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Background: We employed Mendelian randomization (MR) to investigate the

causal relationship between the gut microbiota and lymphoid leukemia, further

exploring the causal relationships among immune cells, lymphoid leukemia, and

potential metabolic mediators.

Methods: We utilized data from the largest genome-wide association studies to

date, encompassing 418 species of gut microbiota, 713 types of immune cells,

and 1,400 serum metabolites as exposures. Summary statistics for lymphoid

leukemia, acute lymphocytic leukemia (ALL), and chronic lymphocytic leukemia

(CLL) were obtained from the FinnGen database. We performed bidirectional

Mendelian analyses to explore the causal relationships among the gut

microbiota, immune cells, serum metabolites, and lymphoid leukemia.

Additionally, we conducted a two-step mediation analysis to identify potential

intermediary metabolites between immune cells and lymphoid leukemia.

Results: Several gut microbiota were found to have causal relationships with

lymphoid leukemia, ALL, and CLL, particularly within the Firmicutes and

Bacteroidetes phyla. In the two-step MR analysis, various steroid hormone

metabolites (such as DHEAS, pregnenolone sulfateprogestogen derivatives,

and androstenediol-related compounds) were identified as potential

intermediary metabolites between lymphoid leukemia and immune cells. In

ALL, the causal relationship between 1-palmitoyl-2-docosahexaenoyl-GPE

(16:0/22:6) and ALL was mediated by CD62L-plasmacytoid DC%DC

(mediated proportion=-2.84%, P=0.020). In CLL, the causal relationship

between N6,n6,n6-trimethyllysine and CLL was mediated by HLA DR+ CD8br

AC (mediated proportion=4.07%, P=0.021).
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Conclusion: This MR study provides evidence supporting specific causal

relationships between the gut microbiota and lymphoid leukemia, as well as

between certain immune cells and lymphoid leukemia with potential

intermediary metabolites.
KEYWORDS

gut microbiota, immune cells, lymphocytic leukemia, Mendelian randomization
analysis, serum metabolites
1 Introduction

Lymphocytic leukemia, a hematologic malignancy, arises from

progenitor cells within the B or T lymphocyte lineages. It manifests

clinically with symptoms such as fever, bleeding, progressive anemia,

and bone and joint pain. The acute variant predominantly affects

children, comprising 80% of acute leukemia cases in this group (1),

whereas the chronic form is more common in middle-aged and elderly

individuals. Annually, more than 3,000 new cases are diagnosed (2),

contributing to approximately 25% of pediatric cancer-related fatalities

(3). Over recent decades, the incidence of Acute Lymphocytic leukemia

(ALL) across all racial groups in the USA has increased annually by

about 1%, indicating that risk factors may be increasingly prevalent (4).

Despite thorough investigation of these risk factors, the precise etiology

of lymphocytic leukemia has not been determined. Consequently,

clarifying the molecular mechanisms underlying its onset and

progression is crucial, highlighting the need to identify molecular

biomarkers that can signal relapse and metastasis.

Studies indicate that the maturation of the gut microbiota may

be delayed in children with ALL, characterized by a consistent

deficiency of bacterial groups that produce short-chain fatty acids.

This deficiency could potentially promote immune dysregulation

and increase the risk of transformation of pre-leukemic clones in

response to common infectious triggers (5). Additionally,

Bifidobacteria have been shown to reduce tumor cell proliferation

by inhibiting growth factor signaling and inducing mitochondrial-
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mediated apoptosis (6). However, further research involving human

subjects, particularly pediatric populations, is essential to deepen

our understanding of the relationship between the gut microbiome

and lymphoid leukemia.

Immune cells combat tumor growth by recognizing and lysing

tumor cells (7). In cases of lymphocytic leukemia, leukemic cells modify

the phenotype and functionality of immune cells to evade immune

surveillance (8, 9). Research has revealed that interleukin 10 (IL-10)

deficiency in pediatric B-ALL indirectly suppresses B lymphocyte

production and exacerbates B cell DNA damage associated with six

pro-inflammatory cytokines (10). Moreover, elevated levels of the

chemokine PARC have been identified in pediatric acute

lymphocytic leukemia, suggesting that serum PARC levels could

serve as a novel biomarker for leukemia, indicative of the interactions

between tumor cells and host cells (11). Nonetheless, observational

studies are prone to measurement errors, uncontrollable confounding

factors, and reverse causality, which may skew results. Thus, employing

Mendelian randomization is crucial to mitigate these biases and

confirm the causal relationship between immune cells and

lymphocytic leukemia.

In lymphocytic leukemia, leukemic cells undergo metabolic

reprogramming driven by genetic mutations, facilitating their

growth and development (12). Metabolomic analysis of patient

plasma and urine indicates significant changes in metabolites pre-

and post-treatment, suggesting new avenues for identifying

prognostic biomarkers and underscoring the potential therapeutic

benefits of targeting metabolic pathways in this condition (13).

Studies have demonstrated that amino acid metabolites serve as

activators of immune surveillance and as carriers for drugs

targeting T-cell acute lymphocytic leukaemia (14). Consequently,

the potential causal link between serum metabolites and lymphoid

leukemia merits further investigation, particularly regarding the role

of serum metabolites as mediators between immune cells and

lymphocytic leukemia.

Mendelian Randomization (MR) utilizes genetic variation to

establish the association between exposure factors and diseases in

observational studies, thereby enhancing the causal inference

between risk factors and outcomes. This method effectively

reduces the impact of unmeasured errors and confounding factors

by adhering to genetic principles, and mitigates the bias caused by

reverse causality (15). MR has been widely applied in cancer
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research, providing valuable insights into the etiology of various

cancers. For instance, a study summarized the relationship between

25-hydroxyvitamin D in serum and the risk of tumors in different

systems, identifying four studies on the association between serum

25-hydroxyvitamin D and cancer mortality (16). Kim et al. analyzed

14 genetic predictive tools for micronutrient levels and applied two-

sample MR to estimate their causal effects on 22 cancer outcomes

(17). Increasing evidence also emphasizes the importance of using

genetic data related to gut microbiota, immune cells, and

metabolites in clinical research. For example, a two-sample MR

analysis was conducted to assess the causal effect of gut bacteria on

the risk of five different types of cancer (18). In this study, we

applied two-sample MR to infer the causal relationship between gut

microbiota, immune cells, metabolites, and lymphocytic leukemia.

Further, we combined mediator Mendelian analysis to assess the

mediating effects of serum metabolites in the interaction between

immune cells and lymphocytic leukemia.
2 Materials and methods

2.1 Ethical approval and consent
to participate

Based on publicly available data, this study received ethical

approval and consent for participation. Each constituent study

within the Genome Wide Association Studies (GWAS) was

approved by the respective institutional review board, with

informed consent obtained from participants or their caregivers,

legal guardians, or authorized proxies.
2.2 Research design

This study, based on the STROBE-MR statement (19),

investigated the bidirectional causal relationships among serum

metabolites, immune cells, gut microbiota, and lymphoid leukemia,

including ALL and CLL, using two-sample MR. MR employs genetic

variations as proxies for risk factors, thereby serving as an effective

tool for causal inference. For an instrumental variable (IV) in MR to

be valid, it must satisfy three critical assumptions: (1) the genetic

variation is directly associated with the exposure; (2) it is unassociated

with any potential confounders of the exposure and outcome; (3) it

affects the outcome solely through the exposure and not through

alternative pathways. Our analyses were conducted with approval

from relevant institutional review boards, and informed consent was

provided by all participants. Additionally, we utilized a two-step MR

approach to examine the mediating role of serum metabolites on the

effects of immune cells on lymphoid leukemia, including ALL and

CLL (Figure 1).
2.3 Data source

Plasmametabolite data were derived from a comprehensive series

of Genome-Wide Association Studies (GWAS) within the Canadian
Frontiers in Immunology 03
Longitudinal Study on Aging (CLSA) cohort, analyzing 1,091

metabolites and 309 metabolite ratios in 8,299 participants. The

CLSA includes participants from all ten provinces of Canada and

collects comprehensive data and biospecimens. Among those who

provided blood, approximately 60 mL of non-fasting blood was

collected into six types of tubes, yielding ten fraction types

including serum, four types of plasma (citrate, platelet poor citrate,

heparin, and ethylenediaminetetraacetic acid (EDTA)), buffy coat,

two types of peripheral blood mononuclear cells (with and without

cell preservative), and three types of whole blood (acid citrate

dextrose, EDTA), including dried blood spots (baseline only).

Biospecimen collection and processing were conducted in dedicated

laboratories at each DCS. Blood samples were processed within 2

hours of collection and were temporarily stored at −80°C before being

shipped weekly in cryoshippers to the CLSA Biorepository and

Bioanalysis Centre (BBC) for long-term storage in cryofreezers

(−190°C) (20). This metabolomics study focused on 8,299

unrelated European participants in the CLSA who had undergone

whole-genome genotyping and had circulating plasma metabolites

measured. The study focused on individuals of European descent to

reduce potential biases due to population stratification. Using

kinship-based inference from the KING package (v2.2.5), 203

European individuals with first and second-degree relatives were

removed. Whole-genome genotyping was completed using the

Affymetrix Axiom Genotyping Platform, followed by imputation

using the Trans-Omics for Precision Medicine (TOPMed) protocol

and determination of genetic ancestry by the CLSA group.

Subsequently, we removed low-quality imputed genetic variants by

retaining only those SNPs with a minor allele frequency (MAF)

greater than 0.1, imputation quality score > 0.3, and missing rate <

0.1, resulting in approximately 15.4 million SNPs for GWAS testing.

Metabolon, Inc. (Durham, North Carolina, USA) quantified the levels

of metabolites in plasma samples using an Ultrahigh Performance

Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/

MS) platform. Metabolomics data underwent rigorous quality

control and management to ensure accurate and consistent

identification of true chemical entities and to remove those

representing systemic artifacts, misalignments, and background

noise. We then used the batch-normalized levels of metabolites and

retained only those metabolites with missing measurements in fewer

than 50% of the samples. For GWAS, metabolite levels were then

natural log-transformed, trimmed to remove outliers that are 3

standard deviations away, and then standardized to have a mean of

0 and a standard deviation of 1. For metabolite ratios, we first

identified 309 pairs of metabolites that share enzymes or

transporters using the Human Metabolome Database (HMDB).

The metabolite ratios for each pair were then calculated by dividing

the batch-normalized measurement of one metabolite by that of the

other in the same individual. The metabolite ratios were then

trimmed (retaining those within 3 standard deviations), and

inverse-rank normal transformed (21). Summary statistics for 731

immune phenotypes, including Absolute Cell (AC) counts (n = 118),

Median Fluorescence Intensity (MFI) (n = 389), Morphological

Parameters (MP) (n = 32), and Relative Cell (RC) counts (n =

192), are available from the GWAS Catalog (entries GCST0001391 to

GCST0002121) (22). These parameters encompass various cell types
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such as B cells, CDCs, T cells at different maturation stages,

monocytes, bone marrow cells, TBNK (T cells, B cells, Natural

Killer cells), and Treg panels, with MP focusing on CDC and

TBNK. The initial GWAS of immune traits included data from

3,757 European individuals, using about 22 million SNPs

characterized by high-density array genotyping from a Sardinian

sequence reference panel (23), with associations assessed post-
Frontiers in Immunology 04
adjustment for covariates like sex, age, and age squared.

Additionally, 418 gut microbiota entries from the NHGRI-EBI

GWAS Catalog were utilized (entries ebi-a-GCST90027857 to ebi-

a-GCST90027857440).

Moreover, this study incorporated GWAS data on lymphoid

leukemia (case=1,493, control=299,952), ALL (case=184,

control=287,136), and CLL (case=624, control=287,133) from the
FIGURE 1

Assumptions and design of the bidirectional and mediation MR analyses. Firstly, a two-sample bidirectional MR was performed to investigate the
causal relationships between Gut microbiota,Immune cells,Serum metabolites (exposure) and Lymphoid leukaemia,ALL,CLL (outcome). Secondly,
Serum metabolites (mediator) were selected for subsequent mediation analyses. Finally, a two-step MR analysis was conducted to detect potential
mediating metabolites (Step1, the effect of Immune cells on Serum metabolites; Step2, the effect of Serum metabolites on Lymphoid leukaemia,
ALL,CLL).
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FinnGen consortium (https://www.finngen.fi/en). These datasets,

which excluded all cancer types, were sourced from public domains,

thereby circumventing any ethical and copyright issues.
2.4 Genetic instrumental variable selection

A key element of MR studies is the use of single nucleotide

polymorphisms (SNPs) as IVs to address confounding factors in

observational research. Valid IVs are selected through rigorous

criteria, with SNPs associated with serum metabolites and immune

cells identified at a significance threshold of P<5×10−8. For gut

microbiota exposure, a genome-wide significance threshold is set at

1×10-5. These SNPs serve as genetic instrumental variables. We also

compute the F-statistic for each genetic instrument, where(R2(n-2)/

(1-r2))measures the instrument’s strength, R2 is the proportion of

variance explained, and n is the effective sample size in the GWAS.

A threshold F-value >10 indicates robust estimates in MR analysis.

To minimize bias due to linkage disequilibrium (LD), we cluster

SNPs within a ±10,000 kb range using an LD threshold of r2 < 0.001,

based on the 1000 Genomes European reference panel, including

only SNPs with a minor allele frequency > 0.01. We ensure SNP

effects on specific outcomes and exposures are allele-specific.

Palindromic SNPs are excluded from the analysis.
2.5 Bidirectional two-sample and
mediation analysis

We conducted bidirectional two-sample analyses to evaluate causal

relationships among serum metabolites, lymphoid leukemia (ALL,

CLL), immune cells, and gut microbiota. For multiple IVs, the

inverse variance weighted (IVW) method with multiplicative random

effects is optimal for estimating causal effects and addressing

heterogeneity (24). Therefore, we selected the IVW method with

multiplicative random effects as our primary MR analysis technique.

For single IV exposures, we applied the Wald ratio method to estimate

causality. Additionally, we utilized two-step MR for mediation analysis

to determine if serum metabolites mediate causal pathways from

immune cells to lymphoma outcomes. We calculated the mediation

proportion of serum metabolites as the indirect effect divided by the

total effect (b1×b2/b3), where b1 measures the impact of immune cells

on serummetabolites, b2 measures the impact of serummetabolites on

the outcome, and b3 measures the impact of immune cells on the

outcome. The 95% confidence interval is calculated using the

delta method.
2.6 Sensitivity analysis

We further evaluated the robustness of significant and potential

causal relationships using various statistical methods: MR Egger

regression (25), Weighted Median (26), Weighted Mode (27),

Simple Mode, and MR Pleiotropy Residual Sum and Outlier

(MR-PRESSO) (28). These methods are crucial as they enable the

detection of violations of MR assumptions under varied
Frontiers in Immunology 05
assumptions (29). Additionally, we conducted further sensitivity

analyses, including the calculation of Cochran’s Q statistic to

evaluate the heterogeneity of causal inference (30), and leave-one-

out analysis to determine the influence of specific variables on the

estimates of causal effects (31). We also applied the MR Steiger

directionality test to ascertain the direction of causal relationships

between exposures and outcomes. When the Steiger test revealed

stronger associations between certain genetic IVs and outcomes, we

excluded these variants and performed a reanalysis (32).
2.7 Statistical analyses

MR analyses were performed using R software (version 4.3.3,

http://www.r-project.org) and the TwoSampleMR package. The

MR-Pleiotropy Residual Sum and Outlier analyses were executed

using the MR.raps R package. To evaluate all known phenotypes

associated with our genetic tools, we utilized PhenoScanner.
3 Result

3.1 Instrument variables included
in analysis

The following criteria were used to select the best IVs to enhance

the authenticity and accuracy of the research conclusions. (1) When

selecting serum metabolites and immune cells as exposures, to

identify more stringent SNPs, we use a genome-wide significance

threshold (P<5×10-8) to select IVs. When gut microbiota data is

defined as exposure, the P-value threshold is relaxed to 1×10-5 to

ensure an adequate number of SNPs are included in the analysis.

When lymphoid leukemia, ALL, and CLL are chosen as outcomes, we

use a genome-wide significance threshold (P<5×10-8) to select IVs.

(2) Due to the potential bias caused by strong LD, we ensure there is

no LD among the selected IVs. Data from the 1000 Genomes Project

European samples are used as a reference panel to calculate LD

between SNPs, and SNPs that meet the threshold (r2<0.001,

kb=10,000) are retained for further analysis. (3) The F-statistics of

the selected IVs reach a threshold of >10, ensuring that the causal

estimates are free from weak instrument bias.
3.2 Causal effects of gut microbiota on
lymphoid leukemia

We utilized the IVW method to identify gut microbiota

significantly causally associated with lymphoid leukemia, including

ALL and CLL. Several types of gut microbiota were found to be

significantly related to lymphoid leukemia, ALL, and CLL.

Specifically, 17 types were significantly associated with lymphoid

leukemia, 14 types with ALL, and 9 types with CLL. Further analysis

was conducted on exposures and outcomes with SNP counts of three

or more. A higher genetically predicted level of genus.Coprococcus

was associated with an increased risk of lymphoid leukemia (OR[95%

CI]=1.760[1.189-2.607], P=4.8e−03), while a higher level of
frontiersin.org
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genus.Anaerotruncus was associated with a decreased risk of

lymphoid leukaemia (OR[95% CI]=0.621[0.421-0.915], P =1.6e

−02). Additionally, a higher genetically predicted level of

genus.Dorea was linked with an increased risk of ALL (OR[95%CI]

=10.206[1.858-56.055],P=7.5e−03), and a higher level of

family.Pasteurellaceae was linked with a decreased risk of ALL (OR

[95% CI]=0.443[0.216-0.906], P=2.6e−02). Similarly, a higher

genetically predicted level of genus.Coprococcus was associated with

an increased risk of CLL (OR[95% CI]=1.868[1.018-3.430], P=4.4e

−02), and a higher level of genus.Ruminococcaceae UCG005 was

associated with a decreased risk of CLL (OR[95%CI] =0.540[0.317-

0.920], P=2.3e−02) (Figure 2 and Supplementary Figure 4S1).

Further analyses using MR Egger, weighted median, simple

mode, and weighted mode methods have confirmed the genetic

causality (Supplementary Table 1).
3.3 Causal effects of serum metabolites on
lymphoid leukemia

We employed the IVW method to identify serum metabolites

significantly causally associated with lymphoid leukemia, including
Frontiers in Immunology 06
ALL and CLL. Several serum metabolites were significantly

associated with these lymphoid leukemia: 23 metabolites were

significantly causally related to lymphoid leukemia, 12 to ALL,

and 11 to CLL. Further analyses were conducted on exposures and

outcomes with SNP counts of three or more. Higher genetically

predicted levels of Androstenediol (3beta, 17beta) disulfate were

associated with an increased risk of lymphoid leukemia (OR[95%

CI]=1.525[1.234-1.884], P =9.5e−05), while higher levels of X-

24588 were associated with a decreased risk of lymphoid

leukemia (OR[95%CI]=0.644[0.424-0.979],P=3.9e−02). Higher

levels of Behenoyl dihydrosphingomyelin (d18:0/22:0) were

associated with an increased risk of ALL (OR[95%CI]=3.389

[1.335-8.603], P=1.0e−02), and X-24588 was associated with a

decreased risk of ALL (OR[95%CI]=0.257[0.089-0.740],P=1.2e

−02). Higher levels of Eicosenoylcarnitine (C20:1) were associated

with an increased risk of CLL (OR[95%CI]=2.377[1.284-4.404],

P=5.9e−02), and higher levels of N6.n6, n6-trimethyllysine were

associated with a decreased risk of CLL (OR[95%CI]=0.619[0.402-

0.952], P=2.9e−02) (Figure 3 and Supplementary Figure 4S2).

Further analyses using MR Egger, weighted median, simple

mode, and weighted mode methods confirmed the genetic causality

(Supplementary Table 2).
FIGURE 2

Causal effects of Lymphoid leukaemia on Gut Microbiota.
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3.4 Causal effects of immune cells on
lymphoid leukemia

Using the IVW method, we discovered several immune cells

significantly associated with lymphoid leukemia, ALL, and CLL.

Specifically, 30 types of immune cells were significantly causally

related to lymphoid leukemia, 12 types to ALL, and 13 types to

CLL. Among these, higher genetically predicted levels of

Monocytic Myeloid-Derived Suppressor Cells Absolute Count

were associated with an increased risk of lymphoid leukemia

(OR[95%CI]=1.164[1.048-1.293], P=4.5e−03), and higher SSC-A

on plasmacytoid Dendritic Cells was associated with a decreased

risk of lymphoid leukemia (OR[95%CI]=0.666 [0.496-0.894],

P=6.7e−03). Higher CD3 on Effector Memory CD8+ T cells was

associated with an increased risk of ALL (OR[95% CI]=1.714

[1.008-2.915], P=4.7e−02), and higher CD80 on granulocytes was

associated with a decreased risk of ALL (OR [95%CI]=0.446

[0.211-0.943], P=3.5e−02). Higher percentages of Switched

memory B cells were linked with an increased risk of CLL (OR

[95%CI]=1.759[1.065-2.906],P=2.7e−02), and higher SSC-A on

plasmacytoid Dendritic Cells was associated with a decreased

risk of CLL (OR[95%CI]=0.496[0.313-0.786],P=2.8e−03).

(Figure 4 and Supplementary Figure 4S3).
Frontiers in Immunology 07
Further analysis using MR Egger, weighted median, simple

mode, and weighted mode methods confirmed the genetic

causality (Supplementary Table 3).
3.5 Sensitivity analysis

We assessed the heterogeneity and pleiotropy of gut microbiota,

metabolites, and immune cells significantly associated with lymphoid

leukemia, ALL, and CLL using the IVW model. P-values exceeding

0.05 indicate an absence of heterogeneity and pleiotropy among these

variables (Tables 1–3). Sensitivity analyses employing the leave-one-

out method for these variables confirmed the robustness of our

findings, showing no significant influences from SNPs.
3.6 Directionality test

We performed Steiger tests to explore potential reverse causal

relationships between gut microbiota, metabolites, immune cells,

and lymphoid leukemia, including ALL and CLL. P<0.05 suggest

that the Steiger test results do not support reverse causal effects

among these variables (Tables 1-3).
FIGURE 3

Causal effects of Lymphoid leukaemia on Serum metabolites.
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3.7 Mediating role of serum metabolites in
immune cells and lymphoid leukaemia

We used the IVW method to identify immune cells and serum

metabolites with significant causal associations in lymphoid

leukaemia, ALL, and CLL (Supplementary Table 5). We further

conducted a two-step MR analysis on the relevant serum

metabolites and immune cells. We found that there are different

mediating effects in the aforementioned lymphoid leukaemia, ALL,

and CLL.

In lymphoid leukaemia, CD62L- plasmacytoid DC %DCmediated

the causal relationship between 1-palmitoyl-GPE (16:0) (Mediated

proportion = -8.35%[-3.65%,-13.1%]) and lymphoid leukaemia. HLA

DR+ T cell %T cell mediated the effects of 1-palmitoyl-GPE (16:0)

(Mediated proportion = -5.12%[-0.532%,-9.7%]), Androstenediol

(3alpha, 17alpha) monosulfate (Mediated proportion = 2.75%[5.34%,

0.156%]), 1-stearoyl-2-linoleoyl-GPI (18:0/18:2) (Mediated proportion

= 4.05%[8.03%,0.061%]), and Aspartate to N-acetylglucosamine to
Frontiers in Immunology 08
N-acetylgalactosamine ratio (Mediated proportion = -7.52%[-1.46%,

-13.6%]). HLA DR+ CD8br AC mediated the causal relationship

between N6,n6,n6-trimethyllysine (Mediated proportion = 5.39%

[9.96%,0.807%]), Aspartate to N-acetylglucosamine to N-

acetylgalactosamine ratio (Mediated proportion = -5.69% [-0.737%,

-10.7%]), and lymphoid leukaemia. HLA DR+ CD8br %T cell

mediated the causal relationship between X-24588 (Mediated

proportion = 6.71%[12.2%,1.24%]), X-25371 (Mediated proportion =

-4.36% [-0.429%, -8.3%]), and lymphoid leukaemia. CD45RA- CD28-

CD8br %T cell mediated the causal relationship between 1-stearoyl-2-

linoleoyl-GPI (18:0/18:2) and lymphoid leukaemia (Mediated

proportion = -8.31%[-15.7%,-0.872%]). CD45RA+ CD28- CD8br

AC mediated the causal relationship between Deoxycholic acid

glucuronide and lymphoid leukaemia (Mediated proportion =

-0.271%[-0.493%, -0.049%]). IgD on IgD+ CD24- mediated the

causal relationship between 1-palmitoyl-GPE (16:0) and lymphoid

leukaemia (Mediated proportion = -13% [-1.24%,-24.7%]). CD33 on

CD14+ monocyte mediated the causal relationship between DHEAS
FIGURE 4

Causal effects of Lymphoid leukaemia on Immune Cells.
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TABLE 1 Mendelian randomization analyses of the causal effects between gut microbiota and lymphocytic leukemia.

Outcome Exposure N
SNP

Q
statistic

P
heterogeneity

P
intercept

Steiger
pval

Lymphoid leukemia family.Lachnospiraceae.id.1987 16 21.473 0.122 0.606 0.574

family.Lactobacillaceae.id.1836 8 3.797 0.803 0.775 0.429

genus.Allisonella 8 7.670 0.363 0.607 0.245

genus.Anaerotruncus 13 7.405 0.830 0.965 0.573

genus.Eubacteriumbrachygroup 10 10.928 0.281 0.063 0.306

genus.Lactococcus 8 6.221 0.514 0.588 0.270

genus.RuminococcaceaeNK4A214group 13 9.275 0.679 0.884 0.535

genus.unknowngenus.id.2071 15 11.490 0.647 0.941 0.462

genus.unknowngenus.id.959 11 7.810 0.647 0.638 0.263

genus.Victivallis 10 8.684 0.467 0.563 0.199

family.Micrococcaceae 5 1.215 0.876 0.807 0.612

family.Clostridiales_noname 6 3.978 0.553 0.923 0.621

genus.Rothia 5 1.222 0.874 0.812 0.566

genus.Escherichia 8 5.078 0.651 0.845 0.535

genus.Eubacterium 9 5.099 0.747 0.392 0.496

genus.Bacteroides 15 10.315 0.739 0.440 0.416

genus.Coprococcus 4 1.668 0.644 0.482 0.701

ALL class.Mollicutes.id.3920 12 9.120 0.611 0.962 0.531

family.FamilyXI.id.1936 8 6.143 0.523 0.275 0.228

family.Lachnospiraceae.id.1987 16 10.963 0.755 0.116 0.569

family.Pasteurellaceae.id.3689 13 8.285 0.762 0.091 0.413

genus.Dorea.id.1997 10 15.094 0.088 0.204 0.640

genus.Eubacteriumfissicatenagroup.id.14373 9 11.347 0.183 0.668 0.327

genus.Gordonibacter.id.821 11 11.316 0.333 0.132 0.197

genus.Oscillibacter.id.2063 13 14.524 0.268 0.554 0.394

order.Pasteurellales.id.3688 13 8.285 0.762 0.091 0.413

phylum.Tenericutes.id.3919 12 9.120 0.611 0.962 0.531

genus.Roseburia 11 11.616 0.312 0.718 0.442

genus.Barnesiella 13 7.077 0.852 0.264 0.457

genus.Eubacterium 10 5.194 0.817 0.590 0.495

genus.Roseburia 11 7.117 0.714 0.419 0.455

CLL genus.Eggerthella 9 9.177 0.328 0.614 0.395

genus.Eubacteriumbrachygroup 10 9.249 0.415 0.165 0.306

genus.Howardella 9 4.291 0.830 0.281 0.296

genus.Lactococcus 8 4.730 0.693 0.348 0.269

genus.RuminococcaceaeUCG005 14 14.568 0.335 0.866 0.552

class.Erysipelotrichia 7 6.199 0.401 0.159 0.581

family.Erysipelotrichaceae 7 6.198 0.401 0.159 0.581

(Continued)
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TABLE 1 Continued

Outcome Exposure N
SNP

Q
statistic

P
heterogeneity

P
intercept

Steiger
pval

order.Erysipelotrichales 7 6.199 0.401 0.159 0.581

genus.Coprococcus 4 2.354 0.502 0.461 0.701
F
rontiers in Immunology
 10
 fro
NSNP refers to the number of SNPs used for analysis; the Q statistic is a statistical measure of heterogeneity, with a higher value indicating a more significant difference between study results.
TABLE 2 Mendelian randomization analyses of the causal effects between serum metabolites and Lymphoid leukaemia.

Outcome Exposure N
snp

Q
statistic

P
heterogeneity

P
intercept

Steiger
pval

Lymphoid leukaemia DHEAS 3 0.502 0.778 0.608 0.125

1-palmitoyl-GPE (16:0) 6 5.474 0.361 0.440 0.058

Beta-hydroxyisovaleroylcarnitine 3 0.494 0.781 0.720 0.007

5alpha-pregnan-3beta,20alpha-diol disulfate 3 2.656 0.265 0.923 0.009

Pregnenediol disulfate (C21H34O8S2) 6 0.853 0.974 0.852 5.69E-16

Androstenediol (3beta,17beta) disulfate 3 0.354 0.838 0.751 3.70E-06

Androstenediol (3alpha, 17alpha) monosulfate 7 9.603 0.142 0.761 1.99E-11

Androstenediol (3beta,17beta) monosulfate 3 1.253 0.535 0.656 0.223

Pregnenolone sulfate 6 1.419 0.922 0.520 0.105

1-stearoyl-2-linoleoyl-GPI (18:0/18:2) 4 0.981 0.806 0.498 0.003

Dihomo-linoleoylcarnitine (C20:2) 4 0.956 0.812 0.576 0.0003

Pregnenetriol disulfate 5 5.574 0.233 0.958 6.04E-19

N-acetylglucosaminylasparagine 5 4.332 0.363 0.282 9.93E-08

Beta-hydroxyisovalerate 4 2.553 0.466 0.471 0.155

1-palmitoyl-2-oleoyl-GPE (16:0/18:1) 6 4.715 0.452 0.997 1.81E-05

N6,n6,n6-trimethyllysine 3 0.305 0.858 0.679 0.121

X-11470 6 3.448 0.631 0.903 0.0005

X-24588 6 8.801 0.117 0.424 0.026

X-25371 4 0.925 0.819 0.506 0.003

Deoxycholic acid glucuronide 3 0.519 0.771 0.795 1.37E-67

Aspartate to N-acetylglucosamine to N-
acetylgalactosamine ratio

3
1.481 0.477 0.438 0.078

Retinol to oleoyl-linoleoyl-glycerol (18:1 to 18:2)
[2] ratio

6
4.529 0.476 0.922 0.088

N-acetylneuraminate to N-acetylglucosamine to
N-acetylgalactosamine ratio

3
2.575 0.276 0.365 0.002

ALL Kynurenine 4 2.843 0.416 0.374 0.063

Behenoyl dihydrosphingomyelin (d18:0/22:0) 4 0.965 0.810 0.435 0.261

1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) 5 1.692 0.792 0.521 8.24E-13

1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6) 4 3.282 0.350 0.825 8.81E-05

1-stearoyl-2-linoleoyl-GPI (18:0/18:2) 4 2.912 0.405 0.595 0.003

1-stearoyl-2-oleoyl-GPI (18:0/18:1) 5 3.076 0.545 0.328 0.017
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TABLE 2 Continued

Outcome Exposure N
snp

Q
statistic

P
heterogeneity

P
intercept

Steiger
pval

1-palmitoyl-2-oleoyl-GPI (16:0/18:1) 4 2.675 0.444 0.548 0.077

Cerotoylcarnitine (C26) 7 2.854 0.827 0.515 0.002

N-acetylglucosaminylasparagine 5 1.391 0.846 0.727 9.89E-08

Beta-hydroxyisovalerate 4 1.055 0.788 0.505 0.155

X-24588 6 6.677 0.246 0.760 0.026

Retinol to oleoyl-linoleoyl-glycerol (18:1 to 18:2)
[2] ratio

6
2.918 0.713 0.650 0.088

CLL Beta-hydroxyisovaleroylcarnitine 3 1.047 0.592 0.925 0.007

5alpha-pregnan-3beta,20alpha-diol disulfate 3 0.225 0.893 0.720 0.009

Pregnenediol disulfate (C21H34O8S2) 6 1.201 0.945 0.584 5.38E-16

Palmitoyl sphingomyelin (d18:1/16:0) 4 0.339 0.953 0.901 0.455

Dihomo-linoleoylcarnitine (C20:2) 4 0.783 0.853 0.985 0.0003

Eicosenoylcarnitine (C20:1) 3 0.480 0.786 0.665 0.278

Gamma-glutamylcitrulline 4 2.926 0.403 0.541 0.420

N6,n6,n6-trimethyllysine 3 1.270 0.530 0.473 0.121

X-11470 6 4.220 0.518 0.401 0.0005

Decadienedioic acid (C10:2-DC) 3 1.074 0.585 0.495 0.101

Carnitine to ergothioneine ratio 3 0.975 0.614 0.574 0.036
F
rontiers in Immunology
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NSNP refers to the number of SNPs used for analysis; the Q statistic is a statistical measure of heterogeneity, with a higher value indicating a more significant difference between study results.
TABLE 3 Mendelian randomization analyses of the causal effects between immune cells and Lymphoid leukaemia.

Outcome Exposure N
snp

Q
statistic

P
heterogeneity

P
intercept

Steiger
pval

Lymphoid leukaemia CD62L- plasmacytoid Dendritic Cell %
Dendritic Cell

3
0.560 0.756 0.591 0.003

Secreting CD4 regulatory T cell %CD4 regulatory
T cell

5
2.831 0.587 0.333 9.98E-05

Activated & resting CD4 regulatory T cell %CD4
regulatory T cell

5
2.864 0.581 0.328 8.77E-05

Monocytic Myeloid-Derived Suppressor Cells
Absolute Count

5
4.375 0.358 0.201 1.44E-05

Basophil %CD33dim HLA DR- CD66b- 3 1.169 0.557 0.548 3.02E-05

HLA DR+ T cell Absolute Count 3 0.401 0.818 0.714 6.52E-05

HLA DR+ T cell%T cell 4 1.703 0.636 0.646 4.93E-07

HLA DR+ CD8+ T cell Absolute Count 3 0.412 0.814 0.691 0.0002

HLA DR+ CD8+ T cell %T cell 3 0.474 0.789 0.711 8.15E-06

CD45RA- CD28- CD8+ T cell %T cell 35 35.780 0.385 0.261 6.31E-06

IgD on IgD+ CD24- B cell 5 3.732 0.444 0.786 3.23E-13

IgD on IgD+ CD38dim B cell 5 3.678 0.451 0.831 1.35E-10

CD16-CD56 on Natural Killer 7 8.651 0.194 0.768 1.47E-31

CD33 on CD14+ monocyte 6 3.364 0.644 0.472 4.58E-72
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TABLE 3 Continued

Outcome Exposure N
snp

Q
statistic

P
heterogeneity

P
intercept

Steiger
pval

CD33 on CD33+ HLA DR+ CD14dim 4 1.181 0.757 0.673 8.49E-69

CD33 on CD33dim HLA DR+ CD11b+ 7 3.493 0.745 0.413 3.90E-73

CD33 on CD33dim HLA DR+ CD11b- 6 1.938 0.858 0.484 3.11E-68

CD33 on Granulocytic Myeloid-Derived
Suppressor Cells

3
1.078 0.583 0.600 7.74E-12

CD33 on CD66b++ myeloid cell 5 1.304 0.861 0.590 4.85E-30

CD33 on Monocytic Myeloid-Derived
Suppressor Cells

3
0.481 0.786 0.761 1.08E-50

CD33 on CD33dim HLA DR- 6 4.425 0.490 0.963 2.83E-47

CD33 on basophil 7 6.477 0.372 0.762 6.46E-51

CD33 on Immature Myeloid-Derived
Suppressor Cells

6
6.067 0.300 0.658 2.72E-46

CD33 on CD33+ HLA DR+ 4 1.193 0.755 0.664 5.41E-71

CD33 on CD33+ HLA DR+ CD14- 4 1.181 0.758 0.661 4.70E-72

FSC-A on plasmacytoid Dendritic Cell 4 2.789 0.425 0.428 0.160

HLA DR on monocyte 5 3.342 0.502 0.545 2.51E-12

SSC-A on plasmacytoid Dendritic Cell 4 2.775 0.428 0.369 0.116

HLA DR on B cell 9 7.519 0.482 0.748 9.72E-15

CD45RA+ CD28- CD8+ T cell Absolute Count 16 21.243 0.129 0.811 0.009

ALL CD62L- plasmacytoid Dendritic Cell %
Dendritic Cell

3
0.994 0.608 0.962 0.003

CD28+ CD45RA+ CD8dim T cell
Absolute Count

8
6.900 0.439 0.542 0.015

CD45RA+ CD28- CD8+ T cell %T cell 60 46.960 0.871 0.163 8.93E-10

CD38 on IgD+ CD38+ B cell 3 2.463 0.292 0.361 0.149

CD38 on IgD+ CD38dim B cell 4 1.398 0.706 0.777 0.009

CD38 on IgD- CD38dim B cell 3 0.367 0.833 0.763 0.032

CD38 on naive-mature B cell 3 0.431 0.806 0.800 0.076

CD38 on transitional B cell 5 2.556 0.635 0.424 0.007

CD3 on Effector Memory CD8+ T cell 3 1.014 0.602 0.876 0.005

FSC-A on Natural Killer 3 2.115 0.347 0.448 0.070

HLA DR on CD14- CD16+ monocyte 5 2.173 0.704 0.528 1.36E-07

CD80 on granulocyte 3 1.130 0.568 0.519 0.096

CLL Switched memory B cell %lymphocyte 3 2.369 0.306 0.395 0.314

HLA DR+ T cell Absolute Count 3 1.107 0.575 0.486 6.54E-05

HLA DR+ T cell%T cell 4 3.371 0.338 0.505 4.98E-07

HLA DR+ CD8+ T cell Absolute Count 3 1.287 0.525 0.462 0.0002

HLA DR+ CD8+ T cell %T cell 3 0.349 0.840 0.674 8.14E-06

CD45RA- CD28- CD8+ T cell %CD8+ T cell 10 11.319 0.254 0.561 0.009

BAFF-R on IgD+ CD38- naive B cell 7 2.600 0.857 0.507 2.27E-63
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(Mediated proportion = -9.72%[-17.8%,-1.65%]), Androstenediol

(3beta,17beta) disulfate (Mediated proportion = -14.6% [-26.9%,-

2.27%]), and lymphoid leukaemia. CD33 on CD33dim HLA DR+

CD11b+ mediated the causal relationship between DHEAS (Mediated

proportion = -8.22%[-16.4%,-0.035%]), Androstenediol (3beta,17beta)

monosulfate (Mediated proportion = -11%[-21.9%,-0.219%]),

Aspartate to N-acetylglucosamine to N-acetylgalactosamine ratio

(Mediated proportion = -13.5%[-25.4%,-1.68%]), and lymphoid

leukaemia. CD33 on Gr MDSC mediated the causal relationship

between DHEAS (Mediated proportion = -9.56%[-16%,-3.16%]),

Androstenediol (3beta,17beta) monosulfate (Mediated proportion =

-12.3%[-20.7%, -3.83%]), and lymphoid leukaemia. CD33 on CD66b+

+ myeloid cell mediated the causal relationship between DHEAS

(Mediated proportion = -7.86%[-15.1%,-0.631%]), Androstenediol

(3beta,17beta) monosulfate (Mediated proportion = -11.8%[-21.3%,

-2.25%]), Aspartate to N-acetylglucosamine to N-acetylgalactosamine

ratio (Mediated proportion = -12%[-22.5%,-1.55%]), and lymphoid

leukaemia. CD33 on Mo MDSC mediated the causal relationship

between DHEAS (Mediated proportion = -9.67%[-19.4%,0.025%]),

Pregnenolone sulfate (Mediated proportion = -9.2%[-17.4%,-

0.965%]), and lymphoid leukaemia. CD33 on CD33dim HLA DR-

mediated the causal relationship between Retinol to oleoyl-linoleoyl-

glycerol (18:1 to 18:2) [2] ratio and lymphoid leukaemia (Mediated

proportion = -13%[-23.5%, -2.55%]). CD33 on Im MDSC mediated

the causal relationship between Retinol to oleoyl-linoleoyl-glycerol

(18:1 to 18:2) [2] ratio and lymphoid leukaemia (Mediated

proportion = -13.1% [-23.1%,-3.09%]). HLA DR on monocyte

mediated the causal relationship between Androstenediol (3alpha,

17alpha) monosulfate (Mediated proportion = 5.43%[10.7%,

0.176%]), Pregnenetriol disulfate (Mediated proportion = 8.42%

[16.7%,0.192%]), and lymphoid leukaemia. HLA DR on B cell

mediated the causal relationship between Dihomo-linoleoylcarnitine

(C20:2) (Mediated proportion = 9.12% [1.87%, 16.4%]), 1-palmitoyl-2-

oleoyl-GPE (16:0/18:1) (Mediated proportion = -6.38%[-12.3%,-

0.405%]), and lymphoid leukaemia.We further discovered the

presence of various steroid hormone metabolites (such as DHEAS,

progestogen derivatives, and androstenediol-related compounds) as

potential intermediary metabolites between lymphatic leukaemia and

immune cells. In ALL, CD62L- plasmacytoid DC %DC mediated the

causal relationship between 1-palmitoyl-2-docosahexaenoyl-GPE

(16:0/22:6) and ALL (Mediated proportion = -2.84%[-0.456%,-

5.23%]). In CLL, HLA DR+ CD8br AC mediated the causal
Frontiers in Immunology 13
relationship between N6,n6,n6-trimethyllysine and CLL (Mediated

proportion = 4.07%[7.53%,0.615%]) (Figures 5, 6, Table 4 and

Supplementary Figure 6).
4 Discussion

In this study, we utilized large-scale GWAS summary data to

perform comprehensive bidirectional two-sample MR and mediation

analyses. These analyses investigated the causal relationships between

gut microbiota, immune cells, serum metabolites, and lymphoid

leukaemia, such as ALL and CLL.Two-step MR analysis is a method

that enhances causal inference by using two independent genetic

instrumental variables to verify the causal relationships between gut

microbiota, immune cells, serum metabolites, and diseases. This can

enhance the reliability of causal inference, improve the robustness of

the analysis, reduce the risk of bias, and allow for the detection of

multiple causal relationships. This method enables us to more precisely

identify and validate the role of gut microbiota, immune cells, and

serum metabolites in the development of diseases, thereby providing

stronger evidence for support.Additionally, we aimed to delineate the

mediating role of serum metabolites in the interaction between

immune cells and lymphoid leukaemia.

Analysis of the causal relationship between gut microbiota and

lymphocytic leukemia (ALL and CLL) revealed the presence of

Firmicutes and Bacteroidetes phyla in all three diseases. Studies

indicate that leukemia patients exhibit oral microbiota dysbiosis, with

changes in the abundance of Firmicutes and Bacilli associated with

leukemia status, specifically showing a significant 0.1% increase in

Firmicutes. Oral microbial dysbiosis is also observed in ALL patients

(33, 34). The gut microbiota of children with ALL shows greater inter-

individual variability and is enriched with bacteria belonging to the

Bacteroidetes phylum and Bacteroides genus (35). In children receiving

treatment for newly diagnosed ALL, the relative abundance of certain

bacterial groups (e.g., Bacteroidetes) significantly decreased post-

chemotherapy, while others (e.g., Clostridiaceae and Streptococcaceae)

increased. A baseline gut microbiota characterized by Proteobacteria

predicts febrile neutropenia (36).

Analysis of the causal relationship between serum metabolites and

lymphocytic leukemia (ALL and CLL) revealed common metabolic

pathways, including glycerophospholipid metabolism (e.g., 1-

palmitoyl-2-docosahexaenoyl-GPE, 1-stearoyl-2-docosahexaenoyl-
TABLE 3 Continued

Outcome Exposure N
snp

Q
statistic

P
heterogeneity

P
intercept

Steiger
pval

CD25 on IgD+ CD38+ B cell 3 1.765 0.414 0.613 0.087

IgD on IgD+ CD38+ B cell 4 0.696 0.874 0.581 9.25E-17

IgD on transitional B cell 4 3.072 0.381 0.672 3.56E-08

CD16-CD56 on Natural Killer 7 9.097 0.168 0.387 1.48E-31

FSC-A on plasmacytoid Dendritic Cell 4 2.359 0.501 0.270 0.160

SSC-A on plasmacytoid Dendritic Cell 4 0.784 0.853 0.713 0.116
fro
NSNP refers to the number of SNPs used for analysis; the Q statistic is a statistical measure of heterogeneity, with a higher value indicating a more significant difference between study results.
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GPE), suggesting a central role for lipid signaling and cell membrane

composition in lymphocytic leukemia. Sphingolipid metabolism (e.g.,

palmitoyl sphingomyelin) also plays a critical role in cell signaling and

cell fate. Additionally, steroid hormone metabolism, involving
Frontiers in Immunology 14
pregnane metabolites and DHEAS, is crucial for regulating immune

responses and hormone levels, potentially affecting leukemia cell

survival. Energy and amino acid metabolism are also significant, with

carnitine derivatives (e.g.,b-hydroxyisovaleroylcarnitine and
FIGURE 5

Serum metabolites as intermediates in causal effects of ALL and CLL on Immune Cells.
FIGURE 6

Mendelian randomization analysis shows the causal effects of serum metabolites on immune cells and lymphoid leukaemia,ALL,CLL.This figure
illustrates the mediation model of “immune cells—serum metabolites—lymphoid leukaemia” in a two-step Mendelian randomization. Red and green
characters represent positive (b>0) and negative (b<0) associations, respectively.
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TABLE 4 Two-step Mendelian randomization analyses of the causal effects between immune cells, serum metabolites and Lymphoid leukaemia.

Immune Cell Metabolite Outcome
Mediated
Effect

Mediated
Proportion

Pval

CD62L- plasmacytoid DC %DC

1-palmitoyl-GPE (16:0)

Lymphoid
leukaemia

0.020
(0.009, 0.031)

-8.35%
(-3.65%, -13.1%)

0.0005

X-25371
-0.016

(-0.027, -0.004)
6.47%

(11.4%, 1.49%)
0.011

HLA DR+ T cell%T cell

1-palmitoyl-GPE (16:0)
0.008

(0.0009, 0.016)
-5.12%

(-0.532%, -9.7%)
0.029

Androstenediol (3alpha,
17alpha) monosulfate

-0.004
(-0.009, -0.0003)

2.75%
(5.34%, 0.156%)

0.038

1-stearoyl-2-linoleoyl-GPI (18:0/18:2)
-0.007
(-0.013,

-9.85e-05)

4.05%
(8.03%, 0.061%)

0.047

Aspartate to N-acetylglucosamine to N-
acetylgalactosamine ratio

0.012
(0.002, 0.022)

-7.52%
(-1.46%, -13.6%)

0.015

HLA DR+ CD8br AC

N6,n6,n6-trimethyllysine
-0.012

(-0.022, -0.002)
5.39%

(9.96%, 0.807%)
0.021

Aspartate to N-acetylglucosamine to N-
acetylgalactosamine ratio

0.013
(0.002, 0.024)

-5.69%
(-0.737%, -10.7%)

0.024

HLA DR+ CD8br %T cell

X-24588
-0.014

(-0.025, -0.003)
6.71%

(12.2%, 1.24%)
0.016

X-25371
0.009

(0.0009, 0.017)
-4.36%

(-0.429%, -8.3%)
0.030

CD45RA- CD28- CD8br %T cell 1-stearoyl-2-linoleoyl-GPI (18:0/18:2)
-0.0002
(-0.0003,-
1.74e-05)

-8.31%
(-15.7%, -0.872%)

0.029

CD45RA+ CD28- CD8br AC Deoxycholic acid glucuronide
-2.71e-06
(-4.93e-06,
-4.85e-07)

-0.271%
(-0.493%, -0.049%)

0.017

IgD on IgD+ CD24- 1-palmitoyl-GPE (16:0)
0.015

(0.001, 0.028)
-13%

(-1.24%, -24.7%)
0.030

CD33 on CD14+ monocyte

DHEAS
-0.007

(-0.013, -0.001)
-9.72%

(-17.8%, -1.65%)
0.018

Androstenediol (3beta,17beta) disulfate
-0.011

(-0.020, -0.002)
-14.6%

(-26.9%, -2.27%)
0.020

CD33 on CD33dim HLA DR+ CD11b+

DHEAS
-0.006
(-0.012,

-2.47e-05)

-8.22%
(-16.4%, -0.035%)

0.049

Androstenediol (3beta,17beta) monosulfate
-0.008

(-0.016, -0.0002)
-11%

(-21.9%, -0.219%)
0.046

Aspartate to N-acetylglucosamine to N-
acetylgalactosamine ratio

-0.010
(-0.018, -0.001)

-13.5%
(-25.4%, -1.68%)

0.025

CD33 on Gr MDSC

DHEAS
-0.010

(-0.016, -0.003)
-9.56%

(-16%, -3.16%)
0.003

Androstenediol (3beta,17beta) monosulfate
-0.013

(-0.021, -0.004)
-12.3%

(-20.7%, -3.83%)
0.004

CD33 on CD66b++ myeloid cell

DHEAS
-0.007

(-0.013, -0.0005)
-7.86%

(-15.1%, -0.631%)
0.033

Androstenediol (3beta,17beta) monosulfate
-0.010

(-0.018, -0.002)
-11.8%

(-21.3%, -2.25%)
0.015

Aspartate to N-acetylglucosamine to N-
acetylgalactosamine ratio

-0.010
(-0.019, -0.001)

-12%
(-22.5%, -1.55%)

0.024

(Continued)
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eicosenoylcarnitine) involved in fatty acid transport and oxidation,

influencing energy balance and cell survival.Increasing evidence

suggests that adipocytes play an active role in the cancer

microenvironment, and studying lipid and metabolic profiles is

increasingly recognized as valuable for understanding tumorigenesis

and progression. In the presence of ALL cells, adipocytes release free

fatty acids (FFAs), which ALL cells absorb and incorporate into

triglycerides and phospholipids. Some of these lipids are stored in

lipid droplets, which can be utilized under energy-deprived conditions.

Adipocytes preferentially release monounsaturated FFAs, which can be

attenuated by inhibiting the desaturase enzyme stearoyl-CoA

desaturase-1 (SCD1) (37). Studies have identified new potential

metabolic biomarkers for the TAL/LMO subgroup and provided a

sub-classification of T-ALL cell lines within the same subgroup using

LC/MS (38). We also discovered ALL-specific vitamin metabolism,

such as the retinol to oleoyl-linoleoyl-glycerol ratio, which may reflect

unique cell differentiation mechanisms in ALL. Research indicates that,

compared to vitamin A-sufficient mice, regulatory T cells appear more

frequently in the CD4+ splenocytes of vitamin A-deficient mice.

Treatment of leukemia cells with vitamin A (all-trans retinoic acid,

ATRA) increases apoptosis, decreases S-phase cells, and increases G0/

G1 phase cells. ATRA signals through the retinoid X receptor, reducing

the viability of BCR-ABL leukemia cells.In CLL, unique small molecule

metabolites such as N-acetyltaurine and gamma-glutamylcitrulline

have been identified, which may be more significantly associated

with oxidative stress and amino acid regulation. Studies have found

that TP53 mutations in CLL lead to changes in amino acids, inhibiting

leukemia cell apoptosis (39). The proliferation of primary CLL cells

depends on the availability of extracellular arginine, with cationic
Frontiers in Immunology 16
amino acid transporter 1 (CAT-1) as the only arginine input protein

expressed in CLL cells. Lentivirus-mediated downregulation of the

CAT-1 transporter protein in HG3 CLL cells significantly reduces

arginine uptake, eliminates cell proliferation, and impairs cell

viability (40).

Through analyzing the causal relationship between immune cells

and lymphoid leukemia, including ALL and CLL, commonalities with

the following types of immune cells were identified. Among them, the

CD8+ T cell subpopulation might be related to its cytotoxic function

and potential to counteract tumor cells (41). Dendritic cells play a

central role in initiating and regulating immune responses and might

be crucial in combating viral infections and lymphoid leukemia tumor

cells. In lymphoid leukemia, regulatory T cells were found to directly

interact with other immune cells by secreting immunosuppressive

factors, helping to maintain immune tolerance and prevent

autoimmune reactions (42). Myeloid-derived suppressor cells

(MDSCs) might promote immune evasion by inhibiting the function

of T cells and NK cells, aiding tumor cells in lymphoid leukemia to

escape immune surveillance (43). Various T cells and related

subpopulations, monocytes and myeloid cells, B cells, natural killer

cells, and basophils were found to be associated with lymphoid

leukemia. The expression of CD33 and HLA-DR reflects the

activation state and function of cells, playing a significant role in

immune regulation (22). In ALL, causal relationships with various B

cells were discovered, with CD38 being a marker of maturity and

activation state. Different levels of CD38 expression help distinguish the

developmental stages and functional states of B cells (44). Naive B cells

expressing BAFF-R are specifically mentioned in CLL and might be

related to abnormalities in the survival and maturation processes of B
TABLE 4 Continued

Immune Cell Metabolite Outcome
Mediated
Effect

Mediated
Proportion

Pval

CD33 on Mo MDSC

DHEAS
-0.007
(-0.014,
1.87e-05)

-9.67%
(-19.4%, 0.025%)

0.050

Pregnenolone sulfate
-0.007

(-0.013, -0.0007)
-9.2%

(-17.4%, -0.965%)
0.029

CD33 on CD33dim HLA DR-
Retinol to oleoyl-linoleoyl-glycerol (18:1 to
18:2) [2] ratio

-0.010
(-0.018, -0.002)

-13%
(-23.5%, -2.55%)

0.015

CD33 on Im MDSC
Retinol to oleoyl-linoleoyl-glycerol (18:1 to
18:2) [2] ratio

-0.011
(-0.019, -0.0025)

-13.1%
(-23.1%, -3.09%)

0.010

HLA DR on monocyte

Androstenediol (3alpha,
17alpha) monosulfate

-0.005
(-0.011, -0.0002)

5.43%
(10.7%, 0.176%)

0.043

Pregnenetriol disulfate
-0.008

(-0.016, -0.0002)
8.42%

(16.7%, 0.192%)
0.045

HLA DR on B cell

Dihomo-linoleoylcarnitine (C20:2)
0.009

(0.002, 0.016)
9.12%

(1.87%, 16.4%)
0.014

1-palmitoyl-2-oleoyl-GPE (16:0/18:1)
-0.006

(-0.012, -0.0004)
-6.38%

(-12.3%, -0.405%)
0.036

CD62L- plasmacytoid DC %DC
1-palmitoyl-2-docosahexaenoyl-GPE
(16:0/22:6)

ALL
0.021

(0.003, 0.038)
-2.84%

(-0.456%, -5.23%)
0.020

HLA DR+ CD8br AC N6,n6,n6-trimethyllysine CLL
-0.015

(-0.028,-0.002)
4.07%

(7.53%, 0.615%)
0.021
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cells in CLL (45). CD127-expressing CD4+ T cells are mentioned in

CLL, potentially associated with long-term immune surveillance and

chronic inflammatory states (46).

Our mediation analysis provided genetic evidence indicating that

different serum metabolites mediate the effects of immune cells on

lymphoid leukemia.A mediation Mendelian analysis conducted in

lymphoid leukemia revealed that DHEAS influences the expression

of CD33 on various immune cells, which may be related to the

pathogenesis of lymphoid leukemia. These cells include CD14+

monocytes, CD33dim HLA DR+ CD11b+, Gr MDSC, CD66b++

myeloid cells, and Mo MDSC. DHEAS is a steroid hormone derived

from the adrenal gland that can affect the differentiation, maturation,

and release of various cytokines by immune cells, thereby influencing

the overall immune response, the tumor microenvironment, and the

immune evasion of tumor cells (47). CD33 is a marker expressed on

various myeloid cells and is typically associated with the maturity and

activation state of the cells (48). DHEAS may indirectly affect the

transcription of the CD33 gene by regulating the activity of related

transcription factors. DHEAS can influence the inflammatory response

by modulating the production of inflammatory factors such as TNF-a
and IL-6, thereby impacting the progression of leukemia (49).

Additionally, DHEAS may regulate the expression of CD33 and

other immune regulatory factors through epigenetic mechanisms. By

altering the state of DNA methylation or histone modifications,

DHEAS may indirectly regulate the expression of multiple immune-

related genes (50).

In ALL, we found that 1-palmitoyl-2-docosahexaenoyl-GPE

(16:0/22:6) mediates the relationship between CD62L-

plasmacytoid DC %DC and ALL.1-palmitoyl-2-docosahexaenoyl-

GPE is a glycerophospholipid that contains the long-chain

polyunsaturated fatty acid docosahexaenoic acid (DHA). DHA is

known to alter cell membrane fluidity and structure, which may

affect the arrangement and function of cell surface receptors,

including those involved in immune recognition and cell

signaling (51). Study found that fatty acid metabolites can be

present in immune cells and participate in signal transduction in

leukemia cells (52). Plasmacytoid DCs are important producers of

interferons, especially in antiviral immune responses. Changes in

lipid molecules can regulate the activation state of transcription

factors such as NF-kB. DHA and other polyunsaturated fatty acids

have also been shown to regulate intracellular signaling pathways

such as PI3K/AKT and MAPK, thereby influencing the production

of interferons and other cytokines (53). This, in turn, may alter the

immune system’s ability to monitor and eliminate ALL.

In CLL, it was found that N6,n6,n6-trimethyllysine mediates the

relationship between HLA DR+ CD8br AC and CLL. N6,n6,n6-

trimethyllysine is a methylation modification occurring on lysine

residues. This modification can affect the three-dimensional

structure, stability, interactions with other proteins, or cellular

localization of proteins (54). In immune cells, such modifications

may influence the function of key signaling molecules, such as those

involved in T cell receptor (TCR) complex signaling, thereby affecting

the activation, proliferation, and cytotoxic function of CD8+ T

cells.Methylated lysine can alter the function of proteins such as

histones, thereby affecting gene expression. In CD8+ T cells, this may

lead to changes in cell phenotype, such as increased expression of
Frontiers in Immunology 17
HLA DR (55). The expression of HLA DR is typically associated with

the activation state of cells; its expression in CD8+ T cells may

indicate a highly activated state, which could be significant in

combating CLL cells. HLA DR+ CD8+ T cells, due to their role in

immune responses, particularly in presenting tumor antigens and

activating cytotoxic responses, may have a crucial impact on the

progression of CLL (56). N6,n6,n6-trimethyllysine, by influencing the

phenotype and function of these cells, may enhance or alter their

ability to recognize and eliminate CLL cells (57).

This study presents several innovative aspects. First, to our

knowledge, it is the first to combine metabolomics and genomics to

implement MR analysis, addressing the causal relationships between

serum metabolites, immune cells, and lymphoid leukaemia. It

examines the influence of serum metabolites on immune cells and

lymphoid leukaemia, holding significant clinical research value and

offering new avenues for developing targeted therapies.The study

employs Mendelian Randomization to investigate the causal

relationship between gut microbiota as an exposure factor and

lymphoid leukaemia, aiming to elucidate changes in the gut

microbiome of patients with ALL and CLL. This provides a

foundation for further research on the role of the gut microbiome

in lymphoid leukaemia. Moreover, this work examines the effects of

serum metabolites on immune cells. The study employs multiple MR

models and establishes strict quality control conditions, ensuring

reliable and robust results.Finally, the study encompasses a vast array

of exposure factors—1400 serum metabolites, 731 immune cells, and

418 gut microbes. The integration of bidirectional two-sample

Mendelian analysis and mediation analysis adds complexity,

presenting significant analytical challenges.

However, this study has several limitations. Although we utilized

comprehensive serum metabolomics data from Canada, the range of

metabolites studied was not exhaustive. Future GWAS should include a

broader spectrum of metabolites to identify additional causal

compounds. Furthermore, the availability of classification data for

lymphoid leukaemia is limited, and GWAS summary data reflect

lifetime genetic exposure, indicating a need for further clinical and

animal studies to determine whether the causal inferences from MR

analysis represent short-term effects.Additionally, our study population

is predominantly of European descent, and genetic variations may

differ significantly across global populations, leading to potential bias

due to population stratification. This variability necessitates cautious

interpretation of our results’ generalizability to other racial and ethnic

groups. Future research should include more diverse populations to

enhance the applicability of the findings.Lastly, Mendelian

Randomization assumes a linear relationship between exposure and

outcome, which may not capture the true complexity of these

interactions, potentially involving nonlinear dynamics and

interactions with other environmental and genetic factors (58).

Therefore, it is crucial to thoroughly consider the potential nonlinear

and interactive effects between exposure and outcome.
5 Conclusion

This study represents the first comprehensive evaluation of the

causal relationships between gut microbiota, serum metabolites,
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immune cells, and lymphoid leukaemia, including ALL and CLL. Our

findings underscore the importance of elucidating the underlying

mechanisms linking immune cells and lymphoid leukaemia,including

ALL and CLL. These results offer new insights into treating lymphoid

leukaemia via the microbiota, as well as through immune cell-based

therapies and metabolite-targeted interventions.
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