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heel of tumor?
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The non-natriuretic-dependent glutamate/cystine inverse transporter-system

Xc- is composed of two protein subunits, SLC7A11 and SLC3A2, with SLC7A11

serving as the primary functional component responsible for cystine uptake and

glutathione biosynthesis. SLC7A11 is implicated in tumor development through

its regulation of redox homeostasis, amino acid metabolism, modulation of

immune function, and induction of programmed cell death, among other

processes relevant to tumorigenesis. In this paper, we summarize the structure

and biological functions of SLC7A11, and discuss its potential role in tumor

therapy, which provides a new direction for precision and personalized treatment

of tumors.
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Abbreviations: ACC, Adrenocortical Carcinoma; BLCA, Bladder Urothelial Carcinoma; BRCA, Breast

Invasive Carcinoma; CESC, Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma;

CHOL, Cholangiocarcinoma; COAD, Colon Adenocarcinoma; DLBC, Diffuse Large B-Cell Lymphoma;

ESCA, Esophageal Carcinoma; GBM, Glioblastoma Multiforme; HNSC, Head and Neck Squamous Cell

Carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney Renal Clear Cell Carcinoma; KIRP, Kidney Renal

Papillary Cell Carcinoma; LAML, Acute Myeloid Leukemia; LGG, Low Grade Glioma; LIHC, Liver

Hepatocellular Carcinoma; LUAD, Lung Adenocarcinoma; LUSC, Lung Squamous Cell Carcinoma;

MESO, Malignant Mesothelioma; OV, Ovarian Serous Cystadenocarcinoma; PAAD, Pancreatic

Adenocarcinoma; PCPG, Pheochromocytoma and Paraganglioma; PRAD, Prostate Adenocarcinoma;

READ, Rectum Adenocarcinoma; SARC, Soft Tissue Sarcoma; SKCM, Skin Cutaneous Melanoma; STAD,

Stomach Adenocarcinoma; TGCT, Testicular Germ Cell Tumors; THCA, Thyroid Carcinoma; THYM,

Thymoma; UCEC, Uterine Corpus Endometrial Carcinoma; UCS, Uterine Carcinosarcoma; UVM,

Uveal Melanoma.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1438807/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1438807/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1438807&domain=pdf&date_stamp=2024-07-08
mailto:mysun248@hotmail.com
https://doi.org/10.3389/fimmu.2024.1438807
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1438807
https://www.frontiersin.org/journals/immunology


Jiang and Sun 10.3389/fimmu.2024.1438807
Introduction

Tumors, as abnormal growths in the body, often demonstrate a

heightened metabolic state that fuels their relentless expansion. This

amplified metabolic activity is crucial for their survival and growth, as

they voraciously consume nutrients to maintain their proliferative e

momentum. To achieve this, tumors enhance their uptake of essential

nutrients, ensuring a steady supply for their rapid cellular division and

growth. This altered metabolic behavior is a hallmark of malignancy,

reflecting the tumor’s adaptive response to meet its energetic and

biosynthetic demands. Consequently, this heightened metabolic rate

not only underscores the aggressive nature of the disease but also offers

potential therapeutic targets for disrupting tumor growth (1–3). The

unique amino acid transporter-Solute Carrier Family 7 Member 11

(SLC7A11) has been found to be significantly upregulated in various

tumor types, with its expression levels closely associated with tumor cell

proliferation, invasion, metastasis, and the tumor microenvironment

(4–6). Additionally, SLC7A11 has been linked to resistance to radiation

and conventional chemotherapeutic agents (7, 8).Thus, SLC7A11 may

serve as a promising biomarker for the diagnosis and prognostication

of clinical tumors (9).

The significant abundance of SLC7A11 suggests its potential as a

promising target for tumor therapy (10). SLC7A11 plays a crucial role

in facilitating the import of cystine into cells for the synthesis of

glutathione, which is essential for maintaining intracellular glutathione

(GSH) levels and protecting cells from oxidative stress-induced damage

(5). This process is intricately linked to the initiation of ferroptosis.
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The SLC7A11/GSH/GPx4 axis serves as the central defensemechanism

against ferroptosis, and downregulating the expression and activity of

SLC7A11 has been shown to enhance the sensitivity of tumor cells to

ferroptosis (11). Moreover, the elevated intracellular GSH levels

induced by SLC7A11 confer inherent resistance to oxidative stress

therapy in cells. A novel approach in the realm of cancer treatment

involves the use of immunotherapy-activated CD8+T cells, which

release IFN-g to enhance tumor cell ferroptosis via PD-L1 inhibition

(12, 13). IFN-g secretion decreases SLC7A11 expression, suggesting

that combining SLC7A11 inhibitors with immunotherapy could

improve cancer treatment (13, 14). The recent study revealed a

significant reliance on NADPH and glucose in tumor cells

expressing high levels of SLC7A11, thereby questioning the

conventional understanding of SLC7A11 as a promoter of cancer

(15). Suppression of glucose uptake in the presence of elevated

SLC7A11 expression leads to intracellular disulfide stress, ultimately

resulting in cell death (16).

Given the pivotal role of SLC7A11 in cancer treatment, this

paper provides an overview of its structure and biological functions,

as well as its involvement in oxidative stress, tumor metabolism,

immune modulation, and cell death (Figure 1).

Structure and function of SLC7A11

System Xc- is composed of two subunits: the light chain functional

subunit SLC7A11, also referred to as xCT, and the heavy chain

structural subunit SLC3A2, also known as CD98 or 4F2hc (17, 18).
FIGURE 1

Tumor-based characterization of the interventional role of SLC7A11. SLC7A11 can improve tumor resistance to radiotherapy and inhibit tumor
proliferation, invasion and metastasis by affecting GSH synthesis, inducing oxidative stress, causing glucose and glutamine dependence in tumor
cells, and inducing ferroptosis and disulfidptosis in tumor cells.
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In humans, the gene encoding SLC7A11 is situated on

chromosome 4 and comprises 14 exons, resulting in a protein

sequence of 502 amino acids. SLC7A11 is a transmembrane protein

with 12 transmembrane domains, with both its N- and C-termini

located intracellularly (19). This protein is abundantly expressed in

various tissues and cells throughout the human body and is

evolutionarily conserved among vertebrates. In contrast, SLC3A2 is

a type 2 membrane glycoprotein characterized by a single

transmembrane structural domain, with its N-terminal end

intracellular and its C-terminal end extracellular and heavily

glycosylated. SLC7A11 is linked to SLC3A2 through a disulfide

bond formed between the conserved residue Cys 158 of SLC7A11

and Cys 109 of SLC3A2 (20). Notably, SLC3A2 serves as the

chaperone protein for various members of the light subunits of

heterodimeric amino acid transporters (LSHAT) family.

Consequently, the determination of substrate specificity in system

Xc-is primarily influenced by SLC7A11, while SLC3A2 plays a role in

facilitating the transportation of SLC7A11 into the intracellular

compartment or potentially enhancing the stability of the SLC7A11

protein (21). Furthermore, CD44 has been identified as capable of

interacting with and stabilizing SLC7A11 on the membrane of cancer

cells (22) (Figure 2).

A variety of amino acid transporters present on the cell surface

facilitate the uptake of amino acids by cells, with system Xc- being

the main known amino acid transport complex responsible for the

transportation of cystine (23). This complex operates by importing

cystine into the cell and exporting glutamate out of the cell in a 1:1

ratio, without the need for sodium ions. Once inside the cell, cystine

is promptly converted to cysteine, which plays a crucial role as the

limiting factor in the synthesis of glutathione (24). Therefore, the

expression level and activity of SLC7A11 are the main factors

affecting GSH content.
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Expression of SLC7A11 in tumors
and prognosis
Since its initial identification, research has revealed that SLC7A11

exhibits a tissue-specific distribution, with varying levels of mRNA

abundance across 27 different tissues. The findings indicate that

SLC7A11 is most prominently expressed in the brain, followed by the

thyroid, stomach, appendix, bladder, and gallbladder, while

demonstrating lower expression levels in the kidney, heart, and

liver. Given the specific subcellular localization of SLC7A11 and its

recognized functional significance, it is not unexpected that a

multitude of studies have consistently demonstrated the

involvement of SLC7A11 in various neurodegenerative, ocular, and

immune disorders (25, 26).

It is noteworthy that SLC7A11 is prominently expressed in

numerous tumors and exerts influence on tumor progression,

invasion, metastasis, and unfavorable prognosis. Elevated levels of

SLC7A11 expression have been demonstrated in a diverse array of

tumor types, such as lung, liver, pancreatic, breast, ovarian, prostate,

bladder, colorectal, melanoma, and leukemia, in comparison to

healthy tissues (9, 27–30). Particularly in oncology patients who

exhibit insensitivity to initial therapeutic agents and demonstrate

resistance to radiotherapy and chemotherapy interventions (31).

Table 1 lists the expression and prognosis of SLC7A11 in

different tumors.

Mechanically, tumor tissues tend to enhance their own

antioxidant defenses in response to high levels of oxidative stress

by up-regulating SLC7A11 expression, while SLC7A11-mediated

synthesis of GSH acts as a defense against the cytotoxic effects of

radiotherapy or certain drugs, which further reduces the sensitivity

of tumor cells to treatment.
FIGURE 2

Structure and Function of SLC7A11. SLC7A11 and SLC3A2 collectively constitute the glutamate/cystine reverse transporter, with SLC7A11 being a 12-
transmembrane-spanning protein featuring intracellular N- and C-termini, and SLC3A2 being a single-transmembrane-spanning protein with an
extracellular N-terminus and an intracellular C-terminus. The two proteins are linked by a disulfide bond and function to facilitate the cellular uptake
of cystine and the extrusion of glutamate. Cystine is rapidly reduced to cysteine inside the cell and combined with a molecule of glutamate and
glycine to synthesize GSH under the action of GCL and GSS enzymes.
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Role of SLC7A11 in cancer therapy

SLC7A11 expression causes cellular ferroptosis or enhances

tumor killing by immune cells by affecting oxidative status or

nutrient and energy metabolism in the tumor microenvironment

(TME). Here we summarize the potential role of SLC7A11

in cancer.
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SLC7A11 and oxidative stress

Oxidative stress is cellular and tissue damage caused by the

production of reactive oxygen species (ROS) in the organism

exceeding their removal.

ROS are products of normal physiological activities and are a

general term for a class of chemically active molecules and ions with

high oxidative activity, which play important roles in cell signaling

and tissue homeostasis (32). Essentially, ROS are partially reduced

oxygen-containing molecules, including superoxide anion (O2
-),

peroxides (H2O2 and LOOH), and free radicals (HO· and LO·).

Mitochondria are the main site of ROS production, of which more

than 90% are produced by mitochondria in the normal metabolism

and energy supply of the electron transport chain (33). Also, ROS

can be produced by cytochrome P450, NADPH oxidase (NOX),

xanthine oxidase (XO), and peroxidase in the microsomes (34). Of

course, the body also exists a ROS scavenging system to maintain

homeostasis, which is mainly categorized into enzymatic

antioxidants and non-enzymatic antioxidants.

Non-enzymatic antioxidants scavenge free radicals by

interacting directly with them. Such substances include

glutathione, vitamin A, vitamin C, vitamin E, and coenzyme Q10.

Enzymatic antioxidants, on the other hand, act as antioxidants by

catalyzing the degradation of ROS. The main ones are Super Oxide

Dismutase(SOD), Trx system and Gpx family (35).

The Gpx family of glutathione peroxidases is an evolutionarily

highly conserved group of enzymes containing eight main

isoenzymes, among which Glutathione Peroxidase 4(GPx4) utilizes

GSH as a cofactor to convert lipid hydroperoxides into nontoxic

lipids alcohols and reduce free radical accumulation (36). Inhibition

of GPx4 can lead to an increase in ROS whereas increased GPx4

expression can lead to a decrease in ROS content, and GPx4 performs

this function dependent on GSH (37), which is an important

component of the body’s endogenous antioxidant system, and is

derived from glutamate, glycine, and cysteine by dehydration

condensation, and its intracellular level is affected by the ability of

SLC7A11 to transporter cystine (38). Studies have shown that

pharmacological inhibition of SLC7A11 or knockdown of SLC7A11

reduces intracellular cysteine concentration, thereby affecting GSH

concentration (39). erastin, a selective inhibitor of SLC7A11, inhibits

cystine uptake, and salicylsulfonylpyrimidines and glutamate can also

reduce intracellular cysteine concentration and deplete intracellular

GSH by inhibiting SLC7A11 (40), depleting GSH in cells. thereby

inducing cellular oxidative stress and death (Figure 3).

In conclusion, SLC7A11 has a pro-survival effect, and SLC7A11-

mediated cystine uptake can help cells re-establish redox homeostasis

in response to oxidative stress, whereas inhibition of SLC7A11 can

lead to depletion of cellular GSH and thus make the cells more

sensitive to chemotherapy or radiotherapy.
SLC7A11 and tumor metabolism

Beyond its well-documented antioxidant functions, SLC7A11

emerges as a pivotal metabolic regulator that profoundly influences

intracellular nutrient processing and energy metabolism within
TABLE 1 Expression levels and prognosis of SLC7A11 in different tumors.

Tumor type expression Prognosis-
related

ACC UP poor prognosis

BLCA unchanged No significant effects

BRCA UP poor prognosis

CESC UP No significant effects

CHOL UP poor prognosis

COAD UP poor prognosis

DLBC UP No significant effects

ESCA UP No significant effects

GBM unchanged No significant effects

HNSC UP No significant effects

KICH UP No significant effects

KIRC UP No significant effects

KIRP UP poor prognosis

LAML UP poor prognosis

LGG UP No significant effects

LIIC UP No significant effects

LUAD UP No significant effects

LUSC UP No significant effects

MESO UP poor prognosis

OV UP No significant effects

PAAD UP poor prognosis

PCPG UP No significant effects

PRAD UP No significant effects

READ UP No significant effects

SARC UP poor prognosis

SKCM unchanged No significant effects

STAD UP No significant effects

TGCT UP No significant effects

THCA unchanged No significant effects

THYM unchanged No significant effects

UCEC UP No significant effects

UCS UP No significant effects

UVM UP poor prognosis
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cancer cells. A fascinating aspect of SLC7A11’s role in

tumorigenesis is its ability to modulate the uptake and conversion

of cystine. Cancer cells with elevated levels of SLC7A11 expression

exhibit an increased affinity for cystine, which they rapidly convert

into cysteine. This biochemical transformation, however, comes at

an energetic cost (41).

Specifically, the conversion process requires a significant

amount of NADPH, a crucial cofactor that primarily originates

from the cytoplasmic glucose-pentose phosphate pathway. This

pathway, in turn, plays a vital role in generating ribose-5-

phosphate for nucleotide synthesis and NADPH for reductive

biosynthesis and detoxification of reactive oxygen species.

Consequently, cancer cells overexpressing SLC7A11 develop a

heightened dependency on both the glucose and pentose

phosphate pathways for their survival and proliferation (42). This

enhanced reliance on glucose metabolism renders these cells

particularly vulnerable to glucose deprivation. In the context of

glioblastoma, for instance, glucose starvation can induce cell death

more rapidly in cells with high SLC7A11 expression. This

vulnerability presents a potential therapeutic window. By

simultaneously targeting glucose transporter type 1 (GLUT1), a

glucose transporter critical for glucose uptake, and glutathione

synthesis, which is intimately linked to NADPH production and

reactive oxygen species scavenging, it may be possible to deplete

NADPH levels and cause a buildup of reactive oxygen species. This

approach could potentially trigger synthetic lethal cell death
Frontiers in Immunology 05
specifically in cell lines that overexpress SLC7A11 and are thus

sensitized to glucose deprivation, offering a promising avenue for

targeted cancer therapies (43) (Figure 4).

SLC7A11 also affects the nutrient dependence of tumor cells

through glutamine backfilling and GLS dependence (43). SLC7A11-

mediated glutamate transport may deplete the intracellular

glutamate/a-KG pool and activate glutamine catabolism, leading

to greater glutamine uptake (44).
SLC7A11 and immune regulation

Within the tumor microenvironment, interactions involving

SLC7A11 between immune cells and tumor cells play a significant

role in influencing tumor survival and proliferation. Specifically,

cytokines released by immune cells have the potential to impact the

expression of SLC7A11 within tumors. For instance, the secretion of

interferon gamma (IFN-g) by CD8+ T cells has been shown to

down-regulate the expression of SLC3A2 and SLC7A11 in tumor

cells, leading to a disruption in cystine uptake (45). This disruption

ultimately promotes lipid peroxidation and iron-induced cell death

within the tumor cells (46). Conversely, the interplay of cysteine

competition and glutamate secretion among various immune cells,

as well as between immune cells and tumor cells, significantly

impacts the survival of tumors. Cysteine, a crucial amino acid for

T-cell activation, is integral to tumor surveillance and cytotoxicity
FIGURE 3

SLC7A11 regulates cellular redox homeostasis. ROS are present intracellularly in a variety of forms: including superoxide anions, peroxides, and
oxygen radicals. ROS are present intracellularly in a variety of forms: including superoxide anions, peroxides, and oxygen radicals. Mitochondria
produce large amounts of ROS through the electron transport chain, and the metabolism of NADPH and peroxisomes also increases intracellular
ROS levels, as do some microorganisms or misfolded abnormal proteins, and studies have shown that radiation therapy also produces some ROS.
The human body can scavenge excess ROS under normal physiological conditions through SLC7A11-mediated production of GSH. The body can
remove excessive ROS accumulation through SLC7A11-mediated GSH production under normal physiological conditions to maintain
redox homeostasis.
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(12). T cells, lacking the functional SLC7A11 transporter protein

and cystathionine beta-synthase enzyme, depend on neutral amino

acid transporter proteins to uptake cysteine exported by antigen-

presenting cells (APCs) (47).

Myeloid-derived suppressor cells (MDSCs) express the

transporter SLC7A11, which selectively transports cystathionine

but does not export cysteine. MDSCs compete with APCs for

extracellular cystine, leading to a reduction in APC release of

cysteine in the presence of MDSCs (45). This limitation of the

extracellular pool of cysteine hinders T cell activation-mediated

antitumor immunity. Additionally, SLC7A11-mediated glutamate

release in dendritic cells inhibits metabotropic glutamate receptors,

impairing T cell activation (48). The upregulation of SLC7A11 in

glioblastoma (GBM) leads to heightened levels of extracellular

glutamate, facilitating the proliferation, activation, and

suppressive capabilities of regulatory T (Treg) cells, consequently

fostering intratumoral immunosuppression (49). Metabolic

alterations induced by T cells can influence the fate of GBM cells

through SLC7A11, while tumor metabolism further contributes to

immune evasion by impairing T cell activation via SLC7A11-

mediated dysfunction (Figure 5).
SLC7A11 and cell death

In the initial investigations into cell growth conditions,

researchers observed that a lack of SLC7A11-mediated cystine

transport proved fatal for certain cells (50, 51). Subsequent

findings revealed that cells deficient in cystine exhibited

diminished levels of intracellular GSH, a key antioxidant, and that

supplementation with vitamin E effectively prevented this form of

cell death induced by cystine deficiency (52–54). These results

imply a strong association between this mode of cell death and

oxidative stress. Further research identified this specific form of cell

death as ferroptosis (55). Ferroptosis is characterized by the

accumulation of lipid peroxidation products resulting from iron

metabolism and ROS accumulation (56). The SLC7A11/GSH/GPx4

axis plays a central role in the cell’s defense against ferroptosis, with
Frontiers in Immunology 06
GPx4 utilizing glutathione (GSH) as a cofactor to reduce toxic lipid

peroxides at the plasma membrane, thereby protecting the cell from

ferroptosis. SLC7A11 is positioned at the initial stage of the

ferroptosis pathway, and inhibitors targeting SLC7A11 are

commonly used as inducers of ferroptosis in research studies

(57)(Figure 6).

Contrary to the oncogenic implications outlined earlier, the

upregulation of SLC7A11 can also induce apoptotic cell death in

cancer cells under conditions. For instance, in glucose-deficient

glioblastoma, heightened SLC7A11 expression leads to the generation

of ROS and oxidative stress through the consumption of intracellular

NADPH during the conversion of imported L-cystine to L-cysteine

(58). Moreover, the addition of a-ketoglutarate (a-KG), a metabolite

derived from glutamate, effectively restored the viability of cancer cells

with elevated levels of SLC7A11 during glucose deprivation, indicating

a potential role for exported glutamate in promoting cancer cell death

(59). Subsequent research corroborated the significance of converting

glutamate to a-KG for the survival of cancer cells in the absence of

glucose, highlighting the regulatory function of SLC7A11 in

modulating the metabolic adaptability of cancer cells (60). Cancer

cells exhibiting elevated levels of SLC7A11 expression demonstrate a

reliance on glucose metabolism, while cells with reduced SLC7A11

expression show heightened oxidative phosphorylation (OXPHOS)

activity, as observed in lung cancer cell lines. This shift in metabolic

preferences has been further validated in specific cell lines, such as

A549 and H1299, where SLC7A11 knockdown led to an increase in

OXPHOS and a decrease in glycolysis (5). Additionally, this

phenomenon has been replicated in vivo, within a tumor

microenvironment, where the metabolic reprogramming associated

with altered SLC7A11 expression was evident (61). We underscore the

credibility and reproducibility of the observed metabolic shifts in

cancer cells with varying SLC7A11 expression levels (62). Given the

limited scope of current experiments, additional research is necessary

to explore potential underlying mechanisms or constraints

contributing to this paradox. Factors such as the intensity and

duration of ROS exposure may offer insight into the observed

discrepancies. There appears to exist a toxicity threshold for ROS in

the induction of tumor cell death (63). Cell death is only induced at
FIGURE 4

The double-edged sword played by SLC7A11 in tumors. SLC7A11 overexpression in tumors increases cysteine and GSH levels, which are important
for reducing lipid peroxides through GPx4. SLC7A11 also suppresses ALOX12, decreasing lipid peroxides and promoting tumor cell survival. However,
high SLC7A11 expression leads to cystine accumulation, requiring NADPH from the pentose phosphate pathway to convert it to cysteine. Inhibiting
glucose transporter proteins depletes glucose, causing disulfide stress and cell death.
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high levels of ROS, while levels below this threshold have been shown

to enhance tumor malignancy. This phenomenon has been attributed

to the inadequate redox capacity in conditions of limited glucose

supply, as well as the abnormal accumulation of cystine or other

disulfide molecules in cells with high expression of SLC7A11. This

accumulation leads to disulfide stress, ultimately resulting in cell death

through a novel form of programmed cell death known as

disulfidptosis (64). Subsequent investigations revealed that elevated

levels of the SLC7A11 protein unexpectedly heightened the

susceptibility of tumor cells to oxidative stressors, leading to

increased rates of tumor cell apoptosis. Additionally, in vivo

experiments demonstrated that heightened SLC7A11 expression

facilitated localized tumor growth while impeding tumor migration.

In summary, the molecular regulatory mechanism of disulfidptosis

involves multiple aspects of cystine uptake, glucose metabolic

pathways, disulfide stress, and altered cytoskeletal structure (Figure 7).
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These findings suggest the potential for inducing distinct forms

of cell death in individuals with varying levels of SLC7A11

expression, although the interplay between ferroptosis and

disulfidptosis remains an unresolved inquiry.
Tumor therapeutic strategies
targeting SLC7A11

Several compounds have been identified as inhibitors of

SLC7A11, including Erastin, IKE, sorafenib, DPI2, SAS,

glutamate, and INF-g. A high-throughput screening of synthetic

compounds aimed at identifying substances capable of eliminating

tumor cells led to the discovery of erastin, a compound exhibiting

RAS-selective activity (65). Notably, erastin was observed to trigger

a distinct form of cell death, non-apoptotic in nature. Subsequent
FIGURE 5

Role of SLC7A11 in regulating the tumor immune microenvironment. Myeloid-derived suppressor cells (MDSCs) express the transporter SLC7A11,
which selectively transports cystathionine but does not export cysteine. MDSCs compete for extracellular cystathionine with antigen-presenting cells
(APCs), resulting in a decrease in cysteine release from APCs in the presence of MDSCs. This limitation of the extracellular cysteine pool hinders T
cell activation-mediated antitumor immunity. In addition, SLC7A11-mediated glutamate release in dendritic cells inhibits metabotropic glutamate
receptors, thereby impairing T cell activation. Upregulation of SLC7A11 in glioblastoma (GBM) leads to elevated extracellular glutamate levels, which
favors the proliferation, activation, and suppressive capacity of regulatory T (Treg) cells and thus promotes intratumorally immunosuppression. T-
cell-induced metabolic alterations can affect the fate of GBM cells via SLC7A11, and tumor metabolism via SLC7A11-mediated dysfunction impairs T
cell activation, which further promotes immune evasion. Specifically, IFN-g affects the mRNA levels of SLC7A11 and ACSL4 through the JAK/STAT
signaling pathway.
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investigations delved deeper into its mechanism, revealing that

erastin directly inhibits Systems Xc-, thereby depleting GSH

levels. The lethality of erastin may primarily stem from its

quinazolinone backbone, while other chemical moieties could

potentially enhance its inhibitory effects on Systems Xc-.

Additionally, erastin targets the mitochondrial voltage-dependent

anion system (VDAC) (66). Beyond its direct activation of

ferroptosis in the treatment of hepatocellular carcinoma, erastin

also potentiates the antitumor effects of certain conventional

chemotherapeutic agents in hepatocellular carcinoma cell lines.

Furthermore, erastin has the potential to augment the clinical

efficacy of PD1/L1 by influencing the polarization of tumor-

associated macrophages (TAM) (4). In another study, aspirin was

found to elicit a pronounced ferroptosis response in HepG2 and

Huh7 cells, an effect that was amplified by the ferroptosis-inducing

properties of erastin (67). Given its established role as a classical

ferroptosis inducer, erastin has become a benchmark for researchers

evaluating novel compounds or assessing the ferroptosis-inducing

potential of existing drugs (Table 2).

Although erastin demonstrates a potent inhibitory effect on

Systems Xc-, its practical application in vivo is significantly

hindered by its limited water solubility and metabolic instability.

To address these challenges, Imidazolidinone (IKE) was developed

as a structurally improved derivative of erastin. IKE not only

enhances aqueous solubility but also boosts its anticancer

properties. Specifically, IKE boasts a solubility that is three times

higher than erastin, and it exhibits a remarkable 50-fold reduction

in the Lethal Concentration 50 (LC50) for tumor cells, indicating a

significantly enhanced antitumor potency (68).

DPI2, a FIN (ferroptosis-inducing compound), which does not

inhibit GPx4 activity but specifically inhibits SLC7A11 expression,

consumed 90% of the GSH in BjeLR cells compared to the untreated

group. The observed effect of DPI2 was comparable to that of
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erastin, indicating that DPI2 might trigger cellular ferroptosis via a

mechanism analogous to that employed by erastin (37).

Sorafenib, a multikinase inhibitor, has gained widespread use in

the treatment of clinically advanced hepatocellular carcinoma,

offering patients prolonged survival. Previous research attributed

sorafenib’s therapeutic effect primarily to its multikinase inhibitory

function, which halts cell proliferation, angiogenesis, and promotes

tumor cell apoptosis (69, 70). However, recent discoveries indicate

that sorafenib’s toxic impact on hepatocellular carcinoma cells relies

partly on ferroptosis, rather than apoptosis. This effect isn’t tied to

its kinase inhibitory activity but rather to its ability to trigger iron

accumulation and lipid peroxidation stress in the cancer cells (71).

Notably, depleting stored iron in these cells through iron chelating

agents significantly diminishes sorafenib’s cytotoxic effects. Further

investigations have uncovered that sorafenib prompts ferroptosis by

impeding the activity of the SLC7A11 transporter on the cell

membrane. This reduction leads to decreased cystine levels in the

cancer cells, subsequently causing insufficient GSH synthesis and a

decline in GPX4 activity. Clinically, hepatocellular carcinoma

patients treated with sorafenib often develop drug resistance

rapidly, influencing their prognosis. Nrf2, Rb, MT-1G, and SIR

are involved in regulating the sensitivity to sorafenib-induced

ferroptosis through various pathways, contributing to the

emergence of drug resistance (66, 72–74). Adopting a fresh

perspective, targeting specific inhibitor pathways to stimulate

ferroptosis represents a promising strategy to enhance sorafenib’s

drug resistance effectively.

Sulfasalazine (SAS) is a long-approved anti-inflammatory drug

by the U.S. Food and Drug Administration, serving as a primary

therapy for rheumatoid arthritis. SAS promotes ferroptosis through

inhibiting the Xc-system, akin to erastin’s mechanism.

Nevertheless, SAS is significantly less potent in triggering

ferroptosis compared to erastin. Studies have demonstrated SAS’s
FIGURE 6

Strategies of SLC7A11 in mediating ferroptosis in the treatment of tumors. The expression levels of SLC7A11 in different cancers were characterized
differently. For cells with low SLC7A11 expression, intracellular GSH deprivation leads to diminished lipid peroxide scavenging, resulting in tumor cells
that are sensitive to ferroptosis. In contrast, tumor cells with high SLC7A11 expression would be naturally highly resistant to ferroptosis.
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ability to induce ferroptosis in diverse tumor cells, suggesting its

potential as a combinatory treatment with other cancer therapies to

enhance overall treatment effectiveness (75).

As an excitatory neurotransmitter that binds to both excitatory

neurotransmitter binding sites and Cl-dependent cysteine- and

cystine-inhibited transporter sites, the Xc-system facilitates the

transfer of glutamate out of and cystine in. Glutamate-induced

toxicity of cellular ferroptosis is proportional to its ability to inhibit

cystine uptake, which is in effect a negative feedback mechanism.

Exposure to glutamate leads to a decrease in GSH levels and an

accumulation of intracellular peroxides, resulting in oxidative stress

and cell death (76).

As talked about previously, tumor-associated immunotherapy

studies have shown that CD8+ T cells enhance ferroptosis-specific

lipid peroxidation in tumor cells. Specifically, INF-g released by

CD8+T cells downregulated the expression of SLC7A11 and

SLC3A2, leading to a decrease in GSH and an increase in lipid

peroxidation. Inhibition of the ferroptosis pathway eliminated the

synergistic effect of INF-g on ferroptosis in tumor cells in both in

vivo and in vitro mouse models (46). And retrospective analysis
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showed that the expression of SLC7A11 was negatively correlated

with CD8+ T cell signaling, INF-g level and prognosis of tumor

patients. Combining immunotherapy with SLC7A11 inhibitors

produces a powerful therapeutic effect (77).

A powerful SLC7A11 inhibitor, HG106, has been discovered.

This inhibitor notably decreases cystine uptake and disrupts

intracellular glutathione biosynthesis. Furthermore, HG106

demonstrates targeted cytotoxicity specifically towards KRAS

mutant cells. This effect is achieved by amplifying oxidative stress

and triggering apoptosis mediated by endoplasmic reticulum (ER)

stress. Remarkably, the administration of HG106 in KRAS mutant

lung adenocarcinoma (LUAD) models significantly inhibited tumor

growth and extended survival rates in multiple preclinical mouse

models of lung cancer (78).

Lepadin H, a marine alkaloid, stands out as an effective inducer

of ferroptosis. It demonstrates considerable cytotoxicity, stimulates

p53 expression, elevates ROS generation and lipid peroxidation,

while simultaneously reducing SLC7A11 and GPX4 levels.

Additionally, Lepadin H upregulates ACSL4 expression.

Remarkably, it exhibits minimal toxicity towards normal organs,
FIGURE 7

SLC7A11 is highly expressed in tumor cells in response to glucose-dependent induction of disulfidptosis. Disulfidptosis, a unique form of cell death,
relies on redox reactions and disulfide bond formation. This process is controlled by cystine uptake and glucose metabolism, with SLC7A11 playing a
key role in transporting cystine for glutathione synthesis. However, cystine can be toxic and must be quickly converted to cysteine to prevent
harmful buildup. A shortage of NADPH during this conversion can lead to disulfide stress, causing cytoskeletal proteins to form disulfide bonds,
contract, and detach from the membrane, disrupting cell function and leading to death.
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highlighting its potential as a transformative ferroptosis

inducer (79).

Certain small molecule monomers possess the ability to adjust

SLC7A11 activity, thereby influencing intracellular GSH levels and

potentially providing therapeutic advantages for treating specific

tumors. This hints at the possibility of these monomers acting as

innovative ferroptosis inducers by regulating GSH content. One

such example is Pseudolaric acid B (PAB), a naturally occurring

diterpene acid extracted from Kaempferia roots and bark. Studies

have revealed that PAB can trigger ferroptosis in glioma cells by

depleting GSH through SLC7A11 inhibition. By suppressing the

expression or function of the Xc-system, PAB slows tumor growth

in vivo, while also inhibiting cancer cell invasion and metastasis

(80). This cancer-suppressing effect is primarily attributed to the

rapid depletion of GSH caused by SLC7A11 transporter

dysfunction, leading to lipid ROS buildup and ferroptosis induction.
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Ursolic acid, a pentacyclic triterpenoid derived from traditional

plants, significantly boosts ROS accumulation in a hepatocellular

model when paired with sorafenib (81). This enhancement is likely

due to the downregulation of SLC7A11 expression, causing a drop

in intracellular GSH levels and compromising ROS scavenging

abilities. As a result, lipid peroxidation occurs, inhibiting

ferroptosis and offering notable therapeutic benefits in hepatic cell

treatment (82).

Sodium butyrate demonstrates anti-cancer properties by

modulating the GSH/GSSG ratio, intracellular ROS levels, and

lipid peroxide content, thereby inducing ferroptosis in

endometrial cancer cells. It also shows promise in suppressing

osteosarcoma growth and metastasis through ferroptosis

promotion. Pre-exposure to sodium butyrate intensifies erastin-

induced changes in GSH depletion, lipid peroxidation, and

mitochondrial morphology in CRC cells. Mechanistically, sodium
TABLE 2 Small molecule compounds targeting SLC7A11.

Small Molecule Compounds Target Cancer Experimental Models Reference

erastin SLC7A11 HCC, GC, CRC cells, animals (66, 67)

IKE SLC7A11 HCC cells, animals (68)

DPI2 SLC7A11 HCC cells, animals (37)

sorafenib SLC7A11 HCC cells, animals, clinical trial (69–75)

SAS SLC7A11 NSCLC cells, animals, clinical trial (75)

glutamate SLC7A11 neuroblastoma cells, animals (76)

INF-g SLC7A11 NSCLC cells, animals (77)

HG106 SLC7A11 NSCLC cells, animals (78)

Lepadin E/H SLC7A11 melanoma cells, animals (79)

PAB SLC7A11 glioma cells, animals (80)

Ursolic acid SLC7A11 HCC cells, animals (81, 82)

Butyrate sodium SLC7A11
endometrioma,
osteosarcoma

cells, animals (83)

TPZ SLC7A11 osteosarcoma cells, animals (84)

PZH SLC7A11 HCC cells, animals (85)

levobupivacaine SLC7A11 GC cells, animals (86)

curcumin SLC7A11 NSCLC cells, animals (87)

b-Elemene SLC7A11 CRC cells, animals (88)

Agrimonolide SLC7A11 ovarian cancer cells, animals (89)

Ginkgetin synergized SLC7A11 NSCLC cells, animals (90)

SI SLC7A11 NSCLC cells, animals (91)

vitamin D SLC7A11 CRC cells, animals (92)

Tanshinone IIA SLC7A11 GC cells, animals (93)

Ginsenoside Rh3 SLC7A11 CRC cells, animals (94)

Lico A SLC7A11 HCC cells, animals (95)

Talaroconvolutin A SLC7A11 CRC cells, animals (56)

Saikosaponin A SLC7A11 HCC cells, animals (96)
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butyrate down-regulates SLC7A11 transcription by modifying

ATF3 expression (83).

Tirapazamine (TPZ), a hypoxic prodrug, is renowned for its

antitumor effects in the hypoxic tumor microenvironment. TPZ

effectively inhibits all three osteosarcoma cell lines tested.

Additionally, TPZ enhances fluorescent staining of ferrous ions

while reducing SLC7A11 and GPX4 expression, thus promoting

ferroptosis and hindering the proliferation and migration of

osteosarcoma cells (84).

Pientzehuang (PZH) demonstrates inhibitory effects on the

diethylnitrosamine (DEN)-induced hepatocellular carcinoma

(HCC) model in rats. The SLC7A11/GSH/GPX4 axis, associated

with the ferroptosis response, is seen as a potential target for PZH in

preventing the malignant transition from liver fibrosis to HCC (85).

Levobupivacaine, a renowned local anesthetic, exhibits

promising anticancer capabilities. It triggers ferroptosis in gastric

cancer cells by manipulating the miR-489–3p/SLC7A11 pathway,

thereby hindering cancer cell proliferation (86).

Curcumin, a component derived from turmeric and used in

traditional Chinese medicine, has been discovered to cause iron

accumulation, GSH depletion, and lipid peroxidation in non-small

cell lung cancer (NSCLC) cells. However, suppressing Fer-1 and

IREB2—both inhibitors of ferroptosis—substantially diminishes

curcumin’s anticancer and ferroptosis-inducing effects in A549

and H1299 cells (87).

b-elemene, a naturally occurring compound, has emerged as a

novel inducer of ferroptosis. When combined with cetuximab, it

demonstrates enhanced sensitivity towards KRAS-mutant

colorectal cancer (CRC) cells by promoting ferroptosis, offering a

potential therapeutic approach for such cancers (88).

Agrimonolide, extracted from Lungwort, possesses various

biomedical properties, including anticancer activity. In ovarian

cancer cell lines A2780 and SKOV-3, Agrimonolide not only

restricts proliferation, migration, and invasion in a dose-

dependent manner but also initiates apoptosis. Its ferroptosis-

inducing effects in ovarian cancer cells are evident from increased

ROS, total iron, and Fe2+ levels, coupled with reduced expression of

ferroptosis markers SLC7A11 and GPX4 (89).

Cisplatin (DDP) stands as a frontline treatment for advanced

NSCLC. Ginkgetin has been found to augment DDP’s cytotoxic

effects in NSCLC cells by facilitating the accumulation of labile iron

and lipid peroxidation. Studies confirm Ginkgetin’s role in

mediating ferroptosis through significant reductions in SLC7A11

and GPX4 expression, along with alterations in the GSH/GSSG

ratio (90).

Mustardine (SI) has been identified as a potent anti-NSCLC

agent, inducing ferroptosis by elevating subferric iron, ROS, and

lipid peroxidation. Additionally, SI treatment leads to SLC7A11-

dependent downregulation of P53 (91).

Colorectal cancer stem cells (CCSC) significantly impact

prognosis, chemotherapy resistance, and treatment outcomes in

CRC. Remarkably, Vitamin D administration substantially inhibits

CCSC proliferation and reduces tumor spheroid formation in vitro.

Further analysis reveals that Vitamin D-treated CCSC exhibit
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elevated ROS levels, decreased cysteine and GSH levels, and

thicker mitochondrial membranes, suggesting that SLC7A11 may

be a specific target of Vitamin D’s action (92).

Tanshinone IIA, a bioactive compound extracted from Salvia

miltiorrhiza, has been found to reduce the stem-like properties of

gastric cancer cells. Its mechanism involves increasing lipid

peroxidation and decreasing ferroptosis markers in these cells (93).

Ginsenoside Rh3 has proven effective in eliminating colorectal

cancer (CRC) cells. It activates Gasdermin D (GSDMD)-dependent

pyroptosis and inhibits SLC7A11 through the Stat3/p53/NRF2

pathway, thereby inducing ferroptosis (94).

Licorice chalcone A (Lico A), a key component of the

traditional Chinese medicine Glycyrrhiza glabra, is a naturally

occurring small molecule with various pharmacological effects.

Both in vivo and in vitro studies have shown that Lico A

promotes ferroptosis in hepatocellular carcinoma cells by

suppressing SLC7A11 expression. This suppression leads to the

inhibition of the GSH-GPX4 pathway and the activation of reactive

oxygen species (ROS) (95).

Talaroconvolutin A (TalaA) has emerged as a new inducer of

ferroptosis, exhibiting cytotoxicity against colorectal carcinoma

cells in a dose- and time-dependent manner. TalaA significantly

raises ROS levels to a point where ferroptosis is initiated.

Additionally, it downregulates SLC7A11 channel protein

expression while upregulating ALOX3, further promoting

ferroptosis (56).

Multiple studies have also revealed that Saikosaponin A can

induce ferroptosis in hepatocellular carcinoma (HCC) cells, both in

laboratory settings and in living organisms. Through RNA

sequencing analysis, it has been determined that Saikosaponin A

primarily affects the glutathione metabolic pathway and suppresses

the expression of the cystine transporter protein SLC7A11.

Furthermore, Saikosaponin A has been observed to increase

intracellular malondialdehyde (MDA) and iron levels while

decreasing reduced glutathione levels in HCC cells. Interestingly,

Deferoxamine (DFO), Fer-1, and GSH can reduce the cytotoxic

effects of Saikosaponin A, while Z-VAD-FMK is ineffective in

preventing Saikosaponin A-induced cell death in HCC (96).
Conclusions

SLC7A11, as the active subunit of the amino acid transporter on

cell membranes, plays a wide range of biological functions in

organisms. The regulation of SLC7A11 is affected by multiple

dimensions, and also abnormal regulation of SLC7A11 leads to

malignant tumors related to proliferation, invasion, metastasis and

drug resistance. Given that SLC7A11 is often aberrantly expressed

by tissues in tumors, it is expected to be an important biomarker for

the diagnosis and prognosis of a wide range of tumors. SLC7A11

presents itself as a viable target for tumor therapy, with two primary

strategies currently under consideration. The first involves the

development of direct inhibitors targeting SLC7A11 to impede

cystine uptake in cancer cells, thereby diminishing intracellular
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GSH levels and inducing cancer cell ferroptosis. The second strategy

entails the utilization of inhibitors targeting glucose transporter

proteins or glutaminase in the treatment of tumors overexpressing

SLC7A11. This approach capitalizes on the heightened vulnerability

of SLC7A11-overexpressing tumors to glucose and glutamine

deprivation, ultimately leading to tumor cell death. Nevertheless,

the efficacy of the therapeutic strategy is hindered by the inadequate

induction of ferroptosis caused by SLC7A11 inhibitors in the

presence of intracellular cysteine. Recent studies have

demonstrated that combining highly specific SLC7A11 inhibitors

with immune checkpoint inhibitors PD1/PDL1 may enhance

therapeutic efficacy.
Prospects and perspectives

SLC7A11 appears to represent a potential Achilles heel for

tumor targeting; however, several challenges still need to be

addressed. First, most of the treatments for tumors based on

SLC7A11 affecting ferroptosis are preclinical studies that are not

yet supported by sufficient clinical evidence. Second, the

determination of how to define a baseline SLC7A11 expression

level is a critical core of tumor treatment strategies based on

SLC7A11 expression levels. Differences in the expression levels of

SLC7A11 in different tumor tissues, and differences in the

expression levels of SLC7A11 between different patients may also

be closely related to the temporal, spatial, and individual

heterogeneity of tumor tissues. Finally, how to achieve tissue- and

cell-targeted delivery of SLC7A11 to maximize the efficacy of the

drug to minimize its toxic side effects.
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