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Background: Diagnosis of kidney transplant rejection currently relies on manual

histopathological assessment, which is subjective and susceptible to inter-

observer variability, leading to limited reproducibility. We aim to develop a

deep learning system for automated assessment of whole-slide images (WSIs)

from kidney allograft biopsies to enable detection and subtyping of rejection and

to predict the prognosis of rejection.

Method: We collected H&E-stained WSIs of kidney allograft biopsies at 400x

magnification from January 2015 to September 2023 at two hospitals. These

biopsy specimens were classified as T cell-mediated rejection, antibody-

mediated rejection, and other lesions based on the consensus reached by two

experienced transplant pathologists. To achieve feature extraction, feature

aggregation, and global classification, we employed multi-instance learning

and common convolution neural networks (CNNs). The performance of the

developed models was evaluated using various metrics, including confusion

matrix, receiver operating characteristic curves, the area under the curve (AUC),

classification map, heat map, and pathologist-machine confrontations.

Results: In total, 906 WSIs from 302 kidney allograft biopsies were included for

analysis. The model based on multi-instance learning enables detection and

subtyping of rejection, named renal rejection artificial intelligence model

(RRAIM), with the overall 3-category AUC of 0.798 in the independent test set,

which is superior to that of three transplant pathologists under nearly routine

assessment conditions. Moreover, the prognosis models accurately predicted

graft loss within 1 year following rejection and treatment response for rejection,

achieving AUC of 0.936 and 0.756, respectively.
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Conclusion: We first developed deep-learning models utilizing multi-instance

learning for the detection and subtyping of rejection and prediction of rejection

prognosis in kidney allograft biopsies. These models performed well and may be

useful in assisting the pathological diagnosis.
KEYWORDS

kidney transplantation, artificial intelligence, renal rejection, hematoxylin eosin-stained
slides, pathological assessment
Introduction

Chronic kidney disease is a progressive, irreversible, and incurable

disease, with a high prevalence rate and mortality (1). For patients who

progress to end-stage renal disease, kidney transplantation (KT) is the

only effective treatment (2). Renal allograft transplantation induces

immune system activation and may cause rejection. Despite the use of

potent immunosuppressants, kidney transplant rejection still poses a

significant risk and greatly impacts patient outcomes (3). Moreover, it

is considered the primary independent risk factor for long-term

allograft survival (4).

The correct diagnosis is crucial in managing rejection, with

histopathological assessment of allograft biopsy being the gold

standard for diagnosis (5). This assessment usually includes

detection, subtyping, and grading of rejection according to Banff

criteria (6). The identification of rejection subtypes is significant in

diagnosing rejection. Different rejection subtypes are managed quite

differently and have varying prognoses (7). However, accurately

differentiating between different rejection subtypes can be

challenging. In addition, there are some limitations to the

pathological assessment.

The current assessment of rejection is a time-consuming, labor-

intensive, and expensive process. This process not only involves

empirical observation of morphology but also requires

immunohistochemical staining (8). Moreover, manual assessment

is subjective and susceptible to inter-observer variability, resulting

in limited reproducibility (9). Therefore, there are great application

prospects for an automated tool to assist in pathological assessment,

reducing workload, eliminating bias, and speeding up diagnosis.

Deep learning, which utilizes multiple layers of abstraction to

process data, has shown significant advancements in image

recognition and is widely applied in medical image analysis and

diagnosis (10–12). Compared with traditional machine learning,

deep learning has the following advantages: automatic feature

learning, processing of large amounts of complex data (including

structured and unstructured data), fault tolerance, excellent

predictive performance, scalability, and generalization capabilities

(10). Numerous studies have demonstrated the diagnostic

capabilities of artificial intelligence (AI) models constructed

through deep learning in fields like radiology and oncology (13–

21). However, the application of deep learning in kidney transplant
02
pathology is limited, with only one previous study focusing on the

classification of renal allograft pathology without rejection

subtyping (22). This study lacks a connection between

pathological characteristics and clinical prognosis, limiting its

clinical significance.

Here, we aimed to develop a deep learning system (DLS) for the

pathological assessment of kidney transplant rejection. The system

enables the detection and subtyping of rejections by scanning only

hematoxylin and eosin (H&E) stained whole-slide images (WSIs).

Additionally, the DLS visually presents the proportion of

rejection subtypes and highlights the regions with distinguishing

characteristics in different cases. We also compare the performance

of the DLS with pathologists of varying expertise levels in assessing

an independent testing dataset. Furthermore, we develop models to

predict graft loss and treatment response in patients with rejection

for risk stratification.
Materials and methods

Ethics approval and participants

The study received approval from the ethics committees of the

Third Affiliated Hospital of Sun Yat-sen University (IRB No. [2023]

02–041-01). The ethics committees waived the need for written

informed consent from participants.

The study retrospectively reviewed patients who underwent

transplant kidney biopsy at the Headquarters and Lingnan

Hospital of the Third Affiliated Hospital of Sun Yat-sen

University (SYSUTH) between January 2015 and September

2023. Patients who underwent kidney transplantation before

2015 were excluded and zero-point biopsy and repeat biopsy

specimens were excluded. The screening process is shown

in Figure 1A.
Data collection and data set curation

Clinical data were obtained from the hospital information

system, while pathological data were acquired from written

pathology reports. Patients with loss of graft function were
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https://doi.org/10.3389/fimmu.2024.1438247
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ye et al. 10.3389/fimmu.2024.1438247
considered graft loss (23). Patients were considered respondence for

rejection treatment if the estimated glomerular filtration rate

(eGFR) returned to within 10% of baseline level 3 months after

biopsy (24). The baseline level of eGFR is determined by assessing

eGFR within 3 months before the onset of rejection. The eGFR of

patients was calculated using the Chronic Kidney Disease-

Epidemiology (CKD-EPI) algorithm (25).

A total of 906 WSIs were obtained from 302 allograft biopsy

specimens. These specimens were classified based on the consensus

of two experienced transplant pathologists according to Banff 2019

criteria, which are presented in Supplementary Table 1 (8). Out of

the total, 125 cases were classified as rejection (Banff category 2–4),

which included TCMR, ABMR, and mixed TCMR/ABMR. The

remaining 177 cases were categorized as other lesions (Banff

category 1 and 5). Cases that were borderline TCMR, and

suspicious ABMR were also classified as rejection categories.
Frontiers in Immunology 03
H&E-stained specimen slides were scanned at a magnification

of x40 using a digital slide scanning instrument (Panoramic 250

FLASH, 3DHISTECH Ltd, Budapest, Hungary). Specimens with

quality issues such as insufficient renal cortex region, repeated

scanning with failed focalization, or faded staining were excluded.

Digital sections were utilized in the development of the model.

Included cases were randomly assigned to training sets and testing

sets, with proportions of 70% and 30%, respectively. A total of 280

biopsies diagnosed with other lesions, TCMR, and ABMR were used

to develop the classification model. The graft loss model and

treatment response model were developed using 91 and 125 cases

diagnosed with rejection respectively. The graft loss model is used to

predict graft loss within 1 year after rejection, and its dataset does

not include 34 cases with less than 1 year of follow-up after

rejection. The composition of the training set and testing set in

different models is shown in Supplementary Table 2.
A

B

FIGURE 1

Study design, data curation, and RRAIM classification flowchart. (A) Transplant kidney biopsy specimens from two independent hospitals
(Headquarters and Lingnan of SYSUTH) were included in this study. After exclusion, a total of 906 WSIs from 302 digital kidney transplant biopsies
were used in the analysis. (B) Multi-instance learning framework can learn feature extraction, feature aggregation, and global classification at the
same time.
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Development of deep learning models by
multi-instance learning

We annotated typical tissue as the region of interest (ROI) and

outlined it precisely with the automated slide analysis platform

(ASAP 1.9) software, which was reviewed by an expert pathologist.

The position coordinates were saved in the XML format, and a

corresponding mask was generated with the same pyramid

resolution as the whole-slide image (WSI).

Digital pathological WSI can be up to megapixels in size, which

can easily lead to insufficient memory as input. Therefore, we first

divide the WSI into image blocks of appropriate size to meet the

needs of subsequent operations. Considering the high level of detail

of the pathological image, we choose a relatively small size of 515 *

512 and control the spacing to avoid overlap, to ensure that the

segmented image block can represent the whole region of the whole

slice. We use the Openslide image pyramid and sliding window

function to extract image blocks. Firstly, the pathological WSI is

loaded, and the pyramid level is set to 400X. Secondly, the sliding

window size is set to 515* 512, and there is no overlapping

sampling. Finally, the image of each position in the scanning

process is saved as Patch. Repeat the above process, and finally

get all the patches of the WSI. Considering the non-overlap between

image blocks, the problem of repetitive feature learning is avoided,

which helps improve the efficiency of multi-instance learning.

After obtaining the patches, we use the visual transformer network

(Vision Transformer, ViT) to extract the features of each patch. The

main reason is that ViT has a good ability to learn local and global

information of the image, and can obtain high-quality feature

expression. Specifically, we load the ViT model pre-trained on

ImageNet, because of its large number of parameters, it is difficult to

converge if we train the transformer from scratch. To speed up the

model training, we fix the pre-training parameters and only use ViT as

a feature extractor. For each image block, the average pool feature

extracted by ViT is a 768-dim vector. Repeat this process, and finally

output a n * 768 feature matrix, representing all the features of a WSI.

Where n is the total number of patches for the WSI.

After obtaining the features of each patch of theWSI, we construct

the framework of a two-layer learner. The first layer is a designedmulti-

instance pooling layer, and the second layer is a ResNet50-based

classifier. The function of the multi-instance pooling layer is to

aggregate the characteristic information of all patches in a WSI. Here

we use average pooling, that is, averaging the eigenmatrix. After

pooling, a 768-dim vector corresponding to a WSI is obtained. The

WSI-level vector splices the WSI features and inputs them into the

second-layer classifier.We construct ResNet50, remove its original fully

connected sublayer, and finally add a softmax fully connected sublayer

containing two neurons or three neurons to output the prediction

probability of two categories or three categories. We first carry out pre-

training on the ImageNet data set. Then use the WSI feature to fine-

tune the last sublayer to complete the final two-classification or three-

classification training. Such a framework can learn feature extraction,

feature aggregation, and global classification at the same time, and truly

realize end-to-end multi-instance learning. The whole process is

illustrated in Figure 1B.
Frontiers in Immunology 04
Visualization of panoramic WSI

The ensemble model yielded patch-level probabilities, and the

specific coordinates of these patches within the patient’s WSI were

acquired through the partitioning procedure and XML file. Utilizing

the matplotlib library (https://matplotlib.org/), Each patch was

represented by a color, where yellow, red, and black represent

that the patch belongs to other lesions, ABMR, and TCMR,

respectively. By reassembling the patches based on their

coordinates, a panoramic picture of the patient’s response density

toward the WSI was generated, providing a visual representation.

The methodology of three CNN-based models (InceptionV3,

ResNet50, and EfficientNet-B5) and the ensemble model are

provided in the Supplementary Material.
Biopsy specimen reviews by 3 pathologists
for comparison

Comparisons of DLS’s decisions of three-classifications with

those of three pathologists were carried out on an internal testing

set. These pathologists all received transplant pathology training

and were divided into junior, intermediate, and senior levels

according to different clinical experiences (1–2 years, 4–5 years,

and more than 10 years). In addition, they were not involved in the

selection and labeling of the cases and independently assessed each

case from the testing set.

In the first assessment, the pathologists only considered H&E-

stained WSIs to make their decision. During the second assessment,

they also assessed the corresponding Periodic Acid-Schiff (PAS),

Periodic-acid silver methenamine (PASM), Masson stained WSI,

and the results of immunofluorescence, immunohistochemistry,

and electron microscopy to make their decision. The referral

decisions made by the DLS were then compared with the

decisions made by the pathologists during both assessments.
Statistical analysis

To evaluate the classification performance of the patch-based

models on the test dataset, we examined the receiver operating

characteristic (ROC) curve. This curve was constructed by plotting

the true positive rate (TPR, sensitivity) against the false positive rate

(FPR, 1-specificity) across different threshold values. The accuracy

(ACC) of the models was quantified by calculating the area under

the ROC curve (AUC). Additionally, performance measures such as

ACC, sensitivity (SENS), specificity (SPEC), positive predictive

value (PPV, precision), and negative predictive value (NPV) were

computed using confusion matrices. The F1 score, which represents

the harmonic mean of precision and sensitivity, was employed to

assess model performance.

Clinicopathological data of patients were expressed as

frequencies for categorical variables and medians [interquartile

range] for continuous variables. Statistical analysis was performed

using SPSS version 25.0.
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Results

Population characteristic

A total of 302 patients who had undergone post-transplantation

biopsy and had corresponding available WSI were included in the

analysis. The characteristics and pathological diagnoses of all

patients are presented in Table 1 and Supplementary Table 3,

respectively. Among the population, 41.4% (125/302) of patients

with rejection, while 58.6% (177/302) of patients without rejection.

The median months from transplantation to biopsy in other lesions,

TCMR, ABMR, and mixed rejection were 15.3(4.5, 41.8), 6.4(3.6,

12.7), and 36(5.9, 62.8), and 19.3(6.1,47.5), respectively. The median

months from transplantation to biopsy in other lesions, TCMR,

ABMR, and mixed rejection were 15.3(4.5, 41.8), 6.4(3.6, 12.7), 36

(5.9, 62.8), and 19.3(6.1,47.5), respectively.
Performance evaluation of classification
model based on multi-instance learning

Based on an internal testing set, the confusion matrices of the

classification model and the three classification results (other

lesions, TCMR, and ABMR) of kidney allograft biopsies are
Frontiers in Immunology 05
shown in Figure 2. Diagonal elements represent the percentage

for which the model predictions are consistent with the actual

diagnosis, while off-diagonal elements represent the percentage for

which the two are inconsistent. In the testing set, the overall AUC

and ACC values of the model are as follows: AUC=0.798,

ACC=0.71. The classification model was named the renal

rejection artificial intelligence model (RRAIM), and its

performance parameters are presented in Table 2.
Performance evaluation of three CNN-
based classification models and the
ensemble model

Three CNN-based models (InceptionV3, ResNet50, and

EfficientNet-B5) and the ensemble model also were trained to

differentiate the three classifications of kidney allograft biopsy.

The confusion matrices and ROC curves of these models at the

patch level are shown in Supplementary Figure 1. The overall AUC

of three basic models (InceptionV3, ResNet50, and EfficientNet-B5)

and the ensemble model predicting three categories at the patch

level are respectively 0.765, 0.789, 0.775, and 0.799. As seen in

Supplementary Figure 2, the overall AUC and ACC of the ensemble

model predicting three categories at the patient level are respectively
TABLE 1 Distribution of the patient characteristics.

Characteristics Other lesions
(N=177)

Rejection(N=125)

TCMR
(N=57)

ABMR
(N=46)

Mixed rejections
(N=22)

Male sex 130(73) 37(65) 31(67) 14(64)

Age 38(32,47) 36(31,44.5) 44.5(35.8,56) 41.5(37,55.5)

Months from transplantation
to biopsy

15.3(4.5,41.8) 6.3(3.6,12.7) 36(5.9,62.8) 19.3(6.1,47.5)

Months of follow-up
after biopsy

21.8(3.4,51.9) 17.8(3.2,49.4) 4.6(3.2,14.7) 3(0,5.6)

Graft loss 68(38) 25(44) 12(26) 11(50)

Treatment response 28(49) 25(54) 4(18)

DSA

Absent 177(100) 54(95) 28(61) 9(41)

HLA I class 0 0 1(2) 0(0)

HLA II class 0 0 6(13) 4(18)

HLA I&II class 0 0 2(4) 1(5)

No available 0 3(5) 9(20) 8(36)

C4d score

0 163(92) 57(100) 15(33) 12(54)

1 13(7) 0 16(35) 3(14)

2 1(1) 0 9(19) 2(9)

3 0 0 6(13) 5(23)
TCMR, T cell-mediated rejection; ABMR, antibody-mediated rejection; DSA, donor-specific antibody.
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0.863 and 0.70. The performance parameters of these models are

presented in Supplementary Table 4.
Classification map of biopsy specimen in
whole-slide image level

Panoramic classification maps were generated using

representative WSIs for each category in biopsy specimens. Here,

areas of different categories throughout the WSI from the H&E-

stained section can be exhibited by using different colors, even in

mixed rejection cases where TCMR coexists with ABMR. The

proportion of various categories is visually displayed in a pie

chart to achieve a quantitative analysis of WSI. As seen in

Figure 3, there is a small proportion of misclassifications, such as

TCMR appearing in the classification map of other lesions (1%

black region), ABMR appearing in the classification map of TCMR

(3% red region), and TCMR appearing in the classification map of

ABMR (3% black region). These misclassifications are likely due to

interference from sclerotic glomeruli, atrophic tubules, and

proliferated fibrous tissue.
Heat map of biopsy specimen in
patch level

Utilizing the trained Convolutional Neural Network (CNN), the

visual gradient weighted class activation mapping (Grad-CAM)

technique was employed to generate heat maps to discriminate
Frontiers in Immunology 06
three types of lesions. As shown in the heat map (Figure 4),

interstitial inflammation and tubulitis in WSI from the TCMR

case and partial peritubular capillaritis in WSI from the ABMR case

are highlighted.
Comparison between deep learning
and pathologists

We used an internal testing dataset to evaluate the diagnostic

performance of RRAIM and compared it with that of three

pathologists under different conditions. As shown in Figure 5,

RRAIM outperforms pathologists at all levels with different

diagnostic conditions in terms of AUC, precision, sensitivity, and

F1 score for predicting three classifications of kidney transplant

biopsy. In the case of three pathologists assessing H&E-stained

WSI, a junior, intermediate, and senior subspecialty pathologist

achieved AUC of 0.606, 0.625, and 0.653, respectively. When

simultaneously assessing PAS, PASM, and Masson stained WSIs,

as well as immunohistochemistry and electron microscopy results, a

junior, intermediate, and senior pathologist achieved AUC of 0.691,

0.719, and 0.737, respectively.
Prediction graft prognosis in
rejection cohort

Based on multi-instance learning, two separate models were

trained to predict graft loss within 1 year following rejection and
TABLE 2 Performance parameters of the classification model based on multi-instance learning.

Model Classification Precision SENS F1 scores Overall ACC

Classification model Others 0.71 0.91 0.80 0.71

ABMR 0.70 0.58 0.64

TCMR 0.71 0.45 0.56
TCMR, T cell-mediated rejection; ABMR, antibody-mediated rejection.
A B

FIGURE 2

Performance of the classification model based on multi-instance learning. (A) The confusion matrix of the model shows the classification results on
the internal testing set, from which the overall ACC can be calculated to be 0.71. Numbers represent the percentage of classified correctly (diagonal)
and incorrectly (off the diagonal). Blue shading has a positive correlation with classification value and diagnostic accuracy. (B) The ROC curve and
AUC value of the model (red line) used for three classifications on the internal testing set, the AUC value is 0.798.
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treatment response for rejection. The baseline information of

patients for the two models is presented in Supplementary

Tables 5, 6 respectively. As shown in Figure 6A, the performance

of the graft loss model was assessed based on its AUC and ACC,

with values of 0.936 and 0.89, respectively. As shown in Figure 6B,

the AUC and ACC of the treatment response model are respectively

0.756 and 0.79. The performance parameters of rejection prognosis

models based on multi-instance learning are presented in Table 3.

The ensemble method of three CNNs was also used to train

rejection prognosis models, the performance of rejection

prognosis models based on the ensemble of three CNNs at the

patient level is shown in Supplementary Figure 3.
Discussion

Transplant pathology plays a crucial role in diagnosing kidney

allograft rejection. However, the current diagnostic criteria for
Frontiers in Immunology 07
rejection, known as the Banff criteria, have become increasingly

complex over the past 30 years, making the entire pathological

diagnosis process more time-consuming, expensive, and labor-

intensive. To address these challenges, the combination of digital

pathology and AI offers a potential solution. Here we present a

supervised DLS for the classification of kidney allograft biopsy using

H&E-stained WSIs, designated as RRAIM. Moreover, RRAIM is

the first DLS for the detection and subtyping of kidney

allograft rejection.

The current assessment of kidney allograft biopsy is complex

and involves assessing multiple staining, including H&E, PAS,

PASM, and Masson (8). This is related to the fact that different

pathological features are more easily distinguished by the naked eye

under different staining. Compared with naked-eye observation, AI

can detect hidden morphology or internal features (26), and obtain

more information for distinguishing types of kidney allograft

lesions even with a single type of staining. Here, we used only

H&E-stained WSI to train deep learning models due to H&E
A

B

D

C

FIGURE 3

WSI-level panoramic classification map of biopsied specimens: (A) Others, (B) TCMR, (C) ABMR, (D) mixed rejection. (Left) Original whole-slide
images. (Middle) The classification maps’ different colors represent different lesions: the yellow area represents other lesions, the black area
represents TCMR, and the red area represents ABMR. (Right) The pie charts quantitatively show the percentages of different categories within
each WSI.
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staining being the most common stain in kidney allograft pathology

and providing clear morphological and structural characteristics.

Moreover, RRAIM completes the diagnosis task in less than 30

seconds per case, and processing and H&E staining per biopsy only

take one day. Therefore, RRAIM enables rapid and convenient

screening of rejection in kidney allograft biopsies.

The RRAIM enables differentiation of TCMR, ABMR, and

other lesions, thereby simultaneously enabling the detection and

subtyping of rejection. The different rejection subtypes have varying

prognoses, so accurate differential diagnosis is crucial. TCMR can

be reversed with prompt treatment in most cases, while ABMR

often leads to graft loss (4). However, the diagnosis and

identification of rejection is challenging, especially in complex or

atypical cases, and inexperienced pathologists may easily make

incorrect diagnoses. RRAIM uses the latest ViT network for

feature extraction, which is particularly suitable for extracting

local and global features (27), thereby improving the performance

of RRAIM. The patch used by ViT is larger than that of most studies

(512x512 pixels at 40x magnification vs. 224x224 pixels), which is
Frontiers in Immunology 08
closer to reality and may contribute to more reliable results.

Moreover, the framework of RRAIM employs multi-instance

learning, which is more suitable for obtaining effective

distinguishing features from WSI that lacks pixel-level labeling

(28). In the rejection prognosis models, the accuracy of the

models using multi-instance learning was significantly better than

the multi-network ensemble model (0.89 vs 0.63; 0.79 vs 0.62). In

the classification model, the overall accuracy of RRAIM is slightly

better than the multi-network ensemble model (0.71 vs

0.70). Our results preliminarily confirm the advantages of

multi-instance learning architecture for the classification of

kidney transplant rejection.

Classification maps and heat maps provide visual outputs for the

models. The concurrent appearance of different lesions inWSI can be

exhibited through the classification maps, and the quantitative

analysis of different lesions in WSI can also be provided by the

classification maps. In addition, the patch-level heatmaps highlight

areas that are features focused by the model making classification

decisions. We found that these features are consistent with the
A

B

C

FIGURE 4

Patch-level hot maps. (A) (Others), (B) (TCMR), (C) (ABMR). (left) Original whole-slide images. (middle and right) GradCAM visualizes the learning
process and extracts discriminative features of interest (highlighted areas).
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pathological changes of TCMR and ABMR, which provides some

interpretability for the deep learning models. The visualization

technique may provide transplant pathologists with a useful

diagnostic support system, but its value needs further evaluation.

The RRAIM showed better classification performance

compared with the three pathologists. When evaluated by three
Frontiers in Immunology 09
pathologists with only HE-stained WSIs, the performance of

RRAIM for classification is superior to them. Furthermore, when

evaluated by three pathologists under nearly routine conditions

(excluding clinical information), their performance remained

inferior to RRAIM. However, only one pathologist of the same

level cannot make a statistically significant comparison with
A

B

FIGURE 5

Comparisons of diagnostic performance of RRAIM with pathologists. (A) The ROC curves and AUC values of pathologists of all levels equipped with
different diagnostic conditions on the internal testing set: junior pathologist assessed with H&E stained WSIs (JP with HE, green line), intermediate
pathologist assessed with H&E stained WSIs (IP with HE, blue line), senior pathologist assessed with H&E stained WSIs (SP with HE, orange line),
junior pathologist with comprehensive assessment (JP with CA, green dotted line), intermediate pathologist with comprehensive assessment (IP with
CA, blue dotted line), and senior pathologist with comprehensive assessment (SP with CA, orange dotted line). (B) The AUC values (0.798, 0.606,
0.625, 0.653, 0.691, 0.719, and 0.737), precision (0.71, 0.55, 0.57, 0.61, 0.57, 0.67, and 0.67), sensitivity (0.71, 0.47, 0.5, 0.54, 0.59, 0.62, and 0.64), and
F1 scores (0.7, 0.48, 0.52, 0.55, 0.55, 0.65, and 0.66) of RRAIM and pathologists of all levels equipped with different diagnostic conditions (JP with
HE, IP with HE, SP with HE, JP with CA, IP with CA, and SP with CA) are displayed in histograms.
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RRAIM. Regrettably, recruiting more transplant pathologists for the

comparisons is difficult due to the relative scarcity of

transplant pathologists.

The rejection prognosis models using multi-instance learning

can accurately predict the prognosis of rejection, especially the

graft loss within 1 year after rejection. Some rejections lack

response to treatment and may lead to short-term graft loss (29,

30). However, these rejections are difficult to identify by clinical

indicators alone. We found that pathological features extracted

using multi-instance learning have excellent effects on predicting

rejection prognosis. Moreover, these models aid in the risk

stratification of patients with rejection and guide subsequent

treatment and management.

There are some limitations in our study. First, postoperative

allograft biopsy samples are limited due to the high bleeding risk of

kidney biopsy. In addition, there are difficulties in including more
Frontiers in Immunology 10
centers due to informed consent and strict data management

policies. Second, although our study has confirmed that DLS

based on HE-stained WSI enables the detection and subtyping of

rejection, the performance of DLS may be affected by the sample

size. Larger multicenter studies are required, and we are seeking to

partner with more centers. Third, the cases of mixed rejection were

relatively few and were not included in the development of the

classification model. Further studies with larger sample sizes are

required to detect mixed rejection accurately. Fourth, our study did

not involve the task of grading rejection by severity, and further

follow-up research is needed.

In conclusion, our study demonstrates that it is feasible to use

multi-instance learning to detect and subtype renal rejection and to

predict rejection prognosis based on H&E-stained WSI.

Additionally, DLS-based visualization technology has the

potential value to enhance the digital pathology workflow.
A

B

FIGURE 6

Performance of rejection prognosis models based on multi-instance learning. (A) Confusion matrix and ROC curve of the graft loss model for
predicting graft loss within 1 year after rejection, the AUC value is 0.936. (B) Confusion matrix and ROC curve of the treatment response model for
predicting treatment response in rejection, the AUC value is 0.756.
TABLE 3 Performance parameters of the rejection prognosis models based on multi-instance learning.

Models ACC Precision NPV SENS SPEC F1 scores

Graft loss 0.89 0.79 1.0 1.0 0.81 0.89

Treatment response 0.79 0.74 0.86 0.88 0.71 0.79
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