
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Lei Cai,
Chongqing General Hospital, China

REVIEWED BY

S. Peter Goedegebuure,
Washington University in St. Louis,
United States
Mingjian Zhao,
Dalian Medical University, China

*CORRESPONDENCE

Tao Wei

surgeonwei5776@126.com

†These authors have contributed equally to
this work

RECEIVED 25 May 2024
ACCEPTED 14 August 2024

PUBLISHED 03 September 2024

CITATION

Zheng X, Sun R and Wei T (2024) Immune
microenvironment in papillary thyroid
carcinoma: roles of immune cells and
checkpoints in disease progression and
therapeutic implications.
Front. Immunol. 15:1438235.
doi: 10.3389/fimmu.2024.1438235

COPYRIGHT

© 2024 Zheng, Sun and Wei. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 03 September 2024

DOI 10.3389/fimmu.2024.1438235
Immune microenvironment in
papillary thyroid carcinoma:
roles of immune cells and
checkpoints in disease
progression and
therapeutic implications
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1Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University,
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Papillary thyroid cancer (PTC) is the most common type of primary thyroid

cancer. Despite the low malignancy and relatively good prognosis, some PTC

cases are highly aggressive and even develop refractory cancer in the thyroid.

Growing evidence suggested that microenvironment in tumor affected PTC

biological behavior due to different immune states. Different interconnected

components in the immune system influence and participate in tumor invasion,

and are closely related to PTCmetastasis. Immune cells andmolecules are widely

distributed in PTC tissues. Their quantity and proportion vary with the host’s

immune status, which suggests that immunotherapy may be a very promising

therapeutic modality for PTC. In this paper, we review the role of immune cells

and immune checkpoints in PTC immune microenvironment based on the

characteristics of the PTC tumor microenvironment.
KEYWORDS
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1 Introduction

Thyroid cancer (TC) represents a prevalent malignancy within the endocrine system,

demonstrating a higher incidence in women compared to men and predominantly affecting

individuals aged 40 to 50 (1, 2). The biological properties of various thyroid cancer subtypes

span a broad spectrum. Based on their histological characteristics and cellular origins,

thyroid cancers are classified into papillary, medullary, and follicular carcinomas (3).

Papillary thyroid carcinoma (PTC) is a differentiated cancer subtype in the thyroid,
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constituting most form of primary thyroid malignancy (4). Over

recent decades, the incidence of PTC has exhibited an increasing

trend and a shift towards younger age groups (5, 6). For PTC, the

current traditional therapies include surgical resection,

radiotherapy, chemotherapy, endocrine inhibition and other

therapeutic means, but the efficacy of various treatment methods

has different degrees of limitations (7, 8). Despite their slow tumor

growth, low malignancy, and overall favorable prognosis, over 10%

of patients had tumor recurrence or metastasized to other sites after

surgery (9). Some cases appear highly aggressive and may even

progress to refractory thyroid cancer (10). Immune cell infiltration

is frequently observed in the vicinity or within primary PTC tissue.

The prognosis of PTC might be associated with the surrounding

inflammatory response (11). Increasing evidence suggests that the

immune microenvironment influences tumor biological behavior.
2 Immune cells In PTC
tumor microenvironment

In 2002, Dunn proposed the immune editing hypothesis, which

categorized the reciprocity between the tumors and immune system

into “elimination”, “equilibrium”, and “escape”. The “elimination”

phase, also called “surveillance”, involves the immune system clearing

tumor cells before diagnosis. During the “equilibrium” phase, Tumor

cells vary in the direction of low immunogenicity, which makes

themselves not easily detected by the body’s immune surveillance

mechanism (12). Studies (13, 14) have shown that tumor cells can

“camouflage” themselves by reducing MHC I expression, thus

evading immune system surveillance. Another study (15) analyzed

the influence of the immune environment on the clinical

manifestations of patients and found that immune cells in PTC

patients’ thyroids differed from healthy ones. Specifically, the

proportions of B cells, T cells (mainly CD8+ T cells) and M1

macrophages showed obvious reduction. The larger the difference

between these immune cells and healthy thyroid tissue, the greater the

likelihood of PTC progression and recurrence, and the lower the

patients’ overall survival rate.

The tumor microenvironment (TME) contains tumor cells and

their living environment (including immune cells, stromal cells and

blood vessels), which cooperate with each other (16). Each

component in TME plays a crucial role in tumor initiation and

progression. Their quantity as well as proportion vary with the host’s

immune status (17). In most cancers, a high proportion of M2/M1

macrophages is strongly associated with poor clinical prognosis (18).

In thyroid cancer, tumor-related macrophages (Tumor-associated

macrophages, TAMs) are dominated by M2 polarized macrophages,

providing a good tumor microenvironment for tumor growth,

survival and angiogenesis. Experimental results of various tumors,

including thyroid cancer, show that high-density TAMs are

associated with poor prognosis of tumors (19, 20). At present,

many cytokines, chemokines and their signaling pathways also

have been found in PTC. For example, activation of IL-6/JAK2/

STAT3 pathway could promote PTC cell proliferation and migration,

and IL-34 promotes PTC cell proliferation (21), epithelial-stromal
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transition and extracellular regulatory kinase signaling pathway and

inhibits apoptosis (22). In PTC tumor microenvironment,

overexpression of IL-6 promotes the growth of PTC (23). The

infiltration of plasma cells in the DTC microenvironment was

positively correlated with a favorable prognosis (24). Immature

Dendritic cells in the PTC microenvironment can secrete

immunosuppressive cytokines, such as IL-10 and TGF- b, so as to

inhibit the immune response and result in the development of PTC,

while CD8+ T cells recognize tumor cells to express antigen and thus

participate in the killing of tumor cells, exhibiting protective effects on

PTC (25, 26).

Xie Z et al. (27) investigated immune-related cells in TME,

focusing on the relationship between PTC and chronic

inflammation. The study included 799 PTC patients and 194

healthy ones. It was found that compared with normal thyroids,

the overall immune level of PTC tissues was stronger, and many

cells in TME such as Tregs and M0 macrophages were elevated.

Furthermore, the more advanced the tumor, the greater the

proportion and abundance above normal levels. Higher immune

group had a later stage than the lower one, with a larger tumor size,

increased metastasis of lymph node, and a higher frequency of

BRAF mutations. This suggests that changes in immune status

within the TME are closely related to tumor progression, and that

various immune cells can either promote or inhibit PTC metastasis

and recurrence to different extents.
2.1 Natural killer cells

NK cells are essential components of inherent immunity that

express various regulatory receptors associated with activation or

inhibition. These receptors facilitate the distinction between “self”

and “non-self,” enabling them to selectively “eliminate” (28). NK cell

infiltration in tumors is often linked to the initiation or progression of

cancer of early and metastatic stages of tumor development, and is

generally predictive of a favorable prognosis (29).

In PTC, NK cells in TME are elevated in comparison to normal

thyroid tissue, but not in peripheral blood (30). The abundance of

NK cells in TME is significantly negatively associated with tumor

progression. NK cells are able to kill cancer cells directly, and also

responsible for the immune surveillance (31, 32). They may provide

new ideas for PTC diagnosis and therapy. However, their efficacy is

somewhat limited during the anti-tumor process due to the

secretion of immunosuppressive factors by tumor cells, which

reduce the activation receptors on NK cells while upregulating

inhibitory receptors, making NK cell activation difficult. Tumor

cells can also evade immune surveillance by reducing MHC I

molecule expression, which blocks tumor antigen presentation

(33). Additionally, the number and functionality of NK cells in

the TME typically decline with tumor progression (34), and NK

cells may be rendered dysfunctional due to metabolic disorders

(35). These limitations of NK cells within the TME should be

considered when utilizing them for PTC diagnosis, staging,

and treatment.
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2.2 T lymphocytes

T lymphocytes can be classified into helper T cells (Th),

cytotoxic T cells (CTL), and regulatory T cells (Treg) according

to their various functions. They mature from lymphoid progenitor

cells in the thymus and are central to cellular immunity. CD4 is

expressed in all Th cells. Naive CD4+T cells, known as Th0 cells,

can differentiate into Th1, Th2, and Th17 lineages that have distinct

immune roles through antigen stimulation and cytokine regulation.

Th1 cells enhance and amplify cellular responses by secreting

regulatory molecule, including interleukin (IL)-2 and IFN-g, and
induce other immune cells to exhibit antitumor activity (36). In

contrast, Th2 cells inhibit the antitumor effects of cellular immunity

by secreting IL-4 and suppressing NK cell activation (37). The Th1/

Th2 ratio serves as a useful indicator of dynamic changes in the

antitumor immune process. Moreover, Th17 levels in PTC tissue

samples are higher than in healthy thyroid tissue, with this

difference also observed in patients’ peripheral blood. More Th17

in peripheral blood tend to predict larger tumor volume (38).

The primary function of CTLs is to specifically recognize

endogenous antigen peptide-MHC I molecular complexes and

subsequently kill tumor cells. This has become an essential

marker for evaluating tumor prognosis (39–41). PTC patients

with a higher expression of CD8+ CTLs show lower tumor stages

and higher survival rates, while the reduction of CD8+ T cells

weakens the immune system’s ability to eliminate tumor cells,

making tumors more aggressive (42). In the study by Modi J et al

(43). PTC patients with CD8+ T cell infiltration experienced slower

tumor progression, reduced tumor growth, and fewer recurrences.

Tregs, commonly referred to as CD4+CD25+Foxp3+ T cells,

primarily weaken immune level through direct contact to target cells

and cytokine secretion. High Tregs expression in cancer tissue is

typically related to poor prognosis. Tregs are highly aggregated in

the tumor site and peripheral blood of cancer patients (44, 45), and

their inhibitory effect on the immune function of cancer patients is

stronger than in healthy individuals (46). Tregs in PTC patients’

peripheral blood are significantly increased compared to normal

thyroid tissue and thyroid adenoma patients (47, 48). In the TME,

Tregs can weaken the body’s immune response to tumors through

various mechanisms, including affecting cytokine secretion (49, 50),

increasing cAMP-mediated immunosuppression via adenosine and

prostaglandin (51, 52), regulating signal transduction through

receptor-ligand binding (53, 54), and mediating immunosuppression

through the exosome pathway (55). French JD et al. (42) using

immunohistochemical analysis, quantitatively counted lymphocytes

in the TME of PTC tissues, and found that T cells in the PTC tissues

of patients were mainly composed of CD4 + T cells. The quantity

of Foxp3+ regulatory T cells was related to lymph node metastasis

(r = 0.858; P = 0.002), and the ratio of CD8 to Treg was strongly

negatively associated with tumor size.

In the future, the frequency of Treg cells in TME is likely to

become an important factor in predicting, diagnosing, and

evaluating the prognosis of PTC. Furthermore, the suppressive

effect of Treg cells should be taken into account when designing

immunotherapy for PTC. Overall, a better understanding of the
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TME is significant for the exploration of more effective diagnostic

and therapeutic strategies for PTC and other cancers.
2.3 Mast cells

Mast cells are tissue-resident component ubiquitously distributed

across nearly all tissues. Their regulatory role in the tumor

microenvironment (TME) is often multifaceted, exhibiting both

pro-tumorigenic and anti-tumorigenic effects (56). The tumor-

promoting effects primarily involve the secretion of vascular

endothelial growth factors (VEGF) to promote neovascularization,

the secretion ofmatrix metalloproteinases (MMPs) to enhance cancer

progression, and the release of regulatory molecules to facilitate

immune tolerance. Conversely, their anticancer effects include

direct inhibition of tumor growth, immune stimulation, and

reduction of cell motility (57). Mast cells situated within or

surrounding tumors may exhibit different roles. While mast cells

generally play a pro-carcinogenic role in most tumors (58, 59), their

contributions to cancer progression can vary depending on which

stage the tumors are at and where they are in tumor tissue (60).

Limited studies (61) have assessed the correlation between mast

cells and PTC. One study reported that mast cell accumulation was

observed in 95% of PTC samples, with the density positively

correlated with cancer aggressiveness. Other studies demonstrated

that mast cell derivatives, such as histamine and chemokines,

accelerated the progression of PTC as well as distant metastasis in

vitro. But this phenomenon will be exactly the opposite when

inhibitors of mast cells are applied (62), potentially providing

novel therapeutic strategies for PTC treatment.
2.4 Tumor-associated macrophages

Tumor-associated macrophages (TAMs) are the most abundant

in the tumor microenvironment (TME). They can differentiate into

two subpopulations that exert opposing effects on the host’s

immune response to tumors. M1 macrophages predominantly

suppress tumor growth and angiogenesis by producing cytokines

like IL-1. In contrast, M2 macrophages generate IL-13, IL-10, and

other factors that foster tumor development and enhance the

invasive capabilities of tumor cells (63). Within the TME, cancer

cells secrete signaling factors, mediated by exosomes, that induce

mononuclear macrophages to differentiate into the M2 subtype

(64), resulting in an imbalance between M1 and M2 populations

and ultimately promoting cancer progression (65).

Elevated TAM in PTC is closely related with biological behavior

of the tumors (66). Studies (67, 68) have revealed the macrophage

infiltration rate in PTC is significantly higher than that in benign

tumors, with the extent of infiltration positively correlating with

lymph node metastasis. The underlying mechanism remains

incompletely understood; however, it may involve TAMs

promoting tumor cells of PTC metastasis through the cytokine

CXCL8 and its paracrine interaction with CXCR1/2 (69).
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Consequently, a comprehensive understanding of the functional

differences between distinct TAM subtypes in the thyroid gland

may potentially establish TAMs as new idea for thyroid

tumor therapy.
2.5 Dendritic cells

Dendritic cells (DCs) are the most functionally specialized

APCs in immune system. They serve as initiators of the adaptive

immune response and act as a “bridge” connecting innate and

adaptive immunity.

Normally, DCs are scarcely present in thyroid tissue. However,

their prevalence increases in human papillary thyroid carcinoma

(PTC) tissue (70). Immature DCs possess robust antigen-processing

capabilities but are less effective in promoting immune responses.

Interestingly, they may even weaken immune responses by secreting

inhibitory cytokines including IL-10 and TGF-b (71).

Moreover, Tregs and DCs can interact and collaboratively

involve in immune regulation in TME. In PTC tissues, Tregs can

inhibit DC function, co-stimulatory ligands expression, CD8+ T

cells activation (72). DCs are able to restore their function by

blocking PD-1 pathways, IL-10 secretion, and production of lactic

acid (73). Therefore, disrupting the interaction between Tregs and

DCs in PTC may shed new light on immune therapy.
2.6 Neutrophils

Neutrophils have long been recognized for their pivotal role in

acute phase of inflammatory. Recently, they’ve emerged as a new

subject of investigation in the field of oncology. Accumulating

experimental evidence suggests that neutrophils may exert both

antitumor and protumor effects by releasing various regulatory

molecules within the tumor microenvironment (74). Neutrophils

exhibit a dual role in PTC development and progression. On one

hand, they promote genetic instability, proliferation, invasion (75),

and vascular remodeling of cancer cells by releasing neutrophil

elastase (76). Conversely, neutrophils have demonstrated antitumor

properties, possessing the capacity to “eliminate” through antibody-

dependent cellular cytotoxicity (ADCC) (77). Maria et al. found that

PTC tissue extended the survival of human neutrophils and enhances

its activity and reactive oxygen species (ROS) generation, suggesting

that neutrophils can acquire a cytotoxic antitumor phenotype under

the influence of thyroid tumor microenvironment. Notably, during

tumor progression, the neutrophil population increases, and their

phenotype undergoes alterations. Several subsets of circulating

neutrophils with distinct maturity and immunological properties

can be identified in advanced cancer, each playing a unique role in

tumor immunity (78).

In PTC tissues, tumor cells recruit neutrophils by releasing

CXCL8/IL-8 and reduce apoptosis rate of neutrophils through

secretion of granulocyte colony-stimulating factor (GM-CSF)

(79). The ratio of neutrophil count to lymphocyte count

(neutrophil to lymphocyte ratio; NLR) in peripheral blood is

associated with tumor development and progression (80), and
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risk of recurrence in thyroid cancer (81).
3 Immune checkpoints of PTC

Lymphocyte activation primarily relies on the specific recognition

of antigens by antigen receptors, with the strength, duration, and

nature of the activation signal often regulated by cell surface receptor

molecules. Immune checkpoints act as regulatory components,

controlling timing and intensity of immune responses, maintaining

self-tolerance, and preventing immune hyperactivity. In TME, these

regulators inhibits immune responses, rendering the body incapable

of mounting an efficient immune response against cancer, thus

facilitating immune evasion (82). Common immune checkpoints in

PTC include programmed cell death protein 1 (PD-1), programmed

cell death ligand 1 (PD-L1), cytotoxic T lymphocyte antigen 4

(CTLA-4), and indoleamine 2,3-dioxygenase (IDO) (83).

A recent study (15) revealed that several key immune

checkpoints, including LAG3, PD-1, and IDO1, are inhibited in

early PTC compared to normal thyroid tissue, potentially associated

to the prevention of immune cell-mediated damage to healthy

thyroid tissue. Interestingly, during the pathological stage, most of

the immune checkpoints were upregulated, particularly the N stage,

advanced. Likewise, the BRAFV600E mutation has been associated

with the elevation of most checkpoints (84, 85).
3.1 Programmed cell death protein 1/
Programmed cell death ligand 1

The PD-1/PD-L1 pathway has emerged as a vital suppressive

regulator in cancer. The overexpression of PD-L1 suggests that PD-L1

undermines immune surveillance of tumor in TME (86). Due to the

cell and tissue-specific distribution of PD-L1, PD-1 play its part in at

distinct stages of T cell activation, altering T cell function under

antigen-specific stimulation, inhibiting CTLs, and enhancing tumor

proliferation and invasion (87, 88). When T cells are recognized with

PD-L1-positive tumor cells, tumor cells can cause programmed T cell

death. In addition, tumor cells can produce cytokines including IL-10,

allowing tumor cells to escape the clearance of CTL (47).. These

mechanisms facilitate immune evasion by thyroid cancer cells and

play a critical role in the transformation of normal cells into

tumor cells (89).

PD-1 is widely expressed on lymphocytes capable of receiving

antigen stimulation, acting as a “rheostat” for immune responses and

regulating lymphocyte reactions to antigens. During antigen

recognition, PD-1 binds to its ligands, recruiting tyrosine phosphatase

(SHP-2), which can dephosphorylate and inactivate proximal effector

molecules of antigen receptors on lymphocyte surfaces (87), such as

inactivating Zap70 in T lymphocytes to inhibit TCR signaling (90) or

inactivating Syk in B lymphocytes to inhibit BCR signaling (91).

PD-1’s effects on biochemical signaling pathways also promote

T cell conversion of naive into inducible Treg (iTreg) cell through

various mechanisms. Firstly, PD-1 enhances Foxp3 expression by

inhibiting Akt activation (92). Secondly, by inhibiting cyclin-
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dependent kinase 2 (Cdk2), PD-1 amplifies Smad3-mediated

transactivation by transforming growth factor b (TGF-b) (93, 94),
promoting Foxp3 transcription (95). Thirdly, through metabolic

reprogramming of activated T cells, PD-1 inhibits glucose

metabolism (96) and promotes fatty acid b-oxidation (97),

specifically activating metabolic programs that support Treg cell

generation while inhibiting Th0 cell differentiation into Th1 or

Th17 cells (98, 99). Therefore, targeting PD-1 and its downstream

signaling pathways is an effective means of improving immunity in

cancers. The PD-1 pathway represents one of the primary factor in

immune escape. Given their specificity and significance, PD-1-

blocking agents have shown considerable promise in cancer

immunotherapy. Currently, these agents are widely employed in

diagnosing and treating clinical diseases, exhibiting high clinical

value for advanced cancers. They hold the potential to control other

immune diseases through PD-1 signaling as well (100) (Figure 1).
3.2 Cytotoxic T lymphocyte antigen-4

CTLA-4 is a transmembrane protein implicated in immune

regulation, typically occur on activated T cells. It attenuates T cell

activation primarily by inhibiting the CD28 costimulatory signal

(Figure 2). This is partially due to its competition with CD28 for
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recognition to CD80 and CD86 on APCs, which obstructs

costimulatory signals essential for T cell activation and prevents

downstream signal transduction promoting T cell activation and

proliferation (101, 102). Consequently, CTLA-4 makes it difficult

for T cells to activate. Upon CTLA-4 activation, T cell activation

and IL-2 secretion are diminished, exerting a negative regulatory

effect on tumor immunity (Figure 3). Recent studies have also

demonstrated that PD-1+Tim-3+CD8+ T lymphocytes exhibit

varying degrees of functional impairment in patients with

regional metastatic PTC (103).

In comparison, PD-1 indirectly hinders TCR or BCR responses

to antigens via intracellular signaling, while CTLA-4 entirely

obstructs CD28 costimulation through competitive inhibition,

acting more comprehensively and rapidly (87).
3.3 Indoleamine 2, 3-dioxygenase 1

Indoleamine 2,3-dioxygenase 1 (IDO1) is a oxidoreductase

responsible for catalyzing. In papillary thyroid microcarcinoma

(PTMC), 31% of the cells were positive for IDO, which may be

associated with tumor metastasis (104). In cancer, IDO1 can exert

an immunosuppressive function, and its expression is significantly

correlated with FoxP3. This relationship promotes tumor immune
FIGURE 1

PD-1 inhibit TCR and BCR signaling. PD-1 inhibits the co-stimulatory signal of T cell activation by raising SHP-2,so that T cells cannot be activated
normally and lead to increases Foxp3 expression. IFN-g secreted by T cells will induce tumor cells to express PD-1 receptor PD-L1. PD-1 inhibits B
cell activation by inhibiting downstream signal of BCR. IFN-g, interferon-g; IRF1, Interferon regulatory factor 1; CD3, coreceptor; PI3-K, SHP-2,
ZAP70, JAK1 and JAK2, kinases; PLC-g, phospholipase C-g; AKT, kinase; PKC, Protein kinase C; ERK, extracellular regulated protein kinases; NFAT,
activating T nuclear factor; NF-kB, transcription factor; Lyn, Syk, BTK, kinases.
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evasion by inducing FoxP3 phenotype regulation, consequently

suppressing the immune microenvironment (105).
4 Regulatory effect of BRAF
V600E mutation

BRAF is an activator of the RAS-regulated serine-threonine

kinase and the MAPK signaling cascade. This pathway mediates the

regulation of cell proliferation, differentiation, and survival in

response to extracellular signals. The BRAFV600E mutation

simulates phosphorylation in the activating fragment of BRAF,

resulting in the dysregulation of cell proliferation (106).

The BRAFV600E gene mutation is closely related to elevated

quantity of immunosuppressive regulators in PTC cells. Studies

have reported (24) that CTLA-4 and PD-L1 expression levels are

inversely associated with thyroid differentiation score (TDS) in

PTC, a relationship more pronounced in tumors harboring the

BRAFV600E mutation. BRAFV600E tumors expressed higher levels

of PD-1 compared to BRAF wild-type tumors (53% vs. 12.5%).

BRAFV600E promotes thyroid cancer development by increasing

myeloid-derived suppressor cells (MDSCs) (107). As a

heterogeneous population of immature myeloid cells, MDSCs are

the primary coordinator of the immunosuppressive environment in

cancer. MDSCs, primarily through CXCR2, show ligand
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recruitment to the TME (108). MDSCs are amplified during

cancer progression and has the remarkable ability to inhibit T cell

function in the tumor microenvironment (109), which is able to

produce mediators necessary for neoangiogenesis and tissue

invasion (110). In the peripheral circulation, MDSCs promote

PTC progression. By inhibiting miR-486-3p, MDSCs promoted

the activity of the NF-kB2 signaling pathway, leading to the

accelerated invasion (111).

In addition, BRAFV600E upregulated T-box transcription

factor 3 (TBX3) induced MAPK pathway activation. Therefore,

TBX3 could be associated with BRAFV600E-related tumor genesis

(112). TBX3 belongs to the T-box transcription factors family,

associated with tumor progression and metastasis (113). Analysis

of PTC patient specimens revealed that TBX3 is highly expressed in

cancerous thyroid cells, indicating down regulation of TBX3 could

delay the G1/S phase transition, decreased cell growth in vitro and

inhibited tumor formation in vivo (114).

Considering the strong correlation between BRAF and the

pathological characteristic of PTC, BRAF mutation status has the

potential to serve as a risk assessment indicator and prognostic

marker for PTC. However, similar prediction models are

challenging to adapt to multivariate factors, such as patient age

and gender, which may increase the cost and complexity of

evaluation. These limitations necessitate further exploration (115).

Beyond risk assessment and prognosis, the BRAF mutation may
FIGURE 2

Activation and proliferation of normal T cells. The binding of CD28 and CD80/86 provides a co-stimulatory signal for T cell activation, causing T cell
activation and proliferation. Chronically activated T cells increase the expression of PD-1 to prevent immune overshoot. APC, antigen-presenting
cells; PI3-K, AKT, kinase; NF-kB, transcription factor; CD3, coreceptor; NFAT, activating T nuclear factor.
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play a crucial role as a therapeutic target for PTC. Currently, BRAF

kinase inhibitors have been utilized in non-small cell lung cancer

and melanoma, while research on PTC treatment remains in its

early stages (116).
5 Immunotherapy strategies for PTC

For patients with advanced PTC or distant metastases,

conventional therapies, including chemotherapy and radiotherapy,

are prone to developing tolerance (117), thereby limiting their

effectiveness. Consequently, treatment options for patients with

advanced disease or distant metastases are restricted. Harnessing

the immune system appears to be a highly promising strategy for

addressing these challenges.
5.1 Adoptive cell therapy

Adoptive cell therapy (ACT) involves the extraction of

precursor cells from autologous or allogeneic anti-tumor effector

cells, followed by their in vitro induction, activation, and expansion

using activators such as IL-2 and specific peptides. Proliferating

cells are then transfused back into cancer patients and enhance their
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anti-tumor immunity, aiming to achieve therapeutic effects and

prevent recurrence (118, 119).

Phase I clinical trial results have demonstrated that dendritic

cells stimulated with autologous PTC tumor lysates can effectively

control tumor progression without significant adverse effects (120).

In this study, patients with refractory PTC and distant metastases

were selected, and some experienced stabilization after treatment,

confirming the feasibility of ACT for advanced PTC management.

Apart from DCs, chimeric antigen receptor T (CAR-T) cell

immunotherapy has also undergone modifications and been applied

in clinical practice in recentyears.Genetic engineering techniques enable

the addition of chimeric antibodies to T cells, allowing T cells to

recognize and simultaneously activate tumor cell killing. There has

been preclinical validation on the therapy for intercellular adhesion

molecule (ICAM)-1 in thyroid cancer. Based on previous studyfindings

(121), some investigators (122) have verified the feasibility of ICAM-1 as

a CAR-targeting antigen by examining its relationship with tumor

malignancy in patients with recurrent advanced PTC lacking other

treatment options. Other studies (123, 124) have also reported a

favorable safety profile for this therapy, suggesting the potential of

ICAM-1 as a target for treatment of advanced recurrent thyroid tumors.

Since T cells upregulate ICAM-1 expression upon activation,

ICAM-1 CAR-T cells may engage in mutual attacks, potentially

reducing T cell infiltration into PTC tissues and causing collateral
FIGURE 3

Activation and proliferation of normal T cells. The binding of CD28 and CD80/86 provides a co-stimulatory signal for T cell activation, causing T cell
activation and proliferation. Chronically activated T cells increase the expression of PD-1 to prevent immune overshoot. APC, antigen-presenting
cells; PI3-K, AKT, kinase; NF-kB, transcription factor; CD3, coreceptor; NFAT, activating T nuclear factor.
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tissue damage (125). Therefore, further refinement is necessary

before this therapy can be widely adopted in clinical practice.
5.2 Immune checkpoint inhibitors

Immune checkpoint inhibitors (ICIs) are monoclonal antibody

(mAb) drugs developed to target specific immune checkpoints. Tumor

cells cannot interact with immune cells through immune checkpoints

above when ICIs are applied, which can block immune checkpoint-

mediated immune escape. There has been monoclonal antibodies

against PD-1/PD-L1 and CTLA-4, such as pembrolizumab and

ipilimumab (126).

Existing trials have demonstrated that ICIs exhibit good efficacy

and safety in PTC treatment (126, 127). The potential of combining

ICIs with currently available drugs for advanced thyroid cancer has

garnered interest. Animal studies have confirmed that combinations

of BRAF inhibitors and checkpoint inhibitor immunotherapies

synergistically reduce tumor volume in mouse models of carcinoma

(128). However, mAbs can sometimes cause immune-related adverse

events resembling autoimmune reactions (129), prompting

consideration of small molecule inhibitors as alternative therapeutic

strategies. Unlike mAbs, small molecule inhibitors can interact with

both receptor on the surface and intracellular molecular targets (26),

making them a promising therapeutic approach.

The efficacy of ICIs is influenced by the host’s immune status, as

they target immune checkpoints and the function of immune cells and

molecules in TME changes accordingly. Intrinsic microorganisms

contribute to the body’s overall and local immunological regulation

and can significantly impact the efficacy of ICIs (130). In PTC, VEGF

can inhibit DC antigen presentation, enhance Treg amplification, and

mediate the upregulation of PD-1 on T cells in TME. Combining

VEGF inhibitors with ICIs can synergistically promote immune

checkpoint blockade effect (131–133). Given the unique influence of

the immune microenvironment on tumor progression, the

combination of anti-inflammatory drugs and ICIs is also common.

For instance, aspirin is widely used in cancer treatment and can reduce

the mortality rate of various adenocarcinomas (134). Metformin and

phenformin affect angiogenesis (135), regulate immune responses

(136), and can be used in combination with ICIs. Consequently, to

widely apply ICIs in the clinical treatment of PTC, a comprehensive

assessment of the patient’s immune status is necessary.
6 Conclusion

In summary, immune cells and molecules in TME are of vital

importance in papillary thyroid carcinoma (PTC) progression by

modulating immune response against cancer. Immune checkpoints are

regulatory molecules in the immune system, with the PD-1/PD-L1 and

CTLA-4 pathways emerging as significant contributors to tumor

immunosuppression. Furthermore, the BRAFV600E mutation is

intimately linked to PTC development and progression, potentially

leading to aberrant cell proliferation and subsequent PTC onset.
Frontiers in Immunology 08
BRAFV600E also exerts a regulatory effect on immune checkpoints.

CTLA-4 and PD-L1 levels are inversely associated with TDS,

particularly in tumors harboring the BRAFV600E mutation.

Consequently, BRAFV600E may serve as a critical target and prognostic

marker for PTC treatment.

Patients with advanced disease or distant metastases face limited

treatment options, making the utilization of the immune system a

particularly promising approach. Adoptive cell therapy, utilizing

dendritic cells (DC) and chimeric antigen receptor T (CAR-T) cells,

has proven effective for patients with advanced PTC. Employing

immune checkpoint inhibitors (ICIs) to modulate PD-1 targets and

their downstream signaling pathways effectively enhances the host’s

immunity to cancer; however, ICIs can sometimes result in immune-

related adverse events, warranting consideration of small molecule

inhibitors as an alternative. Moreover, ICI efficacy is easily influenced

by gut microorganisms and the body’s immune levels, necessitating the

assessment of the host’s immune status during treatment. Combination

of ICIs with vascular endothelial growth factor (VEGF) inhibitors or

anti-inflammatory drugs has demonstrated improved efficacy and is

expected to offer potential therapeutic value for PTC management.
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