probability were greater than those from “all”

and “none” schemes (Figures 5G–I), indicating that the nomogram

had good clinical utility in predicting SALRTI in children hospitalized

for RSV infection during the post-COVID-19 era.
A

B D

E

F

C

FIGURE 4

Assessment of the prediction nomogram in training and internal validation sets in the development dataset. (A) and (B) ROC curves. (C) and (D)
Calibration curves. (E) and (F) DCA. ROC, receiver operating characteristic; DCA, decision curve analysis.
TABLE 2 Characteristics of patients in external validation dataset.

Characteristics Total (Overall dataset)
(n=249)

Lincang subset
(n=142)

Dali subset
(n=107)

Age, months, median (IQR) 13.9 (9.4, 21.8) 13.5 (8.6, 20.8) 14.8 (10.2, 23.4)

Preterm birth, n (%) 34 (13.7) 19 (13.4) 15 (14.0)

Underlying condition, n (%) 38 (15.3) 20 (14.1) 18 (16.8)

Seizures, n (%) 26 (10.4) 14 (9.9) 12 (11.2)

NLR, median (IQR) 3.8 (2.9, 5.7) 3.9 (3.0, 5.9) 3.6 (2.7, 5.5)

IL-6, pg/mL, median (IQR) 20.8 (12.5, 36.9) 21.0 (12.8, 38.5) 22.3 (11.9, 34.3)

LDH, U/L, median (IQR) 403.5 (361.2, 568.9) 407.2 (371.4, 572.8) 398.7 (348.8, 554.6)

D-dimer, mg/L, median (IQR) 1.1 (0.7, 1.4) 1.1 (0.8, 1.5) 1.0 (0.7, 1.3)

Co-infection, n (%) 102 (41.0) 57 (40.1) 45 (42.1)

SALRTI, n (%) 58 (23.3) 35 (24.6) 23 (21.5)
IL-6, interleukin 6; IQR, interquartile ranges; LDH, lactate dehydrogenase; NLR, neutrophil-to-lymphocyte ratio; SALRTI, severe acute lower respiratory tract infection.
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4 Discussion

In the present study, we developed and validated a novel,

simple, and effective nomogram for predicting SALRTI in

children hospitalized for RSV infection during the post-COVID-

19 era. The nomogram was established based on the several

inflammatory indicators and clinical characteristics, including age,

preterm birth, underlying condition, seizures, NLR, IL-6, LDH, D-

dimer, co-infection. This prediction model can be adopted by

clinicians for accessing such patients due to its favorable

performance verified by internal and external validations.

Of all the predictors, three variables, including age, preterm

birth, and underlying condition were widely reported to be strongly
Frontiers in Immunology 10
linked with the severity of RSV infection before the emergence of

COVID-19 (21, 22). Specifically, it is well acknowledged that

pediatric patients accompanied by a history of prematurity and/or

underlying diseases generally have higher risk of severe RSV

infection, regardless of other physiological and pathophysiological

factors (23). Besides, there has been abundant evidence

demonstrating the close relationship between the age and severity

of infection. The younger the age at infection, the higher the risk of

severe RSV infection due to the weaker immune defenses in

younger children (22, 24). However, it should be noted that

despite a similar association between age and progression of RSV

infection during the post-COVID-19 era, significantly changed age

distribution was observed between the RSV patients in our study
A

B

D

E

F

G

I

H

C

FIGURE 5

External validation of the nomogram in external validation dataset and its two subsets (Lincang and Dali subsets). (A–C) ROC curves. (D–F)
calibration curves. (G–I) DCA. ROC, receiver operating characteristic; DCA, decision curve analysis.
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and those reported in previous literature. Children with RSV

infection in the pre-COVID-19 era typically have a median age

about 6 months, which is younger than that in our study (15.1

months). Foley et al. (25) also reported a similar phenomenon that

the median age of pediatric RSV patients during the post-COVID-

19 period in Australia was 16.4 months, more than twice that

observed in the pre-COVID-19 era (8.1 months). A study

conducted in China has attempted to investigate this

phenomenon (13). They found that the levels of RSV-specific

antibody among children were significantly declined during the

post-COVID-19 era compared to those in the pre-pandemic era,

and the changes of antibody levels showed prominent variability

across different age groups, with a more significant decrease

identified in older children. This might partially explain the trend

towards increasing age of children with RSV infection during the

post-COVID-19 era compared to the pre-pandemic period.

Clinicians need to be aware of this marked change.

Notably, our study also identified a relatively unique predictor

for RSV-associated SALRTI, i.e., seizures, which were uncommon

in traditional RSV infection during the pre-COVID-19 period with

an incidence of approximately 3.0–5.0% (26, 27). Whereas the

incidence of seizures reached 11.9% across the overall

development dataset and 17.2% in the severe group in our study,

suggesting a sharp increase of RSV-associated seizures in post-

COVID-19 era. Intriguingly, despite the low incidence of seizures in

RSV infection during the pre-pandemic era, numerous studies have

affirmed that for patients infected with SARS-CoV-2 similarly

dominated by respiratory symptoms, seizures occurred more

frequently in those with severe respiratory infections compared to

those without (28–30). As recently reported by Proal et al. (31),

virus might not be fully cleared in some individuals after recovering

from acute SARS-CoV-2 infection. Instead, the replicating virus,

viral RNA and/or viral protein can persist in tissue as a ‘reservoir’,

which can cause neurological sequelae of COVID-19 (32, 33).

Hence, the phenomenon of increased RSV-associated seizures

during the post-COVID-19 era might be partially attributed to

direct and/or indirect effect of the COVID-19 pandemic given the

ultra‐high infection rate of SARS-CoV-2 during the pandemic and

its clinical and biological characteristics. Seizures undoubtedly

deserve more attention as they occurred more frequently in

clinical course of RSV infection (especially for the severe cases)

during the post-COVID-19 era than that during the pre-

pandemic period.

In addition to the above clinical indicators, our study found that

the increase of several inflammatory indicators (NLR, IL-6, LDH,

D-dimer) were the independent risk factors for RSV-associated

SALRTI. NLR is a novel hematological parameter for systemic

inflammation and host immune response. In contrast to the

counts of leucocyte or its subpopulations that showed relatively

low sensitivity and specificity in the evaluation of inflammation and

disease severity, NLR obtained by simple calculation (NLR =

Neutrophil-to-lymphocyte ratio) has been increasingly suggested

as one of the most effective and reliable biomarkers of immune-

inflammatory response intensity and is gradually applied for the

severity assessment of infection (34). Meanwhile, NLR was

considered to be a relatively stable parameter that does not
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change dramatically with age and gender (35). Similarly, as a

master regulator of inflammation, IL-6 is a typical pro-

inflammatory factor that involves cytokine storm and

inflammation responses central to the progression of infection

diseases (36). During the process of RSV infection, innate

immune cells play a fundamental role in response against RSV

infection in the lower respiratory tracts. Pattern recognition

receptors (PRR) on these cells can sense a series of target proteins

of RSV, thus activating the nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB), interferon regulatory

factors (IRFs), and mitogen-activated protein kinase (MAPK)

pathway. As a consequence, the production and release of

chemokines and inflammatory cytokines centered around IL-6 are

ultimately triggered (2, 37). Noteworthily, multiple studies have

shown that the combined application of IL-6 and NLR were more

accurate than the single indicator in predicting inflammation

intensity (38, 39). In the present study, NLR and IL-6 also

demonstrated good predictive values for RSV-associated SALRTI.

In addition, LDH, a cytoplasmatic enzyme widely existing in

tissues, is well recognized as a biomarker of cell damage, which can

effectively monitor inflammation and progression of some diseases,

including pulmonary/respiratory conditions (40). Subsequent to cell

membrane damage, LDH would be leaked into bloodstream, resulting

in an elevation of serum LDH level. Numerous previous studies have

confirmed the important predictive value of serum LDH level in the

severe progression of infectious diseases, such as COVID-19 and RSV

infection (41, 42). As for D-dimer, it is the final product of the plasmin-

mediated degradation of cross-linked fibrin and pronounced increase

of D-dimer could be observed in individuals with serious viral

infections (43, 44). The pathological increase of D-dimer may reflect

inflammatory responses and activation of the coagulation cascade in

the infectious state, implying the great potential of D-dimer for

assessing the infection severity. Although adequate coagulation

augmentation may function as a host’s defense mechanism against

infection, excessive procoagulant activity is likely to cause fibrin

deposition, exacerbating inflammation and tissue injury (45). In the

prediction nomogram constructed in our study, LDH and D-dimer

were also identified as powerful predictors for RSV-associated SALRTI,

highlighting the essential roles of inflammation and potential tissue

damage in the development and progression of this disorder.

Our study found that co-infection revealed significant predictive

value for RSV-associated SALRTI during the post-COVID-19 era. In

fact, RSV patients co-infected with other pathogens are also more likely

to progress to severe conditions than those without even during the

pre-COVID-19 period (46). This issue was more prominent in the

post-pandemic era due to the influence of COVID-19-related

mitigation measures that may induce immunity debt (6). During the

post-pandemic era, not only has RSV experienced a drastic resurgence,

but other pathogens (including influenza virus, human

metapneumovirus, and adenovirus, etc.) have also undergone off-

season outbreaks, accompanied by heightened severity (47). A large

number of studies have reported increased incidence of mixed infection

in patients with acute respiratory infection during the post-COVID-19

era, particularly in severe cases, as compared to the pre-pandemic

period (16, 48). In line with these observations, the severe RSV group in

our study showed more frequent co-infection than the non-severe
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group, and co-infection demonstrated strong predictive power for

RSV-associated SALRTI. Therefore, the clinical management of

pediatric RSV cases in this post-pandemic period necessitates

particular vigilance in co-infection that showed an increased

potential for exacerbating infection and leading to severe progression.

In the present study, nine variables, including age, preterm birth,

underlying condition, seizures, NLR, IL-6, LDH, D-dimer, and co-

infection were selected as the predictors for RSV-associated SALRTI in

post-COVID-19 era, and were further integrated into a prediction

nomogram. Intuitiveness is one important advantage of nomogram

since it can transform each predictor of themodel to a visual score, thus

evaluating the risk of outcome by calculating a total point. Although

previous studies have established some prediction model for severe

RSV infection in children, it is necessary to construct new prediction

tools to provide more help for clinical work due to the following two

main reasons: on the one hand, the characteristics of RSV infecting

have changed during the post-COVID-19 era compared to the pre-

pandemic period (48, 49); on the other hand, previous prediction

models often explored the predictive value of a single or two to three

combined laboratory indicators for severe RSV infection, so the

usefulness of these models in clinical practice might be limited (50–

52). To cope with these, via analyzing the multicenter RSV data from

post-COVID-19 era, our study constructed a more comprehensive

nomogram covering common clinical and laboratory characteristics to

provide more precise risk prediction of RSV-associated SALRTI.

Meanwhile, despite an increased number of indicators required for

our nomogram, this model still remained a good practicality as these

nine variables in the nomogram are routinely measured and collected

at admission for RSV inpatients. Because of that, the clinical application

of this nomogram will not generate additional burden of variable

collection and medical costs.

To fully assess the predictive accuracy and effectiveness of our

nomogram, internal validation based on the development dataset and

further external validation based on two independent pediatric RSV

cohorts from different locations were performed. The final results of

assessment showed a satisfactory prediction performance of this model.

Furthermore, as suggested by DCA, the nomogram we developed was

clinically applicable. Hence, based on this prediction model, early

recognition of SALRTI in children hospitalized for RSV infection

during the post-COVID-19 era may be achievable, assisting

clinicians in medical decision-making. For RSV inpatients predicted

as high risk of SALRTI, clinicians may choose earlier intervention or

more aggressive therapies, or even transfer them to PICU for stricter

monitoring and medical care, while those with non‐high risk might

remain in the general respiratory wards for conventionally supportive

treatments and monitoring. Early recognition and prevention of RSV-

associated SALRTI is crucial for child health, especially given the

increased severity and number of RSV cases during the post-COVID-

19 era than the pre-pandemic period.

There were several limitations in our study. First, owing to the

retrospective design, potential selection bias and confounders could

not be fully excluded. In addition, although this was a multicenter

study, the sample size was relatively small, and all subjects were

enrolled from Yunnan province of China. Larger-scale prospective

studies are warranted in the future to achieve higher accuracy and

generalization of the prediction model.
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5 Conclusion

Based on multicenter data, we established and validated a

clinical and inflammatory indicators-combined nomogram for

predicting the SALRTI in children hospitalized for RSV infection

during the post-COVID-19 era. Nine strong predictors including

age, preterm birth, underlying condition, seizures, NLR, IL-6, LDH,

D-dimer, and co-infection were integrated into this model, which

showed a good predictive ability, accuracy, and clinical usefulness.
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