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Antigen-specific T cell responses
in autoimmune diabetes
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Autoimmune diabetes is a disease characterized by the selective destruction of

insulin-secreting b-cells of the endocrine pancreas by islet-reactive T cells.

Autoimmune disease requires a complex interplay between host genetic

factors and environmental triggers that promote the activation of such

antigen-specific T lymphocyte responses. Given the critical involvement of

self-reactive T lymphocyte in diabetes pathogenesis, understanding how these

T lymphocyte populations contribute to disease is essential to develop targeted

therapeutics. To this end, several key antigenic T lymphocyte epitopes have been

identified and studied to understand their contributions to disease with the aim of

developing effective treatment approaches for translation to the clinical setting.

In this review, we discuss the role of pathogenic islet-specific T lymphocyte

responses in autoimmune diabetes, the mechanisms and cell types governing

autoantigen presentation, and therapeutic strategies targeting such T

lymphocyte responses for the amelioration of disease.
KEYWORDS
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1 Introduction

Autoimmune diabetes is characterized by the destruction of the insulin-producing b-
cells within the pancreatic islets of Langerhans. Although the events preceding the onset of

disease are not entirely understood, many putative precipitating risk factors have been

investigated. A complex interplay among risk factors including host genetic susceptibility,

environmental exposures (particularly viral infection), gastrointestinal microbiome

composition, and dietary contributions lead to tissue destruction in a manner principally

driven by T cells (summarized in Figure 1). This review will focus on the major b-cell
antigens and associated autoreactive T lymphocyte populations that are responsible for
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mediating diabetes pathogenesis. This review will focus primarily

on mechanisms of diabetes pathogenesis elucidated in the non-

obese diabetic (NOD) mouse, henceforth referred to as

autoimmune diabetes, and will correlate these findings to human

diabetes when possible, denoted as type 1 diabetes (T1D).
Frontiers in Immunology 02
1.1 Genetic risk

Extensive epidemiologic and genetic studies have demonstrated

that certain genetic variations afford significant risk to the

development of T1D. The overall risk for developing T1D is
FIGURE 1

Overview of immunologic processes leading to enhanced antigen-specific T cell responses in autoimmune diabetes. Environmental factors such as
genetic predisposition, viral infections, dietary exposures, and microbiome composition are all risk factors for AD development (top). At the organ
level, destruction of pancreatic islets releases self-antigen that drains to pancreatic lymph nodes either as free antigen or loaded to antigen
presenting cells (APCs) where it is presented to antigen-specific T cells that subsequently traffic to pancreatic islets to propagate further damage
(middle). At the islet level, an unknown insult induces bcell necrosis and antigen release, initiating several pathways to T cell antigen presentation.
Antigen may be drained to local lymph nodes either as free antigen or loaded to dendritic cells as above. Alternatively, antigen may enter the
vasculature as exosomes for antigen presentation peripherally. Finally, T cell antigen presentation can occur within the islet, mediated by
macrophages, dendritic cells, or B cells. Ultimately, T cells enter the islet proper from the periphery to promote killing of bcells through apoptotic
mechanisms, further increasing the pool of available self-antigen.
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estimated around 0.4%, and this risk increases to approximately 6%

in children of diabetic parents, demonstrating a heritable genetic

component to T1D risk (1). Per genome-wide association studies

(GWAS), over 50 distinct genetic loci have been identified in

humans that are associated with T1D (2, 3). Generally, these

susceptibility genes may be approximately grouped by the gene

product’s characterized role in coordinating anti-viral responses,

autoantigen formation or presentation, or T cell signaling

responses, and have been discussed in detail elsewhere (1, 4).

Of these gene products, the human leukocyte antigen (HLA)

region on chromosome 6p21 represents the strongest genetic

association for inherited risk of T1D development, as elucidated

by both GWAS and linkage studies (1–3). HLA regions correspond

to major histocompatibility complex (MHC) molecules, which are

cell surface receptors that form complexes with principally either

endogenous peptides (class I) or extracellular, phagocytosed

peptides (class II) that are then displayed to T cells for

recognition. T cell receptor (TCR) binding to these MHC:peptide

complexes is essential for induction of central tolerance (via

deletion of auto-reactive T cells in the thymus), continuous

maintenance of peripheral tolerance (via suppression of

autoreactive T cells that escaped thymic deletion), and for

appropriate activation when foreign peptides are detected during

infection and cancers [reviewed in (5)]. The highest risk HLA

haplotypes are MHC class-II molecules colloquially termed “DR4-

DQ8,” specifically DR4 (DRB1 allele)-DQA1*03:01-DQB1*03:02

(4). These high-risk haplotypes are thought to confer diabetes risk

through different amino acid residues in the MHC peptide binding

pocket which alters both the register in which peptides bind to

MHC and the binding affinity of the MHC:peptide complex when

presented to T cells.

Genetic and environmental factors play a key role in

susceptibility to T1D. Importantly, genetic risk alone does not

account for T1D. Indeed, in surveillance studies that examined

the risk of discordant monozygotic twins to both develop diabetes

(e.g. long-term follow-up of a patient whose identical twin was

diagnosed with T1D), the risk of identical twins to both develop

diabetes is estimated to be 39–65% (6–10). Therefore, there are

likely additional environmental factors that confer susceptibility to

diabetes development.
1.2 Viral infection

Viral infections are hypothesized to be both environmental

triggers and accelerators of T1D pathogenesis [reviewed in (11–

13)] and are well described contributors to initial b-cell damage and

the initiation of a selective, T cell dependent autoimmune response.

In humans, several viruses have been associated with the

development of T1D by serological methods, of which

coxsackieviruses and other enteroviruses are the most well

described (11–14). Notably, enteroviral RNA and capsid proteins

have been detected in the pancreatic islets of living patients with new

autoimmune diabetes diagnosis (15). Coxsackievirus has also been

isolated from the pancreas of a deceased patient following new-onset

diabetic ketoacidosis.
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Coxsackievirus virus strain (coxsackievirus B4 – CVB4) isolated

from new-onset diabetic patients has also been shown to stimulate

the rapid development of diabetes in inoculated mice (16),

demonstrating a causative effect of acute viral infections with the

triggering of b-cell autoimmunity. Since, viral infections in mouse

and rat strains have since been extensively used to better elucidate the

underlying mechanisms governing b-cell destruction and the onset of
autoimmune diabetes, including coxsackievirus infection in the NOD

mouse (17), encephalomyocarditis virus (EMCV) in certain

susceptible mouse strains (18, 19), and Kilham’s Rat Virus (KRV)

in the diabetes-resistant BB-rat (20). There are multiple mechanisms

by which viruses may lead to the development and acceleration of

pancreatic b-cell autoimmunity, including direct infection of b-cells
(leading to cell lysis and antigen release in addition to direct loss of b-
cell mass), bystander activation (b-cell destruction via a robust

inflammatory cytokine response), and molecular mimicry (viral

antigens which share sufficient homology with autoantigens to

stimulate an autoimmune response) (11–13, 21, 22). Together,

these mechanisms may contribute to diabetes initiation through the

induction of an inflammatory environment and enhanced

autoantigen presentation.
1.3 Gastrointestinal microbiome and diet

Gastrointestinal homeostasis is critical for proper immune

system function, and derangements of the intestinal microbiome

and diet may afford increased risk for T1D development (23). Several

studies have demonstrated that administration of antibiotics or

probiotic bacterial cocktails to diabetes-susceptible mice are capable

of altering gastrointestinal microbiome diversity with a concomitant

decrease in autoimmune diabetes incidence, suggesting that various

bacterial species differentially contribute to influencing self-tolerance

(24–27). Supporting this notion, principle component analysis of

autoantibody-positive prediabetic patients have fewer butyrate- and

lactate-producing bacteria such as bifidobacterium, which are

hypothesized to reduce gut permeability and inflammation, and an

increased proportion of Bacteroides species (4.3% compared to 2.0%

autoantibody negative controls) (28), and the diversity of these

gastrointestinal bacteria changes throughout time in seroconverter

and diabetic children (28–32). Further, neonates born by Caesarean

section delivery have an altered microbiome, and these infants have a

20% increased rate of T1D (33, 34). However, this relationship may

not be causal, as diabetes-susceptible mice born by Caesarean section

have no change in diabetes incidence, despite having increased

Bacteroides and Lachnospiraceae species and fewer T regulatory

cells (Tregs) as adults (35). Importantly, microbiome-specific T cell

responses are thought to be induced by a combination of

mechanisms, including molecular mimicry [e.g. magnesium

transporter protein (Mgt)267-275 stimulation of islet-specific CD8+ T

cell responses (36)] and diminished Treg quantity (37, 38). Given

these observations, we posit that simultaneous stimulation of

autoreactive effector T cells via molecular mimicry and decreased

Treg-mediated suppression results in enhanced autoimmunity.

Diet is thought to influence both gastrointestinal homeostasis

and microbiome composition in the context of T1D development.
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Neonatal feeding method is one component of diet thought to

influence T1D with evidence suggesting that any amount of

breastfeeding in the neonatal and infant periods decreases the risk

for T1D development (39, 40). Further, a link between dietary

gluten consumption and T1D has been suggested given that

diabetes-susceptible mice with reduced or absent wheat and

barley proteins in their diets develop delayed diabetes onset, and

in humans approximately 1.7–16.4% of patients with T1D also have

celiac disease, an autoimmune disease that causes immune

intolerance to gluten (41, 42). In humans, this association is more

complex given that effects on autoantibody levels and disease state

depend upon the age at which exposure occurs (43–47).
1.4 The non-obese diabetic mouse

The NOD mouse was derived from Cataract Shionogi (CTS)

mice in 1980, and identified incidentally in a female mouse

exhibiting polyuria, glucosuria, rapid weight loss, and

lymphocytic infiltration of pancreatic islets (48). Approximately

60–80% of female and 20–30% of male mice become spontaneously

diabetic within 12–14 weeks of life when maintained in germ-free

environments (49–51). Interestingly, this rate of disease progression

is much lower when maintained in dirty animal housing facilities

(49), and viral infection in the NOD mouse may either confer

protection from or accelerate diabetes onset depending on the age of

the mouse (17), suggesting that the timing of infection and local

cellular environment may dictate whether infection provokes an

autoimmune response or whether peripheral tolerance to

autoantigens are maintained.

The NOD mouse has remained a dominant animal model for

the study of autoimmune diabetes over the last four decades given

that it shares a number of similarities with human diabetes

[reviewed in (50, 51)]. First, numerous autoantigens have been

identified in both humans and the NOD mouse, including insulin,

glutamic acid decarboxylase (GAD65), islet-specific glucose-6-

phosphatase catalytic subunit-related protein (IGRP), insulinoma

antigen-2 (IA-2), phogrin (IA-2b), chromogranin A (ChgA), islet

amyloid polypeptide (IAPP), and islet zinc transporter (ZnT8) (52–

60). Second, the genetic susceptibility of the NOD mouse mirrors

that of humans such that MHC-II molecules (termed I-Ag7 in the

NOD mouse; DQ8 in human) afford the highest risk for associated

disease (1, 4, 61), which we posit allows for insufficient central

tolerance to key pathogenic peptides. Functionally, human DQ8

and mouse I-Ag7 have been shown to share similar peptide binding

and registers (62) and replacing transgenic mice with DQ8

maintains islet reactivity and diabetes incidence (63), highlighting

the central role of antigen presentation in autoimmune disease risk.

There are additionally over 40 other non-MHC genes associated

with diabetes risk that are involved in anti-viral responses, auto-

antigen formation or presentation, or T cell signaling responses

(1, 4). Third, self-antigen-reactive CD4+ T cells are essential for

both early and late stages of disease development (50, 51, 64, 65).

Additionally, macrophages, dendritic cells, CD8+ T cells, and B cells

have all also been identified infiltrating islets in humans and mice

and have characterized roles with disease initiation and acceleration
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(50, 51). In line with these similarities, the study of NOD mice has

revealed many mechanistic insights into T1D disease pathology; the

focus of this review will be to discuss antigenic targets in the NOD

mouse as well as the cellular mechanisms by which presentation of

these antigens to T cells result in the loss of tolerance and induction

of autoimmune diabetes.
2 Antigenic targets of T cells

2.1 Insulin

Although many b-cell protein self-antigens are known targets in
T1D (summarized in Figure 1), several are thought to be more

pathogenic than others and will be discussed here. Among these,

insulin is perhaps the most well-known. Specifically, the InsB9-23
epitope is likely the critical antigenic portion of insulin given the

large number of islet-infiltrating T cell clones that are reactive to

InsB9-23 peptide (66–68). Supporting these data, it was subsequently

found that NOD.ins1-/-ins2-/- mice expressing a transgene encoding

hormonally functional insulin but with a tyrosine-to-alanine point

mutation at position 16 of the insulin B-chain (NOD.Y16A mice)

prevents I-Ag7 binding and antigen presentation and as a result,

these mice do not develop autoimmune diabetes (53, 69, 70).

Interestingly, transfer of splenocytes from NOD.Y16A mice to

NOD.scid recipients induces disease but at a rate slower than

splenocyte transfer from NOD mice, suggesting that InsB9-23-

specific T cells may participate in disease initiation but require a

latency period of several weeks to recruit participation of other islet

antigen-specific responses (53).

Both murine I-Ag7 and human DQ8 MHC-II molecules bind

peptide for antigen presentation using a core of nine amino acids,

meaning that the fifteen amino acid InsB9-23 peptide could interact

with MHC-II in multiple different positions, termed “registers”

(71, 72). Of the nine amino acids comprising core binding to I-Ag7

and DQ8, binding of a negatively charged residue at position 9

(P9) is most important for determining stability of the peptide:

MHC-II interaction (62). This is due to a polymorphism at

position 57 of the b-chain of all HLA-II diabetes susceptibility

alleles where a negatively charged aspartic acid residue is replaced

by a neutral amino acid, leaving an exposed positively charged

surface that alters the P9 pocket binding parameters (72, 73). The

P9 pocket is thought to be important in determining the binding

affinity of different insulin peptide registers to murine and human

MHC-II (74).

Three insulin binding registers have been studied most

frequently: InsB12-20 (register 1), InsB13-21 (register 2) and InsB14-

22 (register 3). Registers 1 and 2 bind weakly to I-A
g7, with register 2

satisfying the P9 position negative charge condition through its

glutamic acid while register 1 has a neutral glycine at this position

(74). It has been suggested that I-Ag7 and other b57 polymorphic

MHC-II molecules select for TCRs with aspartic acid and glutamic

acid residues within the CDR3b region, allowing neutralization of

the positively charged MHC-II surface following binding of

peptides with neutral amino acids at P9 in a process termed the

“P9 switch” (75, 76). This mechanism would explain how register 1
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can bind I-Ag7 with low affinity to allow InsB12-20-specific CD4
+ T

cells to escape negative selection and home to pancreatic islets (76).

Using InsB12-20-TCR specific transgenic 8F10 CD4+ T cells, it has

been shown that these populations encounter insulin antigen

directly in pancreatic islets without a need for initial antigen

presentation at 4 weeks in the draining pancreatic lymph nodes

(pLN) (77). Importantly, CD4+ T cells specific for register 1 are

thought to recognize antigen only when antigen presenting cells

(APCs) uptake InsB9-23 peptide and subsequently expand in the

periphery (78). In contrast, CD4+ T cells specific for register 2

recognize antigen after APC uptake of full-length insulin and are

deleted in the thymus (78). These studies suggest that development

of autoreactive T-lymphocytes to insulin occurs in a manner

dependent on recognition of InsB9-23 in register 1 but not 2;

indeed, register 1-specific pLN-derived CD4+ T cell clones

transfer disease to NOD.scid recipients (78, 79).

Insulin register 3 binds poorly to I-Ag7 due to a positively

charged arginine residue occupying the P9 position, yet despite this,

several insulin-specific CD4+ T cell clones have been found to

recognize InsB9-23 bound in register 3 but not registers 1 or 2 (56).

Further, the majority of InsB9-23-specific CD4
+ T cells in NODmice

target register 3 with an arginine to glutamic acid mutation at P9 of

the insulin chain (R22E) which enhances binding stability and

segregates into two distinct populations: those with responses

inhibited by additionally mutating B:21 glutamic acid to glycine

(“P8E”) and those with augmented responses (“P8G”) (80–82).

Interestingly, R22E register 3-specific PBMCs are also found in

human patients with T1D (83). Additionally, agonistic R22E

register 3 insulin peptide converts naïve CD4+ T cells into FoxP3+

Tregs and prevents autoimmune diabetes in NODmice, supporting a

crucial role for register 3 binding MHC-II in stimulating

diabetogenesis (84). Similarly, NOD mice treated with a

monoclonal antibody targeting R22E register 3 in the context of

I-Ag7 delays autoimmune diabetes (85). Although the mechanism

underlying natural formation of the P8E and P8G insulin

mimotopes is unknown, a possible candidate may be ligation of

InsB14-20 to a separate unidentified peptide comprising the relevant

amino acids necessary to bind P8 and P9 to form a hybrid peptide

neoantigen (see below). These data together suggest that

presentation of InsB12-23 peptide via diabetes susceptibility MHC-

II alleles can occur through insulin binding in three registers, but

further investigation is required to determine whether T cell

responses directed against one register dominate over the others.
2.2 Glutamic acid decarboxylase

Glutamic acid decarboxylase (GAD) is a b-cell self-antigen

expressed as the GAD65 and GAD67 isoforms in human and

murine islets respectively (86, 87). In contrast to insulin, no single

critically targeted GAD epitope has been identified, and contributions

of GAD-specific T cell responses to disease are not well-understood.

Many newly diagnosed patients produce GAD65-specific antibodies,

and these antibodies can be used to predict T1D disease status with

marginal specificity and positive predictive value (88–90).

Additionally, GAD65555-565-reactive CD4+ T cells can be found in
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the peripheral blood of diabetic patients, and peripheral GAD65-

reactive T cells are known to mount TH1-like IFNg secretion

responses (91, 92). In NOD mice, GAD suppression prevents

disease, suggesting that GAD-specific responses are required for

autoimmune diabetes progression (93). A large number of GAD65-

specific T cell hybridomas recognize GAD65206-220, likely due in part

to an acidic glutamic acid residue occupying the positively charged P9

pocket of I-Ag7, but GAD65206-220-specific T cells have not been

shown to be pathogenic (72, 94, 95). IFNg secretion by GAD65509-528-
and GAD65524-543-specific T cells is observed by 4 weeks in NOD

mice, and analogous responses by coxsackievirus mimotope

GAD65246-266-specific T cells emerge by 7 weeks (96). The

GAD65524-543 peptide in particular has been further implicated as a

pathogenic epitope given that adoptive transfer of a TH1-like

GAD65524-543-specific CD4+ T cell clone induces diabetes in

NOD.scid mice (97).

In spite of this evidence, GAD65524-543 T cell proliferative

responses are also observed in the diabetes-resistant H-2g7-

restricted B10.H-2g7 and NOD.B6Il2-Tshb mouse strains, suggesting

that GAD524-543 reactive T cells alone are insufficient to stimulate

autoimmune diabetes (98). Further, TH1-like CD4+ T cell clones

targeting murine GAD65524-543 or human GAD65247-266 could not

accelerate disease in NOD mice or cause disease in NOD.scid mice,

though this may be due to a low-affinity TCR on generated

hybridomas given successful disease induction in other settings

(99). Additionally, a GAD65515-524-specific CD8
+ T cell clone was

unable to induce disease despite secreting large amounts of IFNg
and accelerating insulitis upon transfer to NOD mice (100).

Although these studies do not collectively clearly explain the role

of antigen-specific T cell responses in autoimmune diabetes it is

likely that GAD65-specific T cell responses evolve over time and

synergize with other antigen-specific T cell populations to

orchestrate destruction of pancreatic b-cells.
2.3 Insulinoma antigen

Receptor-type tyrosine-protein phosphatase-like N, also known

as insulinoma antigen-2 (IA-2) and IA-2b (also termed phogrin or

ICA512) are transmembrane proteins expressed on the secretory

granules of neuroendocrine cells, including pancreatic islets and

neurons. IA-2 was first identified as an autoantigen by analyzing

sera from patients with T1D, in which the autoantibodies

preferentially bound to the intracellular domain of IA-2 (101,

102). The presence of IA-2 autoantibodies, along with insulin and

GAD, strongly correlated with the incidence and rapidity of type 1

diabetes onset (103). Three observations in human patients suggest

that IA-2, similar to GAD and ZnT8 (discussed next), may be

pathogenic but not an early, primary initiating antigen of

autoimmunity. First, T cells isolated from patients were more

likely to be responsive to IA-2 antigen (104), demonstrating their

pathogenic potential. Second, while the presence of both IA-2 and

GAD antibodies in childhood-onset T1D were associated with

MHC-II, this association was with the DRB1 and DQB1 alleles,

respectively, and not highest risk allele DR4-DQ8 (105). Third, IA-2

and GAD antibodies are more likely to appear after anti-insulin
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1440045
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dwyer et al. 10.3389/fimmu.2024.1440045
antibodies and correlate with an older age of T1D diagnosis (105,

106), suggesting that their appearance may occur during epitope

spreading and disease progression rather than the primary insult

that triggers autoimmunity to b-cells.
2.4 Zinc transporter ZnT8

The Zinc Transporter ZnT8 is an islet-specific protein located on

the membrane of insulin secretory granules, that mediates

enrichment of zinc within the granules to store insulin as tightly

packaged hexamers (107). Additionally, ZnT8 is detectable on cell

surface of b-cell cultures following glucose-stimulated insulin

secretion (108), providing a mechanism by which this islet-specific

antigen is accessible to generate an immunologic response. ZnT8 was

first identified as an associated autoantigen in human T1D by

microarray expression profiling of human and rodent islet cells

(109). Autoantibodies to ZnT8 are detected in 60–80% of new

onset diabetics as compared to <2% of healthy controls (109).

More recent studies show that the presence of ZnT8 autoantibodies

portends a higher risk of diabetes independent of other islet cell

autoantibodies (110), and when combined with assessment of other

islet-specific autoantibodies, dramatically improves the risk of

progression to diabetes (103) and autoimmunity detection rates at

diabetes onset (109). These studies demonstrate clinical utility in

screening for autoantibodies to ZnT8.

Given that ZnT8 autoantibodies are rarely identified in isolation

and instead are more likely to be present in patients just before or at

diagnosis of T1D (109), this suggests that ZnT8 autoreactivity may

occur during epitope spreading and participate in acceleration or

disease onset, rather than initiation of autoimmunity. Inconsistent

and variable roles for both CD4+ and CD8+ T cells reactive to ZnT8

favor this observation. Isolated CD4+ T-cells from T1D patients

exhibit significantly higher reactivity as measured by cytokine release

when using a library of ZnT8-derived peptides (111). However,

genome wide association studies have failed to identify consistent

MHC-II genetic associations with ZnT8 antibody positivity (112).

Rather, MHC class I regions, specifically HLA-A2, were associated

with positive ZnT8 antibodies in patients with T1D (112, 113), and

these CD8+ T cells are preferentially found in the pancreas of T1D

patients compared to controls (113). Additionally, ZnT8 (186-194)-

reactive CD8+ T cell clonotypes were found to also recognize a

Bacteroides mimotope (113), providing an environmental link to the

acceleration of autoimmunity. Limited studies in NOD mice also

corroborate the hypothesis that ZnT8 participates during epitope

spreading and not disease initiation. CD4+ T cells reactive to ZnT8

are unable to stimulate disease during transfer into NOD or

NOD.Rag1-/- mice, and are only found in the pancreas or

accelerate diabetes if significant islet damage is already present (114).

While detection of insulin, GAD, IA-2, and ZnT8 antibodies

have provided immense benefit in the immunological surveillance

of autoimmune diabetes risk and in formal diagnosis following

symptom onset, these antigens were all first detected by

identification of autoantibodies in T1D patients. Given that the

pathogenesis of autoimmune diabetes is driven by autoreactive T

cells, there are likely to be many yet unidentified autoantigens that
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play fundamental roles in the initiation of autoimmunity that lack

recognition by islet autoantibodies or have titers well below

detection levels. In this context, work in animal models have

afforded an alternative screening method, by identifying the

molecular targets of diabetogenic T cell clones:
2.5 Islet-specific glucose-6-phosphatase
catalytic subunit-related protein

Islet-specific glucose-6-phosphatase catalytic subunit-related

protein (IGRP) is another b-cell self-antigen that was identified as

the source of the peptide ligand responsible for activating the

diabetogenic NY8.3 CD8+ T cell clone (115). The NY8.3 clone was

isolated from the islets of a diabetic NOD mouse and was found to

induce disease upon adoptive transfer of IGRP-specific CD4+ T cells

(116, 117). It was further discovered that this clone used a TCRa
CDR3 sequence that was similar to sequences used by many islet-

infiltrating b-cell-specific CD8+ T cells in NOD mice, suggesting that

the NY8.3 antigen is a common target of cytotoxic CD8+ T cells in

murine autoimmune diabetes (118, 119). For these reasons, the

NOD.NY8.3 mouse was developed through introduction of

transgenes encoding Kd-restricted TCR sequences derived from the

NY8.3 clone and found to develop accelerated diabetes relative to

littermate non-transgenic controls (120). When similar mice are

depleted of macrophages, disease is entirely prevented and TH1-

skewing of CD4+ T cells is impaired, demonstrating a requirement of

macrophages for activation of CD8+ T cells in NOD.NY8.3 mice

(121). Using high-performance liquid chromatography on cellular

extracts from the pancreatic b-cell line NIT-1, fractions

corresponding to IGRP206-214 were discovered to specifically

stimulate NY8.3 cells, and tetramer staining identified endogenous

IGRP206-214-specific CD8+ T cells in the islets and blood of NOD

mice (115, 122). These experiments confirmed IGRP206-214 as the

antigen of diabetogenic NY8.3 CD8+ T cells.

Following identification of IGRP206-214 as the NY8.3 CD8+ T

cell antigen, several studies in NOD mice and humans have

furthered knowledge regarding the pathogenicity of this epitope.

Interestingly, complete tolerance to IGRP does not prevent disease

in NOD mice despite elimination of IGRP206-214-specific CD8+ T

cells (122). However, when depletion of IGRP206-214-specific CD8
+

T cells occurs in a manner that spares low-avidity clones, disease in

NOD mice is prevented. These data suggest that low-avidity

IGRP206-214-specific clones are non-pathogenic and actively

suppress disease in a manner dependent on suppression of

autoreactive T cell clones that target additional self-peptides

beyond IGRP itself (123). T cell IGRP antigen is encountered

selectively in the pLN, because CFSE-labeled NY8.3 CD8+ T cells

proliferate in the pLN but not the inguinal lymph node (iLN)

following adoptive transfer to NOD mice (122). Interestingly,

peripheral IGRP206-214-specific CD8+ T cell cytotoxicity can be

used to predict disease, as NOD mice with splenocyte effector

activity above a certain threshold develop disease while those

without effector activity do not (124). When transgenic

NOD mice express human HLA-A*0201 in place of murine

MHC-I, islet-infiltrating CD8+ T cells were found to respond to
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IGRP228-236, IGRP265-273 and IGRP337-345, implicating these

epitopes as potentially relevant to human disease (125). Of these

epitopes, IGRP265-273 is a likely target of antigen-specific CD8+ T

cell responses in patients with T1D because it is entirely conserved

between mice and humans (126).

Supporting a role for the pathogenic potential of the IGRP265-273
epitope in humans, in vitro expanded IGRP265-273-specific CD8+ T

cells derived from blood of a diabetic patient effectively lyse target

cells in a peptide-specific manner (127). Further, IGRP265-273-specific

CD8+ T cells utilize shared TCRa-chains across multiple patients

(127). Despite this, IGRP265-273-specific CD8+ T cells from diabetic

patients are incapable of producing IFNg, suggesting an inability of

these cells to amplify their own inflammatory response (126, 127).

This lack of IFNg secretion is likely epitope-specific, as peripheral

CD8+ T cell IFNg responses are observed against IGRP215-223 and

IGRP222-230, two peptides that were computationally predicted to

bind well to HLA-A*0201 (126). Detection of peripheral CD8+ T cell

responses directed against IGRP265-273 and IGRP228-236 is also

observed in recent-onset diabetic patients but not healthy controls

(128). Importantly, IGRP-specific T cell responses appear to be most

pathogenic when mediated by CD8+ T cells, as CD4+ T cells specific

for a number of IGRP epitopes exist in similar proportions in the

periphery of diabetic and healthy subjects and produce similar

amounts of IFNg and IL-10 (129). Altogether, these data support

pathogenic contributions to autoimmune diabetes development by

IGRP-specific CD8+ T cells in both NOD mice and humans.
2.6 Chromogranin A

Chromogranin A (ChgA) is a neuroendocrine protein with

diverse tissue expression including pancreatic b-cells where it is

critical for regulating intracellular vesicle trafficking dynamics and

insulin secretion (130–133). The discovery of ChgA as an T1D self-

antigen is related to its ability to stimulate the diabetogenic BDC-2.5

CD4+ T cell clone, whose cognate antigen went unrecognized for

many years (57). The BDC-2.5 clone was identified among a panel

of islet-specific CD4+ T cell clones expanded from the pancreas of a

diabetic NOD mouse and was capable of inducing rapid diabetes in

prediabetic NOD mice after only 2-weeks post-adoptive transfer in

a manner partially dependent upon CD8+ T cell cytotoxicity (134–

137). A transgenic NOD mouse harboring the BDC-2.5 TCRa- and
b-chains on CD4+ T cells (NOD.BDC-2.5) was subsequently

developed and found to become diabetic with higher penetrance

than non-transgenic NOD mice despite a similar age of disease

onset (138). Experiments involving transfer of diabetogenic CD4+ T

cell clones of different antigen specificities to NOD.scid mice

demonstrated that BDC-2.5-specific cells promoted disease earlier

than other clones (139). Initially, GAD65 was the suggested antigen

targeted by BDC-2.5 clones given the sequence similarity between

GAD65528-539 and several synthetic peptides stimulatory to BDC-

2.5 CD4+ T cells (140). However, the BDC-2.5 CD4+ T cell

proliferation induced by this peptide was low and a similar

peptide (GAD521-535) failed to cause BDC-2.5 IFNg secretion, so

this hypothesis was quickly abandoned (140, 141). Other CD4+ T

cells responsive to synthetic peptides with BDC-2.5 CD4+ T cell
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and found in NOD mouse islets and spleens, but these experiments

similarly were not able to elucidate the BDC-2.5 antigen (142).

The first clue that ChgA is an antigenic source for BDC-2.5

CD4+ T cells was the observation that the isolated secretory granule

fraction from subcellular fractionation of b-cells stimulated BDC-

2.5 T cells (143, 144). Further experiments involving

chromatographic fractionation of b-cell membrane lysate followed

by mass spectrometry of fractionated peptides identified ChgA as a

candidate antigen for the BDC-2.5 clone due to its presence in a

series of highly stimulatory elution fractions (57). Additionally, it

was shown that NOD.ChgA-/- mouse islets do not stimulate BDC-

2.5 CD4+ T cells to produce IFNg, and disease was completely

prevented, and only slight insulitis was observed in these mice (57,

145). While these data implicated ChgA-specific autoreactive T cells

in autoimmune diabetes, genetic deficiency of chromogranin also

likely affects disease trajectory via other b-cell intrinsic mechanisms.

Specifically, genetic deletion of ChgA in the NODmouse may result

in b-cell secretory granule deficits given the contributions of ChgA

to normal vesicular trafficking (131, 132). This is supported by

results showing that NOD.ChgA-/- mice produce less insulin on

glucose challenge, and several insulin-specific hybridomas are less

responsive to NOD.ChgA-/- islets relative to NOD islets (133).

Additional experiments further implicated ChgA as a potential

source of BDC-2.5-stimulatory peptides: the high-affinity pS3 BDC-

2.5 antigen mimotope was found to have sequence similarity to the

ChgA cleavage product WE14, and WE14 was capable of weak

BDC-2.5 CD4+ T cell stimulation (57). WE14-reactive CD4+ T cells

have also been detected in diabetic patients (146). Confusingly,

WE14 could not elicit the same level of IFNg secretion from BDC-

2.5 CD4+ T cells as b-cell membrane or the pS3 mimotope, and the

N-terminus of WE14 is predicted to occupy the C-terminal half of

the I-Ag7 binding groove, leaving positions 1–4 unfilled (57).

Vasostatin-1-derived ChgA29-42 peptide was found to stimulate

BDC-2.5 proliferation better than WE14, but even this peptide

did not stimulate as robustly as the pS3 mimotope (147). These data

suggested that, while ChgA-derived peptides are clearly implicated

in BDC-2.5 CD4+ T cell activation, an unknown alteration likely

changes the amino acid sequence of a ChgA-derived peptide in

some manner to increase its propensity for diabetogenic T cell

activation. However, the details of this process and the identity of

the natural BDC-2.5 antigen remained elusive.
2.7 Islet amyloid polypeptide

Similar to the identification of ChgA as the peptide targeted by

the BDC-2.5 clone, islet amyloid polypeptide (IAPP) was identified

via investigating the cognate antigen of the diabetogenic BDC-6.9

CD4+ T cell clone (135–137, 148). The BDC-6.9 clone was isolated

from the pancreas of a diabetic NOD mouse and caused disease

upon transfer to prediabetic mice after a 2-week latency period,

similar to the BDC-2.5 clone (135–137). Interestingly, adoptive

transfer of BDC-6.9 CD4+ T cells to NOD.scid recipients induces

rapid disease while BDC-2.5 CD4+ T cells require co-transfer with

CD8-enriched splenocytes, suggesting that the BDC-6.9 clone
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1440045
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dwyer et al. 10.3389/fimmu.2024.1440045
harbors intrinsic b-cell destructive properties independent of CD8+

T cell cytotoxicity in this setting (137). However, BDC-6.9 and

BDC-2.5 CD4+ T cell clones (derived from T cell lines) transfer

diabetes with equal onset and incidence to NOD mice, implying

equivalent diabetogenic potential in spontaneous disease (137).

Identification of the antigenic source of the BDC-6.9 clone

occurred quickly due to an early observation that transfer of BDC-

6.9 CD4+ T cells to F1 progeny of NODxBALB/c breeding pairs did

not cause diabetes, yet BDC-2.5 CD4+ T cell transfer was capable of

disease induction (149). These F1 progeny were subsequently back-

crossed to BALB/c mice (BC1) and patterns of BDC-6.9 islet antigen

inheritance were statistically assessed (148). This demonstrated that

approximately 50% of the BC1 mice bear the BDC-6.9 antigen,

which therefore mapped to a single genetic locus given the

Mendelian inheritance pattern. BC1 mice were then genotyped to

determine linkage of a known genetic locus with the ability of islets

from each mouse to stimulate BDC-6.9 CD4+ T cell proliferation.

This process identified a telomeric region on chromosome 6 that

encoded IAPP as the only exclusively islet-expressed gene strongly

and therefore implicated IAPP as the antigen recognized by BDC-

6.9 CD4+ T cells.

IAPP was further implicated as a diabetogenic antigen when

NOD.IAPP-/- islets were found incapable of stimulating

diabetogenic BDC-5.2.9 CD4+ T cell IFNg responses, and BDC-

5.2.9 T cells could not cause disease upon transfer to NOD.IAPP-/-

mice (150). Further, the KS20 IAPP peptide segment could

stimulate BDC-5.2.9 CD4 T cell IFNg responses, and tetramer-

specific KS20-reactive CD4+ T cells found in the pancreata of

diabetic NOD mice could be cloned and expanded to rapidly

transfer disease to prediabetic NOD recipients (59, 150). These

results suggested that certain CD4+ T cell responses in the NOD

mouse target unmodified epitopes derived from the IAPP protein.

However, despite successes with IAPP stimulation of the BDC-5.2.9

clone, no group was able to demonstrate stimulation of the BDC-6.9

clone with IAPP antigen, framing an unidentified amino acid

sequence modification of IAPP as the putative source of antigen

for BDC-6.9 CD4+ T cells.
2.8 Hybrid peptides

In recent years, hybrid peptide-specific T cell responses

associated with autoimmune diabetes pathogenesis have been

described in both animal models and human samples (151–155).

Given that these novel peptide targets are thought to originate in the

periphery as post-translational modifications (PTMs), one might

predict that hybrid peptide-specific T cells would therefore escape

clonal deletion in the thymus and evade central tolerance

mechanisms (156). Hybrid peptide-specific T cells that recognize

their cognate antigen in an inflammatory context would then be

expected to become activated and expand. This is because

autoimmune regulator (AIRE)-expressing medullary thymic

epithelial cells (mTECs) presumably do not express post-

translationally modified peptides as tissue-restricted antigens and

hybrid peptide antigens are predicted to be sufficiently limiting such

that it could not be transported by APCs or solubilized to freely
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enter thymic tissue (157). This assumption is theoretical, and no

such evidence has been identified that central tolerance is either

occurring or not occurring has been published to date.

Evidence for the relevance of hybrid peptides as antigens in

autoimmune diabetes initially emerged with further study of the

BDC-2.5 CD4+ T cell clone. Because the ChgA-derived peptide

sequence WE14 is only slightly stimulatory to BDC-2.5 CD4+ T

cells, transglutamination of WE14 was explored as a possible

mechanism of ChgA PTM and increased antigenicity given the

known role of transglutaminase (TGase) enzymes in various

autoimmune processes (158, 159). TGase treatment of WE14 was

found to increase antigenicity towards BDC-2.5 CD4+ T cells via

covalent crosslinking and isopeptide bond formation and TGase-

treated WE14 stimulated PBCMs from certain diabetic patients

better than WE14 (146, 158). However, in vivo identification of

transglutaminated WE14 peptides was never described, so this

hypothesis was soon abandoned. Given the prediction that

unmodified WE14 optimally binds with its N-terminus in

position 5 of the I-Ag7 peptide binding groove leaving positions

1–4 unfilled, it was soon discovered that the addition of four amino

acids to the N-terminus of WE14 corresponding to positions 1–4 of

the high-affinity pS3 BDC-2.5 antigen mimotope (RLGL-WE14)

robustly enhanced its ability to stimulate BDC-2.5 CD4+ T cell IL-2

secretion (57, 160). This peculiar finding suggested that a post-

translational process may generate a fusion peptide product

between WE14 and another peptide at its N-terminus as the

autoantigen for the BDC-2.5 clone.

Direct evidence for hybrid peptide sequences functioning as

autoantigens was provided with mass spectrometric analyses

performed on antigenic b-cell extract fractions, which showed

that fractions corresponding to fusion peptide sequences between

the insulin C-chain (InsC) and WE14 (DLQTLAL-WSRMD; InsC-

ChgA) and InsC and IAPP (DQTLAL-NAARD; InsC-IAPP)

stimulate IFNg production from BDC-2.5 and BDC-6.9 CD4+ T

cells respectively (152, 161). These results were recapitulated with

direct in vitro culture of BDC-2.5 and BDC-6.9 CD4+ T cells with

InsC-ChgA and InsC-IAPP peptide respectively (152, 161).

Interestingly, a second unidentified b-cell extract fraction peak

was found to stimulate BDC-2.5 CD4+ T cells even more

intensely than the InsC-ChgA peak, suggestive of BDC-2.5 CD4+

T cell antigenic promiscuity (152). These data offer strong support

for InsC-ChgA and InsC-IAPP peptides as physiologic agonists for

the BDC-2.5 and BDC-6.9 CD4+ TCRs.

Identification of endogenous hybrid peptide-specific T cells has

been possible with tetramer-tracking technologies (152, 153, 155,

161, 162). Polyclonal tetramer-specific InsC-ChgA-, InsC-IAPP-

and InsB9-23 mimotope-reactive CD4+ T cells can be found in the

pLN, spleen, and pancreas of prediabetic and diabetic NOD mice,

and InsC-ChgA-specific CD4+ T cells are the most frequent of the

three in pancreatic islets (152, 153, 161). Approximately 80% of

InsC-ChgA-specific CD4+ T cells are CD44highCD62Llow in the pLN

by 3-weeks and this proportion is persistent out to 10-weeks, much

higher than the 20–40% expression by InsC-IAPP- and InsB9-23-

specific CD4+ T cells (153). Diabetic NOD splenocytes also produce

more IFNg when cultured with InsC-ChgA peptide than InsC-IAPP

or InsB9-23 peptides, and a greater proportion of pancreas and
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spleen InsB9-23-specific CD4+ T cells are FoxP3+ Tregs than InsC-

ChgA- or InsC-IAPP-specific CD4+ T cells. These data implicate

InsC-ChgA-specific CD4+ T cells as potent TH1-like effectors

whereas a larger proportion of InsB9-23-specific CD4
+ T cells may

adopt a suppressive Treg phenotype. The phenotype of InsC-IAPP-

specific CD4+ T cells is less clear from this study, and there were

fewer cells of this specificity. However, it was also shown that the

total frequency and proportion of CD44highCD62Llow InsC-ChgA-

and InsC-IAPP-specific CD4+ T cells in peripheral blood of NOD

mice increases over time with disease onset much more robustly

than InsB9-23-specific CD4
+ T cells, strongly implicating these two

hybrid peptide-reactive populations in diabetes pathogenesis.

Interestingly, it was also shown that a bimodal distribution of

high- and low-affinity InsC-ChgA-specific CD4+ T cells exist in

the islets of diabetic NOD mice, suggesting that two functionally

different populations of these cells may contribute to disease in

different ways (162). For example, high-affinity cells may be more

likely to initiate disease pathology and epitope spreading while low-

affinity cells may help maintain a long-term proinflammatory state

later in disease (163). Regardless of the precise mechanism of hybrid

peptide-specific CD4+ T cell antigen encounter, these cells are

prime suspects for critical mediators of disease progression.

Hybrid peptide antigens are not limited to only murine InsC-

ChgA and InsC-IAPP, as multiple hybrid peptides derived from

various islet peptide fusion partners have been observed in both

NOD mice and diabetic patients (151, 152, 154, 155). For example,

both InsC-ChgA- and InsC-IAPP-specific CD4+ T cells have been

identified in peripheral blood of patients with T1D (151, 154).

Insulin-insulin hybrid peptides have also been frequently found,

with InsC-InsC and InsC-InsA hybrids being the most common in

diabetic patients relative to healthy controls (151, 154, 155). InsB

left-half hybrid peptides have also been identified. InsB-

neuropeptide Y-specific CD4+ T cells found within the islets of a

diabetic patient secrete IFNg upon in vitro stimulation, suggesting

that these cells may be pathogenic effectors late in the disease

process (152). Additionally, peripheral blood InsB:secretogranin I-

specific CD4+ T cells have been identified in diabetic patients that

possess a CD45RA-CCR7- effector memory phenotype, implicating

this hybrid peptide fusion product as a potential contributor to the

development of a long-term autoimmune response (155). Examples

of hybrid peptide fusions to InsB are particularly interesting because

they suggest a mechanism whereby InsB9-23 may be cleaved at

amino acid 21 to allow formation of a fusion protein that would

essentially accomplish a R22E or R22D amino acid substitution

required for InsB9-23 to favorably bind to diabetes-susceptibility

MHC molecules in register 3 (82). Given the sizeable contribution

of hybrid peptides to the total peptide pool in NOD mouse islets, it

is likely that additional roles for (and different antigen specificities

of) hybrid peptide-specific T cells will continue to emerge as the

field progresses (164).

Although hybrid peptide fusion products are relevant to T1D

pathogenesis, their mechanism of production is unknown (151–

155). Fusion of disparate protein segments into hybrid peptides may

proceed through a transpeptidation reaction known to occur in

other physiological settings (165–167). This transpeptidation

process would be expected to occur optimally under conditions
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b-cell dense-core insulin secretory granules that contain over

200,000 insulin molecules alone per secretory granule (168).

Supporting this idea, b-cells from diabetic patients express

peptide:HLA-I complexes loaded with several different

transpeptidation products (169). While it has been shown that

cathepsin L can mediate the transpeptidation of insulin C-chain

(InsC) and chromogranin A (ChgA) peptide fragments to form an

InsC-ChgA hybrid peptide that is highly stimulatory to the

diabetogenic murine BDC-2.5 CD4+ T cell clone, this cathepsin

subtype is not normally found at high levels within pancreatic islets

(170–172). This implicates other b-cell secretory granule enzymes

as putative key mediators of the transpeptidation reaction.
2.9 Alternative neoantigen products

Importantly, PTMs other than hybrid peptides are also likely

relevant to T1D pathogenesis, as deamidation, transglutamination,

and citrullination of critical pathogenic epitopes recognized by CD4+

and CD8+ T cells have all been observed (151, 173, 174). Another

class of neoantigens that may contribute to disease progression

includes defective ribosomal products, a key example of which is

an alternative open reading frame within human insulin mRNA

recognized by CD8+ T cells capable of directly killing b-cells (175,
176). Additionally, mRNA splice variants may function as T cell

neoantigenic targets given that 35% of human islet genes undergo

alternative splicing, and splice patterns are altered following

exposure to the proinflammatory cytokines IL-1b and IFNg (177).

Indeed, splice variants of IA-2 are uniquely expressed in islets

relative to the thymus and spleen, and b-cells from diabetic

patients express peptide:HLA-I complexes loaded with alternative

mRNA splice products of preproinsulin and secretogranin V (169,

178). Although many examples of diabetes-related neoantigens have

been identified, the role of each class in stimulating diabetogenic T

cell responses is still unclear and requires further investigation.
2.10 Epitope spreading

Once pancreatic islets become inflamed and b-cell destruction
begins, additional antigen exposure occurs through subsequent

activation of more diverse antigen-specific T cell responses in a

process termed epitope spreading (179, 180). Because CD4+ and

CD8+ T cell numbers within pancreatic islets increase as disease

progresses in diabetic patients, it is likely that epitope spreading

occurs early in disease and rapidly accelerates thereafter (58, 181,

182). T cells from patients with T1D target a greater variety of

epitopes from GAD65 and proinsulin proteins compared to

partially HLA-matched healthy controls, demonstrating intra-

protein epitope spreading in disease (179). Additionally, PBMC

responses from autoantibody-positive individuals target an

increasing number of islet proteins throughout time, suggesting

that a temporal hierarchy of pathogenic epitopes may exist both

within and between different b-cell-derived proteins (180).
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Supporting a model of antigenic hierarchy, insulin appears to be

an earlier target of antigen-specific immune responses given that

tetramer staining of recent-onset diabetic patient islets shows mostly

insulin-specific CD8+ T cells, whereas responses against IGRP, IA-2,

GAD65, IAPP and preproinsulin are present in islets from patients

with longstanding disease (58). Similarly, InsB9-23-coupled splenocytes

induce tolerance in young NOD mice, but tolerance is not achieved

using epitopes derived from IGRP or GAD (183, 184). In contrast,

TH1 CD4
+ T cell responses have been shown to target GAD509-528 and

GAD524-543 before spreading to insulin in NODmice, though this may

simply be due to a lack of targeting the pathogenic InsB9-23 epitope

(96). Proinsulin-specific T cell responses appear to be a prerequisite

for IGRP-specific responses, since proinsulin-tolerant NOD mice do

not develop IGRP-specific CD8+ T cell expansion even though IGRP-

tolerant NOD mice develop insulitis and AD (122).

Taken together, it is apparent that a complex interplay between

T cell responses of multiple antigen specificities evolves as disease

proceeds, though the details of these relationships and their origins

during the earliest phases of diabetes initiation require further

inquiry. Future studies in mice that can target the endogenous

polyclonal T cell populations selective to each autoantigens will help

define which antigen(s) determine disease initiation and

progression. Given that hybrid peptides are neoantigens formed

in the periphery, we posit that hybrid peptide-specific T cells are the

principal early drivers of autoimmune diabetes.
3 Presentation of autoantigen to
T cells

3.1 Dendritic cells

Activation of self-reactive T cells in the context of T1D is

potentially driven by the antigen presenting activity of several APC

subtypes including dendritic cells (DCs), macrophages, B cells and

islet b-cells mediated through loading self-antigen on MHC-I or

MHC-II surface molecules. DCs represent particularly compelling

candidates given their increased presence in the islets of T1D

patients as disease progresses and their production of the

proinflammatory cytokines TNFa and IL-1b (185). This increase

in islet-localized DCs throughout time is likely mediated at least

partially through the attractive actions of chemotactic cytokines

released by islet macrophages, given that macrophage depletion in

NOD mice prevents the accumulation of islet DCs (186). However,

the presence of DC precursors with proliferative potential in fetal

NOD pancreata suggests a possible inherent residence and self-

renewal capacity as well (187).

Irrespective of the origin of pancreatic DCs, islet DCs have been

shown to phagocytose dense-core, insulin-like granules and

produce b-cell protein-derived peptide:MHC complexes, with

similar DCs also appearing in the pLN (188, 189). Further, NOD

islet DCs pulsed with b-cell secretory granules are capable of direct
presentation of insulin peptides, and this process is dependent upon

the intrinsic affinity of I-Ag7 for pathogenic insulin peptides in both

type 1 (XCR1+) and type 2 (SIRPa+) conventional DCs (cDC1s and

cDC2s) (79, 190). This process is thought to be facilitated by
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widespread b-cell death early in life in NOD mice that increases

b-cell antigen loading by CD11b+CD11c+CD8a- DCs that

subsequently traffic to the pLN for antigen presentation (191).

Importantly, cDC1s are required for the development of

autoimmune diabetes given that NOD.Batf3-/- mice do not

develop islet immune cell infiltration or diabetes (batf3 plays a

central role in the development of conventional DCs) (192).

Interestingly, adult NOD.Batf3-/- splenocytes transfer disease to

NOD.Rag1-/- mice but not as efficiently as diabetic NOD

splenocytes, suggesting a partial decrease in the pathogenic

capacity of cDC1-deprived NOD T cells. This decrease in

pathogenic capacity may be due to decreased CD8+ T cell

effectors, because CD8+XCR1+BATF3+ cDC1s are also

professional cross-presenting cells and thus also responsible for

activation of diabetogenic CD8+ T cells (193, 194). These studies

together support a model whereby islet cDC1s acquire antigen

within the intra-islet space and subsequently traffic to the draining

lymph node to induce activation of autoreactive T cells.
3.2 Macrophages

A role for macrophages in the pathogenesis of autoimmune

diabetes has long been suspected given that macrophage depletion

in NOD mice prevents disease, though the extent to which their

diabetogenic properties are due to T cell-directed antigen

presentation has been difficult to elucidate (186, 195, 196). Similar

to islet DCs, resident islet macrophages produce TNFa and IL-1b;
however, unlike DCs, there is not a need for replenishment by

circulating monocytes, given that parabiosis experiments have

demonstrated that islet macrophages undergo self-renewing

proliferation (185, 197). Their location embedded within

pancreatic islets permits CX3CR1
+F4/80+ macrophages to

regularly sample antigen derived from both intravascular sources

in adjacent blood vessels as well as dense core secretory granules

directly within b-cells, offering a mechanism by which macrophages

might acquire auto-antigen for presentation (198). Additionally, it

has been shown that macrophages are capable of insulin uptake

from b-cell-derived secretory granules, a subset of which are likely

obtained by sampling exosomes released by b-cells (189, 190).

Using a model of macrophage depletion through administration

of liposomal dichloromethyl diphosphonate to NOD.NY8.3 mice,

insulitis and autoimmune diabetes were prevented and splenocytes

were found to downregulate FasL and perforin, suggesting a role for

macrophages in activating peripheral CD8+ T cells (121). Despite

the evidence supporting macrophage antigen presentation as

important for disease, it is crucial to note that macrophage

depletion in NOD mice at late-stage prediabetic timepoints is just

as effective at preventing disease onset as intervention at 3 weeks of

age (186). Given that many autoreactive T cells have likely already

become activated at late-stage diabetic timepoints, this result

implies that macrophages exert the brunt of their pathogenicity

through mechanisms distinct from direct antigen presentation such

as expression of pro-inflammatory cytokine and nitric oxide release

that results in direct b-cell damage, as well as enhancing further T

cell recruitment once an autoimmune attack is underway.
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One important mechanism by which tissue-resident

macrophages may mediate b-cell destruction is via the local

production inflammatory cytokines. Macrophages produce several

inflammatory mediators upon viral infection and following

recognition of other danger-associated molecular patterns

(DAMPs), including IL-1b, TNFa, nitric oxide, and prostaglandins

(22, 199, 200). Surprisingly, macrophage expression of inflammatory

genes in response to diabetogenic viral infections is dependent on

activation of the chemokine receptor CCR5 and not controlled by

viral dsRNA sensors, suggesting novel and distinct signaling

pathways in macrophages that may be implicated in b-cell damage

(22, 201, 202). In vitro studies using isolated islets and b-cell lines
show the activated macrophages inhibit insulin secretion, stimulate

ER stress, cause DNA damage, and can result in b-cell death in a

manner dependent on intra-islet macrophage cytokine release

(203–209). Specifically, macrophage expression of IL-1b stimulates

b-cell production of micromolar levels of nitric oxide, which results

in these potentially deleterious (but reversible) effects on b-cell
function and viability (203–209). Indeed, selective pharmacological

blockade, antibody neutralization, or genetic deletion of

inflammatory mediators such as IL-1b and inducible nitric oxide

synthase (iNOS; the enzyme in b-cells responsible for nitric oxide

production) can attenuate or prevent diabetes in response to

encephalomyocarditis virus infection in genetically susceptible mice

(210, 211), Kilham rat virus infection in the Bio-Breeding rat (20,

212–214), spontaneous diabetes in the NODmouse (121, 215), and in

other models of diabetes (216–218).
3.3 B cells

B cells are found in inflamed islets and are critical for

autoimmune diabetes given that B cell-depleted NOD mice do not

develop spontaneous disease (219–222). B cell self-antigen specificity

is likely fundamental to influencing disease trajectory since B cells are

not only known to bind the diabetogenic InsB9-23 epitope, but NOD

mice also develop accelerated disease with VH transgene insertion

forcing insulin specificity in 1–3% of mature B cells (190, 223). At

least a portion of B cell disease contributions are governed by b-cell
autoantigen capture by the B cell receptor (BCR) given that

transgenic BCR fixation to target a hen egg lysozyme (HEL)

epitope on a B cell-depleted NOD background (NOD.IgHEL.Igmnull

mice) prevents stimulation of GAD-specific T cell responses in vitro

despite adequate stimulation in the presence of only native B cells as

APCs (224). Further, NOD.IgHEL.Igmnull mice develop delayed onset

of diabetes similar to NOD.Igmnullmice, suggesting that B cell antigen

presentation may actively promote disease progression (224).

However, antigen identity is critical as artificial presentation of

InsC-ChgA peptide on either MHC class I- or class II-expressing B

cells prevents disease in a NOD.scid model of diabetes (225).

In support of a pathogenic role for B cell antigen presentation,

islet-infiltrating B cells have enhanced expression of CD80 and

CD86, and CD80/86 blockade to impair co-stimulation of T cells

prevents in vitro NOD T cell proliferation when cultured with B

cells as APCs (226). This study also demonstrated that co-transfer

of diabetic NOD splenocytes with BCR-stimulated B cells to
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NOD.scid mice induces disease, yet disease can be nearly

prevented when B cells are first incubated with anti-CD80 and

anti-CD86 monoclonal antibodies (226). Importantly, NOD mice

engineered with a deficiency in I-Ag7 expression confined to the B

cell compartment are protected from disease but still develop peri-

insulitis, demonstrating that antigen presentation by B cells to

CD4+ T cells is crucial for disease development, yet other APCs

likely also contribute (227). A role for B cell activation of CD8+ T

cells has also been suggested since B cell-deficient NOD.Igmnull mice

reconstituted with NOD B cells expectedly develop disease, but

reconstitution with B cells from NOD.b2m-/- mice does not induce

diabetes (b2 microglobulin is an essential component of MHC-I

class molecules) (228). Taken together, these results strongly

implicate B cells as important conduits for antigen presentation

to both CD4+ and CD8+ T cells.
3.4 b-cells

Although it is generally thought that the primary role for b-cells
in T1D pathogenesis involves functioning as a source of antigen for

presentation by other cell types, evidence has emerged over time

suggesting an additional role in direct antigen presentation as well

(190, 229, 230). It is known that human b-cells express MHC-I, and

b-cell class I peptidomes express peptide fragments derived from b-
cell proteins (169, 229). Additionally, elevated glucose concentrations

increase b-cell preproinsulin antigen presentation and death by

cytotoxic T cells in vitro, unsurprisingly supporting the assertion

that b-cells present antigen directly to cytotoxic CD8+ T cells (231). It

has also been shown that deceased autoimmune diabetic children

express HLA-DR in islets containing only insulin-producing cells,

suggesting that b-cells are an islet endocrine cell type that uniquely

expresses MHC-II (230). Notably, human b-cells also express class II
transactivator mRNA whose protein product increases MHC-II

levels, and its expression increases as islet infiltration proceeds

(232). b-cell expression of MHC-II has also been demonstrated in

the b-cells of infiltrated islets of transgenic NOD.NY4.1 (specific for

an unknown islet antigen) mice; these MHC-II-expressing b-cells
independently induce proliferation of diabetogenic BDC-2.5 CD4+ T

cells in vitro (233). MHC-II expression in b-cells is context-specific,
with proinflammatory cytokines (e.g. IFNg and TNFa) capable of

promoting MHC-II expression in human islets (233, 234). However,

it remains controversial whether wild type NOD mice express MHC-

II and whether MHC-II expression on human b-cells occurs in

healthy conditions or only following cytokine exposure.

Given that expression of CD80 and CD86 is required for T cell

activation during concurrent antigen presentation, it is surprising

that no studies have demonstrated isolated expression of these

molecules to b-cells (235, 236). Despite this, it has been shown that

transgenic expression of CD80 in b-cells of C57BL/6 x NOD mice

or C57BL/6 x DQ8+/mII- (global expression of DQ8 without

murine MHC-II) induces rapid development of autoimmune

diabetes, suggesting that b-cells are indeed capable of direct

antigen presentation (237, 238). Transgenic b-cell expression of

CD80 does not require CD4+ T cell participation for b-cell
destruction as diabetes-susceptible mice engineered to express the
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co-stimulatory molecule CD80 under control of the rat insulin

promoter (RIP) within pancreatic b-cells (C57BL/6.RIP-B7.1 mice)

develop disease in the absence of human or murine MHC-II,

emphasizing the limitations of these artificial models (239). These

studies in combination are challenging to interpret given the lack of

evidence for an in vivo role of b-cell antigen presentation and the

use of contrived murine study systems. Because of this, direct

antigen presentation by b-cells, if relevant, likely comprises only a

subtle portion of antigen presentation events and likely are

responsible for direct cytotoxic T cell killing after T cell

autoreactivity has already been firmly established.
4 Antigen-specific therapies in
autoimmune diabetes

4.1 Unmodified antigen

The discovery of multiple diabetes-relevant antigens throughout

time has laid the groundwork for the design of disease mitigating

therapeutics targeting antigen-specific immune responses

(summarized in Table 1). The simplest therapeutic strategy studied

involves introduction of antigen to induce tolerance. Clinical trials

evaluating full-length insulin protein administered to humans either

subcutaneously (240), intranasally (241), or orally (242) found there

to be no effect on delaying or preventing T1D onset. Despite the

failure of this protein immunization strategy, peptide-based

approaches have had more favorable outcomes. For example,

administration of InsB9-23 or an altered peptide ligand version

termed NBI-6024 to NOD mice significantly delays disease (84,

243), though no effect on islet autoantibodies or C-peptide levels is

observed when NBI-6024 is given subcutaneously to diabetic patients

(244). However, both proinsulin C19-A3 peptide (245) and GAD65-

alum treatment (246–248) given to recently diagnosed T1D patients
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maintain C-peptide levels over time with variable success. The

mechanism of peptide therapy protection appears to be in part

Treg-mediated given that treatment of NOD mice and in vitro

prediabetic human CD4+ T cells with InsB9-23 and proinsulin

peptide promotes conversion of naïve T cells to FoxP3+ Tregs (84,

245, 249). Protein/peptide approaches can be augmented through

coupling of toxins to diabetes-relevant antigens, with oral and nasal

administration of cholera toxin B-coupled insulin reducing islet

inflammation and disease onset in NOD mice through a

mechanism that involves downregulation of CD86 and increased

IL-10 expression by DCs (250–253). Saporin-coupled IGRP-specific

MHC-I tetramers can delete IGRP-reactive CD8+ T cells and delay

autoimmune diabetes as well (254).

DNA delivery techniques have also been employed, with a

proinsulin plasmid improving C-peptide levels and decreasing

proinsulin-specific CD8+ T cell numbers in diabetic patients

(255). Plasmid therapies have been enhanced by encoding

diabetogenic epitopes with immunosuppressive genes in one or

more DNA vectors, as shown in studies combining GAD65 with IL-

10 or the tolerogenic apoptosis-inducing molecule BAX to suppress

autoimmune diabetes in NOD mice (256, 257). Extending this

concept, other groups discovered that encoding multiple epitopes in

one or more plasmids augments diabetes protection in NOD mice.

For example, diabetes is suppressed with administration of a

plasmid encoding ChgA, IGRP, GAD65 and insulin antigens, and

targeting DbH233-241, ZnT8158-166, ZnT8282-290 and proinsulin with

a plasmid approach provides better disease protection than

proinsulin alone (258, 259). Another method of tolerogenic

antigen administration involves oral delivery of Lactococcus lactis

bacteria expressing IL-10 and proinsulin or GAD65 with

simultaneous intravenous injection of aCD3 mAbs (monoclonal

antibodies) to recently diabetic NOD mice (260–262). These

therapies result in reversal of disease accompanied by increased

FoxP3+ Tregs in the pancreas, blood, spleen, and pLN with

suppressive activity dependent upon CTLA-4 and TGFb signaling.
4.2 Nanoparticles and microparticles

Antigen-coupled nanoparticles (NPs) and microparticles (MPs)

have also been explored as a possible tolerogenic therapeutic

approach. Both insulin coupled to poly(lactic-co-glycolic acid)

(PLGA) MPs and proinsulin coupled to gold methoxypolyethylene

glycol-SH NPs prevent autoimmune diabetes when administered to

prediabetic NOD mice, with mechanisms dominated by PD-1

upregulation on CD4+ and CD8+ T cells and increased splenic and

pLN Tregs respectively (263, 264). Proinsulin peptide coupled to gold

NPs injected into human breast skin samples are taken up by

Langerhans cells and reduce antigen presentation, suggesting that

induction of DC tolerance may contribute to proinsulin/insulin-

coupled NP and MP disease inhibition (265).

Antigens other than insulin also demonstrate NP and MP

therapeutic potential. For example, IGRP peptide-MHC-coupled

iron oxide NPs prevent autoimmune diabetes in NOD mice by

inducing suppression and killing of APCs and expansion of

autoregulatory CD4+ and CD8+ T cells, and IGRP peptide-
TABLE 1 Key findings and potential interpretations for antigen-specific
therapies in the treatment and prevention of autoimmune diabetes.

Unmodified
antigen

• Whole protein administration in humans – no effect
• Peptide-based approaches in mice and humans – variable
success
• Animal based studies suggest coupling antigen expression
with immunosuppressive genes afford a more potent effect

Nano-
and
microparticles

• Antigen-coupled particles can tolerize mice to autoantigen
and suppress disease development

Cellular
approaches

• Antigen-coupled antibodies or cells can stimulate tolerance or
deletion of autoreactive T cells in mice

CAR T
cell therapy

• Engineered CAR Treg cells offer superior suppression and
disease attenuation to polyclonal Treg cell treatments in animal
models
• CAR T cells now being used in other autoimmune diseases to
selectively kill target autoreactive T cell populations
• Each of these methods are novel and yet relatively unexplored
in human clinical trials

Antibodies
targeting
Peptide:MHC

• Early data in mice showing inhibition of antigen presentation
and decreased islet infiltration suggests this may be a potential
therapy only during early disease course
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coupled PLGA NPs suppress disease in NOD.scid recipients of

diabetogenic transgenic NY8.3 CD8+ T cells (266–268). Similarly,

disease is inhibited in NOD.scid recipients following transfer of

diabetogenic transgenic BDC-2.5 CD4+ T cells when mice are given

p31- or InsC-ChgA-coupled PLGA NPs, and this result is

recapitulated by co-treatment with p31-coupled acetylated

dextran MPs and rapamycin (268–270). Importantly, spontaneous

disease in NOD mice is delayed by subcutaneous co-injection of

liposomal particles encapsulating a BDC-2.5 mimotope and vitamin

D3, and disease is prevented with administration of BDC-2.5

mimotope-coupled iron oxide NPs (267, 271). Much like IGRP-

specific NP and MP therapy, InsC-ChgA-specific treatments induce

increased Treg numbers and a decrease in TH1-like effector cells as

contributory mechanisms to disease suppression (267, 269–271).

Given these consistent results in achieving disease prevention with

various diabetes-relevant antigens independent of the specific NP or

MP coupling formulation employed, successful translation of this

technology to human T1D may be possible with prudent selection

of autoantigen targets to maintain minimal toxicity.
4.3 Cellular approaches

Cell-based strategies are additional methodologies for

autoimmune diabetes therapy. Similar to antigen-coupled NP and

MP approaches, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

(ECDI) coupling of intact insulin or InsB9-23 to splenocytes and

sortase-mediated coupling of InsB9-23 to red blood cells (RBCs)

both generate tolerogenic apoptotic coupled cells capable of

preventing diabetes in NOD mice (184, 272). Beyond direct

chemical crosslinking of antigen to apoptotic splenocytes or

RBCs, p31 can be targeted to RBCs using antigen constructs

specific for the RBC surface marker glycophorin A to completely

prevent BDC-2.5-transferred disease in NOD mice (273).

To directly target APCs for tolerance induction, antigen delivery to

CD205+CD8+ DCs using aCD205 antibodies coupled to antigen has

been performed and shown to promote antigen internalization (274,

275). This model has shown promise as a tolerogenic therapy given its

consistent conversion of naïve T cells to Tregs through enhanced TGFb
secretion by CD205+ DCs across multiple experimental systems (276–

278). Antigen-coupled aCD205 antibodies have found variable

success across multiple diabetes-relevant antigens in the NOD

mouse model: 1) Co-transfer of insulin mimotope-aCD205 and

insulin-specific AI4 CD8+ T cells causes antigen-specific T cell

deletion, and spontaneous disease is suppressed with proinsulin-

aCD205 administration (279, 280); 2) Co-transfer of p63-aCD205
and transgenic BDC-2.5 CD4+ T cells enhances Treg conversion

despite not affecting disease incidence (280); and 3) IGRP206-214-

aCD205 reduces the number of endogenous IGRP-specific CD8+ T

cells and promotes deletion of transgenic NY8.3 CD8+ T cells in an

adoptive transfer system (281). Interestingly, despite a lack of disease

prevention with p63-aCD205 and transgenic BDC-2.5 CD4+ T cell

co-transfer, p63-aDCIR2 targeting CD11b+ cDC2s could suppress

BDC-2.5 CD4+ T cell-mediated disease, implicating multiple DC

populations presenting various antigens as potential therapeutic foci

(280, 282). While use of DC antigen-specific therapies in clinic has
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only recently been explored for T1D one study found that proinsulin

pulsed tolerogenic DCs injected intradermally did not affect HbA1c, C

peptide, hypoglycemic events or insulin dose required for symptom

maintenance (283). However, the treatment was safe and caused only

minor injection site symptoms, paving the way for future DC-based

clinical applications (283).
4.4 Ex vivo and chimeric antigen
receptor Treg

Work in animal models of autoimmunity have demonstrated

the potent therapeutic potential that antigen-specific T-regulatory

cells may have on diabetes prevention. The use of Tregs are

appealing not only because of their specificity to auto-antigens,

but because they are also capable of bystander (antigen-

independent) suppression of other, local, autoreactive T-cells

(284). Expanded transgenic BDC-2.5 Tregs were shown to

attenuate BDC2.5 T-cell transfer-induced diabetes in NOD.scid

mice (285, 286), demonstrating the feasibility of ex vivo Treg

expansion in inhibiting effector T-cell populations that share

similar specificities. These same expanded BDC-2.5 Tregs were

also capable of attenuating spontaneous diabetes in the following

diabetes models: NOD.CD28-/- mice (285), NOD.scid mice that

were treated with splenocytes from diabetic NOD mice (286), or

spontaneous diabetes in wild-type, pre-diabetic (13 weeks age)

NOD mice (287). Importantly, BDC-2.5 Tregs inhibit disease in

Treg-deficient NOD.CD28-/- mice better than anti-CD3e-coupled
bead-expanded polyclonal Tregs, suggesting that Tregs specific for

diabetogenic antigens may be clinically applicable and much more

potent than polyclonal Tregs (288). Besides treatment with

expanded antigen-specific Tregs, chimeric antigen receptor (CAR)

Tregs have recently been explored as a potential autoimmune

diabetes therapy with variable success. Long-lived murine CAR

Tregs expressing an insulin-specific single-chain variable fragment

(scFv) proliferate and generate IL-2 upon in vitro stimulation and

suppress proliferation of allogeneic CD8+ T cells, but have no effect

on diabetes progression in NOD mice (289). These results highlight

the robust bystander suppressive effect that Treg cells of single islet-

derived antigen specificity may have on limiting autoimmune

progression even when autoreactivity to numerous epitopes has

occurred. Additionally, these data may illustrate why, to date, all

clinical trials that used expanded polyclonal Treg cells have only

demonstrated safety but not efficacy for disease prevention (290).

A number of limitations exist with ex vivo conversion and

expansion of patient auto-reactive T-cells into Treg cells that can

then be autologously transplanted. Relevant autoreactive T cell

populations are rare in peripheral circulation, and there may be

wide variability in TCR affinity and specificity, limiting therapeutic

potential. Two alternative methods can be conducted that could

confer greater specificity, activation potential, and manipulability as

opposed to expanding T cells with antigen followed by enrichment of

antigen-specific T cells. First, T cells may be engineered to become

Treg cells with the desired antigen specificity (engTregs) by combining

genetic editing to force express FOXP3 with lentiviral transduction of

a specified TCR. The therapeutic potential of this approach was
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recently demonstrated by using BDC2.5+ engTreg cells to prevent

diabetes pathogenesis in mice receiving either BDC2.5+ T cells which

demonstrated antigen-specific repression, or diabetic NOD

splenocytes which demonstrated bystander suppressive capacity

(291). The second approach is to develop chimeric antigen

receptors (CARs) composed of an extracellular single-chain

antigen-specific antibody (scFv) linked to modular intracellular co-

stimulatory signaling domains. Our laboratory designed an scFv CAR

Treg specific to InsB chain peptide 10-23 in the context of MHC-II; this

CAR suppressed diabetes in NOD.RAG-/- mice with co-transfer of

BDC2.5 T cells and suppressed spontaneous diabetes in wild type

NODmice (292). These studies highlight the therapeutic potential for

engineered and CAR Treg cells therapy in the prevention of

autoimmune diabetes in humans.

CAR T cell therapy has revolutionized cancer therapy by

facilitating antigen-specific immune activation against tumor

antigens (293). These same treatments that have demonstrated

remarkable efficacy in clearing lymphomas and other tumors

refractory to conventional cancer therapies are now being

repurposed to prevent or cure autoimmunity by targeting

pathogenic immune cell populations. For example, systemic lupus

erythematosus (SLE) is a systemic autoimmune disease characterized

by autoantibodies that mediate tissue damage; B cell depletion using

rituximab, an anti-CD20 antibody is a common treatment used to

treat SLE (294). However, SLE disease may be severe and refractory

despite anti-CD20 depletion. CD8+ CAR T cells specific to CD19

were shown to effectively deplete B cells, reverse autoantibody

production and tissue damage, and extend the life span of multiple

murine models of lupus (295). Remarkably, initial clinical trials in

humans have demonstrated that in patients with severe SLE

refractory to conventional treatments, anti-CD19 CAR T cells were

able to achieve complete remission in all 5 patients within 3 months

of treatment, and these patients continue to be seronegative for

autoantibodies and without symptoms for months after B cells

repopulated (296). However, CAR T cell therapies that broadly

target entire immune subsets, such as CD19 expressing B cells,

results in broad immunosuppression risk. To circumvent this, CAR

T cells are now being developed that selectively deplete autoantibody-

expressing B cells. For example, NMDAR-specific chimeric

autoantibody receptor (CAAR) T cells, comprised of NMDAR

auto-antigen fused to CD8 hinge and intracellular signaling

domains, were able to selectively kill anti-NMDAR cell lines in vivo

(297). The selective targeting of autoreactive TCR populations is a

compelling method to extrapolate to both mouse models of diabetes

and genetically at-risk humans with the goal of disease prevention.
4.5 Peptide: MHC

Peptide: MHC-specific approaches represent another potential

autoimmune diabetes therapy, first suggested by results

demonstrating a delay in diabetes progression and induction of

antigen-specific antibodies following immunization of 4-week-old

NOD mice with recombinant InsB12-22 register 3 (I-Ag7-B:RE#3)

peptide (298). Extending this approach, an anti-InsB12-22RE#3:I-A
g7

monoclonal antibody was found to delay autoimmune diabetes in
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NOD mice by broadly decreasing pancreatic islet infiltration of both

CD4+ and CD8+ T cells (85). Additionally, an I-Ag7-B:RE#3-specific

CAR CD8+ T cell treatment administered to NOD mice homed well

to the pLN and delayed disease after one infusion, suggesting that the

mechanism of these diverse therapies relies upon inhibition of the

antigen presenting capabilities of relevant APCs (299). However, the

utility of this approach is not limited to the I-Ag7-B:RE#3 antigen, as

immunization of NOD mice at 4- and 8-weeks with an anti-InsC-

ChgA:I-Ag7 delays the onset of autoimmune diabetes as well (300).

To improve the production of anti-peptide:MHC monoclonal

antibodies, a novel method for peptide:MHC mAb generation

using a magnetic enrichment protocol was developed and resulted

in generation of an anti-p63:I-Ag7 monoclonal antibody with

exceptionally high affinity that could prevent tolerance induction in

NOD mice following transfer of p63-coupled cells (301). Although

disease prevention was not shown in this study, this methodology will

likely be helpful for the future production of peptide:MHC-specific

monoclonal antibodies (301). The use of such antigen-specific

therapies in clinic has not yet gained momentum, but the success

of the various approaches detailed here using in vitro and murine

models offer compelling evidence that further refinement of these

techniques may yield novel T1D therapies for humans.
5 Conclusions

T1D is a disease characterized by T cell-mediated destruction of

the insulin-producing b-cells within the pancreatic islets of

Langerhans, so determining the antigenic targets of these T cell

responses is critical to understanding disease pathogenesis and

devising therapeutic approaches. Several T cell islet autoantigens

have been identified as key contributors to disease progression,

including insulin, GAD, IGRP, ChgA and IAPP; hybrid peptide

formation among these various epitopes may provide an additional

essential mechanism by which central tolerance is bypassed during

the early development of autoimmunity. DCs, macrophages, B cells

and b-cells may all participate in islet self-antigen presentation to

autoreactive T cells, though the precise sites of antigen acquisition

and presentation have not been globally determined. Critically, islet

antigen-specific T cells have been successfully targeted for

autoimmune diabetes prophylaxis and therapy in NOD mice and

humans using several treatment modalities.

Despite tremendous progress in understanding the roles of

different antigen-specific T cell responses in autoimmune diabetes,

several critical outstanding objectives remain. First, while HLA

haplotype, other genetic risk factors, viral infection, and gut

microbiome are all well described risk factors that lead to the

induction of autoimmune diabetes, the exact mechanism by which

each of these factors lead to emergence of a sustained autoreactive T

cell response is still incompletely elucidated. Epitope discovery using

methods such as mass spectrometry on size-eluted microbiome

antigenic fractions found to stimulate pathogenic T cells is

necessary to characterize the cross-reactive T cell responses that

might occur between similar epitopes derived from non-self vs.

pancreatic b-cell proteins. Second, it is necessary to further

characterize the exact timing that each antigen-specific T cell
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develops as well as its related pathologic contribution in

autoimmune diabetes. Determining the temporal and pathogenic

hierarchy of antigen-specific T cell responses will assist in identifying

important therapeutic targets for the amelioration of disease.

Third, additional effort is required to address differences in T

cell antigenic targets between the NOD mouse and humans with

autoimmune diabetes. This will be especially important for hybrid

peptides given that T cell responses target alternate peptide fusion

products in humans compared to NOD mice (151, 152, 154, 155),

and different mechanisms of hybrid peptide formation may underly

this disparity. Fourth, successful therapeutic strategies in NODmice

must be effectively translated to clinic. Although numerous antigen-

specific treatments demonstrate success in NOD mice, many rely

upon frequent dosing and/or therapeutic administration prior to

symptom onset (84, 85, 243, 258, 263, 264, 280, 298, 300). Further,

many clinical therapeutics administered to recent onset T1D

patients demonstrate negligible impact on disease trajectory even

with alterations in laboratory markers (244–248, 255, 283). To

overcome these challenges, it is necessary to devise approaches that

accurately identify likely antigen-specific T cell responses in at-risk

patients. Further, therapies that reduce treatment frequency (e.g.

CAR Treg infusion) should be considered to enhance patient

compliance and affordability.

Development of an accurate autoimmune diabetes pathogenesis

model requires detailed understanding and characterization of the

myriad antigen-specific T cell responses underlying disease.

Although many unanswered questions remain, substantial

progress has been made in elucidating the identity of key

autoantigens and the mechanisms permitting recognition and

activation of their cognate T cells. Given the remarkable success

of antigen-specific treatments in NOD mice, it is not unreasonable

to expect further therapeutic application of antigen-specific

approaches in clinical settings in the future.
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