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Mechanical forces affect periodontal health through multiple mechanisms.

Normally, mechanical forces can boost soft and hard tissue metabolism.

However, excessive forces may damage the periodontium or result in

irreversible inflammation, whereas absence of occlusion forces also leads to

tissue atrophy and bone resorption. We systemically searched the PubMed and

Web of Science databases and found certain mechanisms of mechanical forces

on immune defence, extracellular matrix (ECM) metabolism, specific proteins,

bone metabolism, characteristic periodontal ligament stem cells (PDLSCs) and

non-coding RNAs (ncRNAs) as these factors contribute to periodontal

homeostasis. The immune defence functions change under forces; genes,

signalling pathways and proteinases are altered under forces to regulate ECM

metabolism; several specific proteins are separately discussed due to their

important functions in mechanotransduction and tissue metabolism. Functions

of osteocytes, osteoblasts, and osteoclasts are activated to maintain bone

homeostasis. Additionally, ncRNAs have the potential to influence gene

expression and thereby, modify tissue metabolism. This review summarizes all

these mechanisms of mechanical forces on periodontal homeostasis. Identifying

the underlying causes, this review provides a new perspective of the mechanisms

of force on periodontal health and guides for some new research directions of

periodontal homeostasis.
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1 Introduction

The concept of homeostatic medicine was proposed in 2022 (1).

It focuses on the root causes of diseases by exploring the mechanisms

and regulation strategies for homeostasis at multiple levels including

molecules, cells, organs and systems (2). Under physiological

conditions, the periodontal tissue is continuously subjected to

environmental stimuli like mechanical forces, salivary flow, and

flora stimulation while the internal tissues constantly undergo

remodelling to maintain homeostasis (3). The first barrier to the

external stimulus is the oral mucosa, which exhibits a strong ability

of immune defence (4). Microbiologically, the oral microbiota

colonising the mucosal surfaces stimulate a mild immune response

and resist invasion of pathogens (4, 5). Next, the extracellular matrix

(ECM) metabolism contributes to tissue reconstruction; meanwhile,

some mechanosensitive proteins perform functions in response to

mechanical stimuli (6, 7). At the cellular level, differentiation

between PDL stem cells (PDLSCs) and progenitors could promote

tissue maintenance, repair, and regeneration (8, 9). Osteocytes act as

an important mechanosensor under mechanical forces (10).

Osteoblasts and osteoclasts mediate bone formation and resorption

shaping the alveolar bone under mechanical forces (11). At the

epigenetic level, some mechanosensing non-coding RNAs, such as

microRNAs, could interfere with the expression of related genes (12).

In addition, many signal pathways are activated under forces to

regulate bone and tissue metabolism (13, 14). These factors help

regulate gingiva, periodontal ligament (PDL), and bone homeostasis

that form the periodontal homeostasis under mechanical forces.

Mechanical forces including mastication, occlusion, or other

forms of mechanical loading exerted on the teeth are transmitted

through PDL to the alveolar bone (15). Koivumaa, Mäkilä (16)

classified these forces into physiological and non-physiological

(pathological and therapeutic) forces. Physiological forces are vital

for soft and hard tissue metabolism, which helps maintain

periodontal homeostasis. Pathological forces, such as occlusal

trauma and bruxism, may damage the periodontium, teeth, or

temporomandibular joint. The therapeutic force mainly refers to

orthodontic forces that promote tooth movement through bone

regeneration and resorption (17). However, absence of

physiological forces would result in bone resorption and loss of

periodontal tissues (15, 18, 19). Therefore, a balance between proper

mechanical forces exerted on the periodontium is quite essential for

maintaining tissue homeostasis, whereas improper forces would

lead to tissue destruction and breakdown of periodontal

homeostasis. There are a variety of mechanosensors on the

surface of the cell membrane. After being stimulated by

mechanical forces, the mechanosensors undergo configuration

changes to activate the cascade signal pathways, and then,

biological signals are transmitted to the nucleus to regulate gene

transcription (20).

This review illustrates the role of forces on periodontal health

(Figure 1) as well as potential new targets and for homeostatic

remodeling which puts forward a new research direction of

periodontal homeostasis under forces.
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2 Aspects of mechanical forces
influence periodontal homeostasis

2.1 Immune response under
mechanical forces

The gingival epithelium acts as a mucosal barrier against

external stimuli while commensal microbiota colonising the

epithelium resist invasions of pathogens. The microbiota-gingival

epithelium barrier contributes to gingiva homeostasis (4, 5).

Pathological forces could disturb the balance between microbial

communities resulting in breakdown of homeostasis (21). Apart

from that, immunocytes in the gingiva also play an important role

in maintaining periodontal homeostasis in healthy state (22). Forces

have been found to have the potential to affect functions of

neutrophils, macrophages, and T cells (23–25). Some improper

forces lead to cell death. Specific mechanisms will be

illustrated next.
2.1.1 Microbiota - gingival epithelium barrier
Since the gingival epithelium is the first barrier against

invasions of pathogens and other stimulations, its integrity and

functionality are critical. A previous study has found an ion channel

TRPV2 expressed in gingival tissues to sense mechanical stimuli.

The ion channel could detect physical and chemical changes to

ensure defence mechanisms in gingival tissues (26). Another study

also reports the physiological shear stress produced by salivary flow

belongs to essential elements of the gingiva. The physiological force

is an important guarantee for gingival epithelium to perform

immune defence functions (27). Moreover, pathological forces

such as occlusal trauma may disrupt balance of microbiological

flora and induce infection. Inchingolo et al. found that treating

occlusal trauma could relieve the damage caused by the

disorganisation of the microenvironment and an increase in

pathogenic microorganisms (21). Once the external factors

change, such as removal of stress, microenvironment-specific

factors , such as temperature , osmotic pressure , and

concentrations of metabolites (iron, calcium, and magnesium),

will be altered (5). Thus, appropriate forces are essential for the

microb io ta -g ing iva l ep i the l ium barr i e r to mainta in

immune homeostasis.

2.1.2 Immunocytes
As innate immune cells, neutrophils account for the highest

proportion of innate immune cells in healthy gingiva, whereas

deficiency in neutrophils can increase susceptibility to

periodontitis. When exogenous pathogens invade periodontal

tissues, neutrophils significantly increase; several steps are

required before neutrophils mature and perform functions,

including phagocytosis; reactive oxygen species production; and

intracellular and extracellular degranulation (22). Granulocyte

colony-stimulating factor (G-CSF) may interfere with the

CXCR4/SDF-1 axis by reducing chemokine (C-X-C motif)
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receptor 4 (CXCR4) expression or increasing the stromal cell-

derived factor 1 (SDF-1) cleavage and subsequently regulating

neutrophil release (28). Traumatic occlusion up-regulates SDF-1

and CXCR4 expression in PDL tissues to maintain bone

metabolism by increasing osteoblast differentiation (23). Notably,

chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL5, and CXCL8

are responsible for the recruitment of neutrophils. Furthermore,

chemokine (C-C motif) motif ligand 2 (CCL2), CCL5, and CXCL10

are chemoattractants of macrophages and lymphocytes. The

aforementioned chemokines are regulated by bacterial and

mechanical signals. Thus, changes will influence the recruitment

of immune cells toward the infection zone (29).

Although fewer macrophages than neutrophils are found in

healthy gingiva, they are involved in homeostasis maintenance by

phagocytosing pathogens and secreting inflammatory cytokines

(30). According to earlier studies, mechanical forces may increase

the number of M1-type macrophages and, thus, mediate the

inflammatory response and bone remodelling. He et al. found

that H2S is secreted by PDLSCs under mechanical loads. H2S, as

a gas signalling molecule, can induce M1-type macrophage

polarisation via the STAT1 signalling pathway (31). Jiang et al.

found that mechanical force induces PDLSC autophagy.
Frontiers in Immunology 03
Macrophages are polarised toward the M1 phenotype, led by

force-induced autophagy via suppression of the AKT signalling

pathway (24).

Healthy gingiva consists of the inflammatory infiltration

including T cells acting as antigen-presenting cells (APCs) which

regulate local immunity. Balances between helper T (Th) cells

including Th1/Th2 cells and Th17/Treg cells are important for

the periodontal immune microenvironment (32). Th17 cell

differentiates under stimulation by transforming growth factor

(TGF)-b and Interleukin (IL)-6 and then releases cytokine IL-17,

which is relevant to neutrophil recruitment by activating CXCL8.

CXCL8 activation is a key element in periodontal bone resorption,

as it facilitates receptor activator of nuclear Kappa-B Ligand

(RANKL) production. Similar to Th1/Th2 cells, Th17 and Treg

cells perform distinct functions during the inflammatory process.

Treg cells generate cytokines, IL-10 and TGF-b, which serve as anti-
inflammatory mediators and help maintain immunological

homeostasis (33) Recent research has focused on the response of

Th17 and Treg cells when exposed to various mechanical forces.

Heavy pathological forces up-regulate IL-6, while TGF-b and IL-6

cause Th17 differentiation. In addition, heavy forces promote the

expression of HIF-1a, which mediates Th17 differentiation.
FIGURE 1

Mechanisms of mechanical forces influencing periodontal homeostasis. ECM components such as collagen, fibronectin, and specific proteins
reconstruct under mechanical forces. Several mechanosensitive signal pathways are activated to boost tissue metabolism. Characteristic PDLSCs
respond to mechanical forces and promote tissue metabolism. Some pathological forces promote immunocyte differentiation and cell death,
leading to an inflammatory response. PDLSCs, periodontal ligament stem cells; PDLCs, periodontal ligament cells; MMP, matrix metalloproteinase;
TIMP, tissue inhibitors of metalloproteinases; PI3K, phosphatidylinositol-3-kinase; AKT, protein kinase B; MAPK, mitogen-activated protein kinase; IL,
interleukin; VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor; NGF, nerve growth factor; COX2, cyclooxygenase-2; PGE2,
prostaglandin E2; Runx2, runt-related transcription factor 2; ALP, alkaline phosphatase; RANKL, receptor activator of NF-kB ligand; RANK, receptor
activator of NF-kB; OPG, osteoprotegerin; IKK, inhibitor of IkB kinase; NF-kB, nuclear factor-k-gene binding; YAP, yes-associated protein; TAZ,
transcriptional coactivator with PDZ-binding motif; Th17 cell, helper T17 cell; NO, nitric oxide; TNF, tumor necrosis factor.
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Consequently, bone resorption and an excessive inflammatory

response under heavy force stimulation may be partly attributed

to the up-regulation of Th17 cells (25). Mechanisms involved in

enhancing the expression of Treg cells and thereby enabling them to

perform protective roles in periodontal homeostasis belong to an

area of research that remains to be explored.

2.1.3 Cell death
Many reports have suggested that physiological forces influence

the metabolism of soft and hard tissues, while pathological forces or

improper therapeutic forces result in tissue damage or even cell death

(necrosis or programmed cell death). Necrosis refers to the passive

death of cells induced by extreme physical or chemical stimuli or

severe pathological factors. Once necrosis occurs, membrane

permeability increases, resulting in cell swelling; organelle

deformation or enlargement; and eventually cell rupture (34).

Programmed cell death is a type of host immune defence that

can be disposed due to infected, senescent, or other abnormal cells

against infection, radiation, and other harmful situations controlled

by genes. Several types of programmed cell death are relevant to

periodontal homeostasis under mechanical forces, including

apoptosis and pyroptosis. Cysteine-aspartic proteases (caspases)

are known to mediate cell death and inflammation during

programmed cell death (35, 36).

Apoptosis, a basic physical process, is characterised by cell

shrinkage, loss of cell junctions, karyopyknosis, and nuclear

fragmentation. The application of mechanical forces can induce

PDLSC apoptosis in a time- and force-dependent manner.

Regarding fibroblasts, forces from matrix proteins are converted

through focal adhesion receptors, which bind to adaptor proteins

intracellularly; the adapter proteins link adhesions to the actin

cytoskeleton and finally transfer force, thus enabling a cell

reaction. Adhesion-associated molecules such as filamin A could

prevent cell detachment or detachment-induced cell death under

mechanical forces via enhanced formation and maturation of

matrix adhesions (37). Piezo1 may transfer force and

subsequently activate the p38/ERK1/2 signalling pathway and

promote apoptosis in tissue and cells. Furthermore, Piezo1 also

acts as a homeostatic sensor that may sense cell crowding, thereby,

regulate cell numbers by inducing cell apoptosis or cell division

(35). Moreover, the expression of cell caspase-8 and caspase-9,

which initiate and execute extrinsic and intrinsic apoptotic

pathways, increases under mechanical forces (38).

Pyroptosis, or cell inflammatory death, is an important innate

immune process to defend against infection. It is characterised by

constant cell swelling and bubbling until the plasma membrane

ruptures with the release of cell contents, which induces a strong

inflammatory response. Previous studies have found that occlusal

trauma and microbial infection can activate the NLRP3

inflammasome and induce pyroptosis in the periodontium,

releasing the pro-inflammatory cytokine IL-1b and increasing

RANKL expression. In other words, pathological forces cause
Frontiers in Immunology 04
bone loss and inflammatory responses by inducing pyroptosis.

However, physiological forces, such as normal mastication, can

induce PDLCs to secrete exosomes, which may interact with

macrophages and subsequently reduce IL-1 production. Thus,

pyroptosis in macrophages can be reduced by modulating the

NF-kB signalling pathway (36). Glyburide, an NLRP3 inhibitor,

reduces pyroptosis in periodontal tissues under occlusal trauma and

relieves damage. These findings indicate new therapeutic strategies

for treating periodontal diseases caused by pathological forces.
2.2 ECM metabolism under
mechanical forces

The ECM plays an essential role in maintaining tissue integrity and

structural stability. Meanwhile, mechanical force is an important

stimulus to regulate ECM remodelling, characterised by the synthesis

and degradation of matrix proteins, such as collagen type I and III,

fibronectin, and laminin, which are generally controlled by matrix

metalloproteinases (MMPs) and tissue inhibitors of matrix

metalloproteinases (TIMPs) (39). A previous study concluded that

mechanical forces significantly impact MMPs and TIMPs in PDL. The

precise variation in specific types of MMPs or TIMPs remains elusive,

as they are affected by force-applying methods, force-applying time,

force magnitude, and other factors. Nevertheless, MMPs generally

show a rising trend under mechanical forces, while TIMPs are mainly

responsible for controlling MMP activity. For example, TIMPs are up-

regulated to reduceMMP activity under tension forces, as the ECMwill

experience formation and regeneration at this site (6). In addition, a

study summarising gene expression changes under mechanical forces

showed that genes encoding integrin a5 and aL subunits and their

ligands, fibronectin and intracellular cell adhesion molecules, were up-

regulated, indicating dynamic mechanotransduction and vigorous cell

migration during ECM remodelling (40).

2.2.1 Signalling pathways
Molecularly, mechanical forces could activate some signal

pathways or induce cytokine secretion to regulate ECM

metabolism. IL-6 is a cytokine up-regulated by mechanical forces

and can regulate MMP3 expression through PI3K or mitogen-

activated protein kinase (MAPK) signalling pathways (13). Another

study found that occlusal forces can activate the sonic hedgehog

signalling pathway via Bardet-Biedl syndrome protein-7 and

subsequently regulate cell migration and angiogenesis in the PDL

(41). Angiogenesis is essential for PDL metabolism, with one study

reporting that occlusal forces activate the MAPK signalling cascade

to induce the synthesis of vascular endothelial growth factor

(VEFG-A), fibroblast growth factor (FGF)-2 and nerve growth

factor (NGF), all of which are involved in angiogenesis (22).

Another growth factor important for cell proliferation and

differentiation, insulin-like growth factor-1, is also induced by

mechanical forces via the TGF-b signalling pathway (42).
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2.3 Specific proteins function under
mechanical forces

2.3.1 Collagen, fibronectin and laminin
As the most abundant protein component in ECM, collagen is

involved in many biological functions. Some types of collagen form

the fibrous structure of gingiva and PDL, which helps to endure

mastication forces (43, 44). Besides, type I collagen binding to

integrins then transmit extracellular mechanical signals into

intracellular signals to mediate cell attachment, proliferation,

differentiation, and other functions (7). Fibronectin is the main

component of ECM, which plays an important role in cell

adhesions. Similar to collagen, fibronectin also contributes to

forming PDL fibres. Under mechanical forces, fibronectin

combines with integrins to promote cell activity and involves in

the cytoskeletal recombination (43, 45). Laminin presents in the

epithelial basement membrane that forms a barrier between tissues.

Laminin-5 participates in cell-cell interactions mediated by

integrins; Laminin-5 is important for cell adhesion, growth,

migration, and differentiation (39). The three proteins are all

regulated by MMPs and TIMPs that are affected by forces exerted

on the ECM (6).

2.3.2 Periostin
Periostin, an important ECM protein, is expressed in the

periosteum and the PDL and is crucial for maintaining PDL

integrity and stability of the periodontal structure and function,

particularly under mechanical forces. Periostin modulates the

distribution of ECM proteins, such as fibronectin. In addition,

periostin regulates type I collagen fibrogenesis related to the

biochemical properties of the PDL (46). Previous research on

periostin-null mice found severe periodontal destruction,

including sparse and disordered collagen fibres or even loss of

collagen fibrous network structure that deteriorated over time after

tooth eruption and subjection to occlusal forces (47). A study

concluded that the expression of periostin is responsively high in

tissues with high mechanical forces and rich collagen. The

expression of periostin is up-regulated with increases in the

strength of mechanical forces and significantly down-regulated in

the absence of mechanical forces (48). Moreover, force-induced

periostin could interact with integrin and activate downstream

signalling pathways to regulate cell differentiation and migration

related to soft and hard tissue formation (49). Under compressive

forces during orthodontic processes or some pathological forces,

periostin inhibits cell death by regulating Notch 1 expression (50).

As discussed above, periostin plays a protective role in maintaining

ECM microenvironment stability under mechanical forces. Besides,

inflammation may also alter periostin expression, as bacterial or

inflammatory stimuli will cause a deficiency in PDL fibroblasts and

subsequently reduce periostin production, thus decreasing periostin

during periodontitis. Moreover, a lack of periostin leads to

increased susceptibility to bacterial infection. Therefore, a decline

in periostin destabilises the PDL and aggravates inflammatory

infiltration, bone loss, and PDL destruction (51).
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2.3.3 Fibrillin
Fibrillin, secreted by periodontal fibroblasts and distributed in

the gingiva and periodontal tissues, is a major microfibrillar

fundamental element that contributes to connective tissue

elasticity and integrity. Microfibrils constitute and participate in

forming oxytalan fibres that play a supporting role during

mast icat ion. Fibr i l l in can regulate TGF-b and bone

morphogenetic protein activities via interactions with microfibril-

associated proteins, such as latent TGF-b-binding protein 1 and

fibronectin (52) Fibrillin-1 is also essential for maintaining

periodontal homeostasis under mechanical forces and is involved

in regulating periostin under mechanical forces via the TGF-b
signalling pathway (53). However, another study found no

alteration in fibrillin-1 when the PDL was subjected to external

forces; therefore, the specific function of fibrillin in periodontal

homeostasis remains under exploration.

2.3.4 Integrins
Cell-ECM interaction is an essential process for signal

transmission while integrin plays the central role of this process.

The integrins are types of transmembrane receptors presented on

the plasma membrane link ECM to the cell cytoskeleton, and

thereby mediating cell adhesion, migration, mechanotransduction,

and other physiological processes. Periodontal cells mainly express

integrina2b1, a3b1, and a5b1, its extracellular domain can bind to

ECM components like collagen and fibronectin with high affinity

while its intracellular domain is responsible for the recruitment of

adaptor protein and scaffold protein and indirect interaction with

microfilament cytoskeleton (54, 55). As a force sensor, force applied

to the ECM fibre will induce conformational changes of integrins

and their cytoplasmic domain bind to actin-binding adaptor

proteins that transmit applied forces from integrins to the actin

cytoskeleton. The downstream cell activities respond in several

ways. One is the recruitment and activation of signalling proteins

like FAK, paxillin, SRC and ERK and then activate some

downstream signal pathways like PI3K/AKT. The other way

connects ECM and integrins directly to the nucleus, enabling

force to be transmitted to the nucleus to further regulate gene

expression (56).

2.3.5 Focal adhesions
Focal adhesions(FAs), mechanosensitive macropolymers,

anchored at junction between cell and the ECM. The focal

adhesions composed of several protein layers including the

integrin signalling layer; the intermediate force transduction layer

containing talin and vinculin; and the microfilament skeleton

regulatory layer (55). According to FAs in periodontal tissues,

periodontal cells mainly express integrin a2b1, a3b1, and a5b1
that could combine with ECM components including collagen and

fibronectin, and then activate downstream signaling crosstalk via

proteins such as vinculin or the actin cytoskeleton and downstream

effectors (55). This mechanism is essential for periodontal cells to

detect and measure the mechanical properties of their

microenvironment, such as periodontal tissue stretching and
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shear stresses exerted by salivary flow, and respond appropriately to

these cues (20).

2.3.6 Cadherins
Cadherins are a family of transmembrane glycoproteins that

mediate calcium-dependent cell-cell adhesion. Similar to focal

adhesion, cadherins are mechanosensitive that have a similar

function with focal adhesions. In response to mechanical forces, cell

adhesion receptors such as cadherins can induce actin cytoskeletal

recombination, which alter cell activity (55); E-cadherin transmits

external forces and activates Adenosine 5‘-monophosphate-activated

protein kinase (AMPK), showing a protective role against metabolic

disturbances (57). Cadherin-11-mediated adherens junctions can alter

the mechanical properties of the ECM (58). Another study discovered

that cadherin-11 shows decreased expression in a time- and intensity-

dependent manner under mechanical force stimulation. Meanwhile, b-
catenin expression is altered in conjunction with cadherin-11.

Moreover, b-catenin can translocate into the nucleus and induce

osteogenesis- and fibrogenesis-related gene expression. In addition,

cadherin-11 can mediate ECM collagen synthesis, and cadherin-11

knockdown in PDLCs changes cell shape and suppresses collagen

synthesis. Accordingly, a previous study indicated that the cadherin-11/

b-catenin pathway in PDLCs is inhibited by mechanical stresses, which

may change the shape of the PDLCs and reduce collagen

production (59).

2.3.7 Nuclear proteins
Forces are transmitted from ECM via FAs through cytoskeleton

to the nucleus from several pathways. First, actin polymerisation

directly affects the conformation of nuclear pore complex (NPC),

and then the mechanosensitive transcription regulators such as

YAP/TAZ (Yes- associated protein/transcriptional coactivator with

PDZ- binding motif) and myocardin-related transcription factors

(MRTFs) flow inside the nucleus to modulate gene expression (56).

Second, stress fibres mechanically connect the ECM and FAs to the

nucleus via the linker of nucleoskeleton and cytoskeleton (LINC).

LINC is mainly composed of nesprin and SUN-domain protein

while nesprin connects outwards to the cytoskeleton such as

cytosolic actin, microtubules, and intermediate filaments in the

cytoplasm and SUN-domain protein is anchored to the nuclear

lamin (60). This yields transcriptional modulation through

transcription factors and chromatin changes (61). LINC is mainly

composed of nesprin and SUN-domain protein while nesprin

connects outwards to the cytoskeleton such as cytosolic actin,

microtubules, and intermediate filaments. in the cytoplasm and

SUN-domain protein is anchored to the nuclear lamin (60).

The interaction between lamins and LINC plays an important

role in the regulation of nuclear mechanical properties and

mechanotransduction. Lamins could directly regulate chromatin

distribution and gene transcription through self-expression, post-

translational modification, and structural changes after stress

stimulation. Although abnormalities in lamins also impair LINC

causing cytoskeleton nucleolysis coupl ing leading to

mechanotransduction defects and downstream chromatin

dysfunction (62).
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2.4 Bone metabolism under
mechanical forces

Since the most obvious clinical feature of periodontal

destruction is bone resorption, bone metabolism is one of the

most important elements in periodontal homeostasis. Osteocytes,

derived from osteoblasts, are the most abundant cells in bone. By

secreting regulatory factors, osteocytes could regulate the activities

of osteoblasts and osteoclasts (63). Most importantly, osteocytes

function as the main cell in bone to sense mechanical stimulation to

induce mechanotransduction (64). Regarding mechanosensors

on the osteocytes, a previous review has reported some

mechanosensors including cytoskeletons (actin filaments,

microtubules, and intermediate filament); cell dentrites and cell

body; primary cilla; integrin-based FAs; gap junctions(Cx43); ion

channels; and glycocalyx (10). The downstream signalling pathways

that are activated to regulate bone metabolism will be discussed in

the next paragraph. Bone formation and resorption are executed by

osteoblasts and osteoclasts to keep alveolar bone homeostasis.

Physiological forces, such as mastication and normal occlusion,

boost circulation and metabolism of periodontal tissues, while loss

of occlusion leads to atrophy of periodontal tissues and bone

resorption (19). Simple pathological forces such as traumatic

occlusion cause vertical resorption of the alveolar ridge and

negatively impact tooth mobility but do not damage gingival

tissues by forming periodontal pockets or cause attachment loss.

In some circumstances, a tooth subjected to pathological forces can

shift or tilt toward the compression side to eliminate applied forces.

This mechanism is similar to orthodontic tooth movement.

Therapeutic forces such as orthodontic forces exerted on the

tooth surface can promote tooth movement through alveolar

bone reconstruction. Normally, bone resorption happens on the

compression side, and bone formation occurs on the tension

side (17).

2.4.1 Signalling pathways
The mechanosensitive signalling pathways may control gene

transcription and protein expression, leading to bone formation and

resorption. For instance, on the compressive side, compressive

forces induce an aseptic inflammatory response to generate

inflammatory cytokines, such as IL-1b, IL-6, and tumour necrosis

factor (TNF)-a, thus stimulating RANKL expression and

osteoclastogenesis. On the tension side, osteoblastogenic factors,

such as alkaline phosphatase (ALP), runt-related transcription

factor 2 (Runx2), bone morphogenetic protein (BMP),

osteocalcin, and type I collagen, are found to be up-regulated in

PDL fibroblasts (14). The canonical Wnt pathway is essential in

osteocytes for mechanosensing and regulating bone mass, while its

specific role in osteoblastogenesis or osteoclastogenesis depends on

the force type, force application time, and force magnitude.

Canonical ligands, such as Wnt1, Wnt3a, and Wnt10b, increase

under mechanical loading (65). Moreover, the non-canonical Wnt

pathway regulates bone metabolism, and Wnt4 promotes bone

formation by inhibiting IKK-NF-kB and activating the WNT-

PCP-ROCK pathway under conditions of periodontitis and
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occlusal trauma (66). Additionally, Wnt pathway inhibitors, such as

sclerostin, dickkopf 1, and Wnt inhibitory factor-1, regulate bone

homeostasis and serve as treatment targets for bone diseases

(65, 67).

MAPK signalling cascades are also activated under mechanical

forces and mainly function in bone formation via the up-regulation

of many osteogenic genes. Under mechanical stimulus, three major

downstream cascades of the MAPK signalling pathway, including

extracellular signal-regulated kinase 1/2 (ERK1/2), p38 kinase, and

c-Jun N-terminal kinase (JNK), are activated, while osteoblast

markers, such as BMP-2, ALP, RUNX2, osteopontin, and osterix,

demonstrate enhanced expression (68).

Hippo-YAP is a newly discovered signalling pathway in which

YAP/TAZ senses cellular microenvironment changes, such as

structural and mechanical alterations. External changes, such as

cell–cell contact, cell stretching, and cell shape, lead to actin

cytoskeleton remodelling, which controls YAP/TAZ activity.

WNT5A and FZD4 may be positively regulated by YAP, and the

YAP/WNT5A/FZD4 axis contributes to the osteogenesis of PDLCs

under stretch forces (69). Moreover, the Hippo-YAP signalling

pathway is responsible for the progression of periodontitis under

pathological forces such as traumatic occlusion. Crosstalk between

Hippo-Yap and JNK pathways during traumatic occlusion and

periodontitis leads to the up-regulation of JNK downstream

effector activator protein AP-1 and inflammatory cytokines (IL-6,

IL-8, TNF-a, etc.) that stimulate RANKL expression, leading to

bone resorption. Therefore, inhibition of YAP can be considered a

new target for the treatment of periodontitis with occlusal trauma

(70, 71).

Prostaglandin (PG) E2/cyclooxygenase (COX)-2 is another

force-sensitive signalling pathway that may have a bidirectional

regulatory role in bone metabolism. PGE2 is an important

downstream target of the mechanosensitive ion channel Piezo1

and some mechanosensitive pathways, such as MAPK and Wnt

pathways (72, 73). Many researchers suggest that a low PGE2

concentration promotes fibronectin synthesis by osteoblasts, while

a high PGE2 concentration causes bone resorption by stimulating

osteoclast differentiation (74).

Apart from the typical signalling pathways described above,

other pathways, such as the IKK-NF-kB, Notch, JAK2/STAT3, and
PIEZO1/Ca2+/HIF-1a/SLIT3 signalling pathways, are reported to

contribute to bone homeostasis under mechanical forces (75–77).

Gasotransmitters, such as H2S and NO have also been reported

to regulate bone homeostasis. Endogenous H2S can be induced by

mechanical forces and secreted by PDLCs to regulate bone

metabolism. H2S tends to promote osteoclastogenesis through its

chemoattractant effect on macrophages and regulates osteoblast

activity during orthodontic treatment (78). NO, another gas

mediator, can regulate multiple cell behaviours in response to

mechanical forces. A previous review concluded that NO not only

can function alone to regulate osteoclast and osteoblast activity but

can also interact with other signalling pathways, such as Wnt/b-
catenin, ERK1/2, and PI3K/AKT, to enhance other cell

activities (74).
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2.5 Characteristic PDLSCs function under
mechanical forces

PDLSCs exhibit an essential role in PDL tissue maintenance and

regeneration. When they are subjected to mechanical forces, the

functions of mechanosensing and mechanotransduction enable

them to transfer extracellular forces into biological signals that

induce cell proliferation, self-renewal, and differentiation (79).

Many studies have reported the potential of PDLSCs to promote

soft and hard tissue formation. Regulation of PDLSC

subpopulations under mechanical forces with regard to

periodontal homeostasis has raised much attention in recent

years. With the application of the cell lineage tracing technique,

subpopulations of PDLSCs characterised with markers, including

leptin receptor (Lepr) and Gli, have been identified as contributors

to periodontal homeostasis under mechanical forces. Lepr+ cells

may be activated by injury and force stimulation via Piezo 1, while

Lepr+ stem cells may induce periodontal regeneration following

periodontal damage due to pathological forces (8). Further,

mechanical forces are essential for the activation of Gli+

multipotential stem cells to periodontal tissues and promote bone

remodelling and injury repair (9, 18). In addition, Axin2+ PDL

progenitor cells are highly sensitive to tension forces and play an

important role in tension force-induced PDL expansion and

alveolar bone formation (80). The discovery of PDLSCs with

additional characteristics to promote tissue regeneration under

specific conditions remains a promising area of research.
2.6 Non-coding RNAs

ncRNAs, which account for more than 90% of cellular RNAs,

do not code for proteins but instead play regulatory roles in many

biological processes involved in cell differentiation, metabolism, and

function. ncRNAs are usually divided into two subtypes: short

ncRNAs (<200 nucleotides) and long ncRNAs (lncRNAs; >200

nucleotides); microRNAs (miRNAs) are short ncRNAs, whereas

lncRNAs exhibit a similar biological origin as mRNA. lncRNA

functions in transcriptional, post-transcriptional, and epigenetic

regulation of gene expression (81). miRNA, circular RNA

(circRNA), and some specific lncRNAs have been reported to be

mechanosensitive. miRNA regulates bone metabolism and

periodontal homeostasis in response to mechanical forces, and its

differential expression depends on the intensity and duration of

applied forces. circRNA is a structurally stable lncRNA with a

single-stranded covalent closure. A large number (2678) of

differentially expressed circRNAs are induced in force-stimulated

PDLSCs, while specific circRNAs may promote PDLSC osteogenic

differentiation (82, 83). Furthermore, some lncRNAs, such as

DANCR, p21, and SNHG8, also function by manipulating

signalling pathways and cytokines (84).

At the mechanotransduction stage, ncRNA may increase the

mechanical sensitivity of mechanoreceptors and ion channels;

ncRNA also interacts with downstream signalling pathways to
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control force-biology signal conversion. During anabolic and

catabolic phases, ncRNA may interact with osteogenesis- and

osteoclastogenesis-related transcription factors such as RUNX2 or

indirect ly change the express ion of osteogenic- and

osteoclastogenic-associated molecules, such as RANKL-RANK-

OPG, Wnt/b-catenin, or TGF-b/BMP to regulate bone

metabolism. In addition, ncRNA regulates osteoclast and

osteoblast differentiation, maturation, and function through

signalling cascades. Apart from bone metabolism, ncRNA is also

involved in autophagy, which serves as a kind of adaption in the

periodontium under mechanical forces characterised by ECM

degradation and reuse. Some therapeutic forces may induce

aseptic inflammatory responses in PDLCs; ncRNAs may regulate

the inflammatory and immune response by targeting inflammatory

cytokines and signal pathways (84).
3 Discussion

The concept of periodontal homeostasis, proposed in recent years,

provides a new perspective of periodontal health. Periodontal

homeostasis refers to the dynamic equilibrium of periodontal tissue

metabolism including gingiva metabolism, PDL metabolism and bone

metabolism. Gingiva metabolism contributes to the immune barrier of

the periodontium. The microbiota-epithelium barrier is quite essential

for the periodontal tissues to defend against external stimuli that are

important for maintaining tissue immune homeostasis. Besides,

mechanical forces could induce immune cells to differentiate into

several types, while the type of immune cell induced by pathological

forces is often averse to eliminating pathogens and tissue repair. PDL,

acted as a “cushion”, could transmit force exerted on teeth to the

alveolar bone. Under forces, ECMmetabolism involves in the synthesis

of PDL fibres as well as angiogenesis that helps maintain PDL integrity.

Some certain proteins such as collagen, fibronectin, periostin, fibrillin,

and integrin help maintain PDL integrity when pathological or

improper therapeutic forces are applied; certain proteins may also

participate in repairing damage. Characteristic PDLSCs such as Lepr+,

Gli+, and Axin+ cells respond to forces and promote tissue

regeneration. Bone metabolism is the ultimate change under applied

forces, which manifests as bone formation and resorption. Many

mechanosensitive signalling pathways have been found to regulate

bone and ECMmetabolism while the ncRNAs also function in the soft

and hard tissue homeostasis.

Teeth are subjected to physiological or non-physiological

mechanical forces. Physiological forces, such as mastication and

occlusion, play a protective role in periodontal tissues while the

specific mechanisms are concluded above. Mastication not only

promotes bone and matrix metabolism but also helps clean teeth.

A previous study has found that loss of occlusion forces on teeth

resulted in bone resorption and periodontium atrophy (19).

Therefore, appropriate forces exerted on teeth are essential for the

periodontal tissues. However, there is a particular issue, although

teeth are under normal physiological forces, loose teeth caused by

periodontitis often experience malocclusion during the occlusal

process. Under this circumstance, physiological forces will

aggravate periodontitis. Therefore, treating periodontitis in time is
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essential, fix or extract loose teeth, and adjust occlusion (85). Non-

physiological forces include pathological and therapeutic forces.

Pathological forces, such as traumatic occlusion and bruxism cause

damage to periodontal tissues. When the destructive forces exceed

the ability of the periodontal tissue to repair itself, forces would cause

cell death through mechanisms, such as apoptosis, pyroptosis, or

necrosis, which is characterised by cell membrane rupture and cell

content outflow that induces a strong inflammatory response. This

implies a breakdown of periodontal homeostasis. However, whether

pathological forces alone would cause periodontitis remains to be

studied. Normally, proper therapeutic forces such as orthodontic

forces promote tooth movement through bone metabolism and PDL

metabolism according to the direction of applied force, which

influences periodontal homeostasis. The impact of improper

therapeutic forces is the same as pathological forces.

In conclusion, we summarise the mechanisms of mechanical

forces including physiological forces, pathological forces and

therapeutic forces in periodontal homeostasis to help recognise

the essential role of force on the periodontal health. We hope that

the potential target could be found by clinicians to provide

treatment of some periodontal diseases.
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