
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Omar Ramos-Lopez,
Universidad Autónoma de Baja California,
Mexico

REVIEWED BY

Poonam Mehta,
University of Massachusetts Medical School,
United States
Shanmuga Priyaa Madhukaran,
University of Texas Southwestern Medical
Center, United States

*CORRESPONDENCE

Chunli Li

lcl518023@126.com

Yan Su

ssuyanzi@126.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 29 May 2024

ACCEPTED 12 August 2024
PUBLISHED 02 September 2024

CITATION

Zhang L, Li Q, Huang J, Zou Q, Zou H,
Zhang X, Su Y and Li C (2024) Causal
associations between gut microbiota and
premature rupture of membranes: a two-
sample Mendelian randomization study.
Front. Immunol. 15:1440232.
doi: 10.3389/fimmu.2024.1440232

COPYRIGHT

© 2024 Zhang, Li, Huang, Zou, Zou, Zhang, Su
and Li. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 02 September 2024

DOI 10.3389/fimmu.2024.1440232
Causal associations between gut
microbiota and premature
rupture of membranes: a two-
sample Mendelian
randomization study
Lei Zhang1,2†, Qian Li1,2†, Jiafeng Huang3, Qin Zou1,2, Hua Zou1,2,
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Background: Previous study has indicated a potential link between gut

microbiota and maternal pregnancy outcomes. However, the causal

relationship between gut microbiota and premature rupture of membranes

(PROM) remains a topic of ongoing debate.

Methods: A two-sample Mendelian Randomization (MR) study was used to

investigate the relationship between gut microbiota and PROM. Genetic data

on gut microbiota was obtained from the MiBioGen consortium’s largest

genome-wide association study (GWAS) (n=14,306). Genetic data on PROM

(3011 cases and 104247 controls) were sourced from publicly available GWAS

data from the Finnish National Biobank FinnGen consortium. Various methods

including Inverse variance weighted (IVW), MR-Egger, simple mode, weighted

median, and weighted mode were utilized to assess the causal relationship by

calculating the odd ratio (OR) value and confidence interval (CI). Sensitivity

analyses for quality control were performed using MR-Egger intercept tests,

Cochran’s Q tests, and leave-one-out analyses.

Results: The IVW method revealed that class Mollicutes (IVW, OR=0.773, 95%CI:

0.61-0.981, pval = 0.034), genus Marvinbryantia (IVW, OR=00.736, 95%CI: 0.555-

0.977, pval = 0.034), genus Ruminooccaceae UCG003 (IVW, OR=0.734, 95%CI:

0.568-0.947, pval = 0.017) and phylum Tenericutes (IVW, OR=0.773, 95%CI:

0.566-1.067, pval = 0.034) were associated with a reduced risk of PROM, while

genus Collinsella (IVW, OR=1.444, 95%CI: 1.028-2.026, pval = 0.034), genus

Intestinibacter (IVW, OR=1.304, 95%CI: 1.047-1.623, pval = 0.018) and genus

Turicibacter (IVW, OR=1.282, 95%CI: 1.02-1.611, pval = 0.033) increased the risk

of PROM. Based on the other four supplementary methods, six gut microbiota

may have a potential effect on PROM. Due to the presence of pleiotropy

(pval=0.045), genus Lachnoclostridium should be ruled out. No evidence of

horizontal pleiotropy or heterogeneity was found in other microbiota

(pval >0.05).
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Conclusions: In this study, we have discovered a causal relationship between the

presence of specific probiotics and pathogens in the host and the risk of PROM.

The identification of specific gut microbiota associated with PROM through MR

studies offers a novel approach to diagnosing and treating this condition, thereby

providing a new strategy for clinically preventing PROM.
KEYWORDS

gut microbiota, premature rupture of membranes, genetic variable, Mendelian
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Introduction

Premature rupture of membranes (PROM) is a prevalent

perinatal complication, with an incidence rate of approximately

7% to 8% (1, 2). PROM can result in severe fetal complications such

as placental abruption, umbilical cord compression, respiratory

distress syndrome, preterm birth, and cerebral damage (3–5).

Mothers with PROM face increased risks of intra-amniotic

infections, placental abruption, cord prolapse, sepsis, and even

death, posing significant threats to both maternal and neonatal

health (6, 7). While factors such as infection, inflammation,

immunity, oxidative stress, and nutrient metabolism are

implicated in the pathogenesis of PROM, reliable early diagnostic

indicators and effective preventive measures remain lacking (8, 9).

Gut microbiota, a complex community within the digestive

tract, plays a crucial role in nutrient digestion and absorption

during energy metabolism. It also maintains physiological

functions and regulates various pathological processes in the body

(10–12). Numerous studies suggest that gut microbiota plays a

significant role in maternal and fetal health, undergoing changes

during pregnancy, disruption of maternal gut microbiota during

gestation can alter offspring microbiota and immunity (13–16). For

example, Bacteroides fragilis (B. fragilis) dominates the gut

microbiomes of individuals with intrahepatic cholestasis of

pregnancy (ICP). Through its bile salt hydrolase (BSH) activity,

B. fragilis aggravates ICP by inhibiting FXR signaling, thereby

disrupting bile acid metabolism (17). In overweight and obese

pregnant women at 16 weeks gestation, the abundance of

butyrate-producing bacteria and butyrate production in the gut

microbiota are significantly negatively associated with blood

pressure and with plasminogen activator inhibitor-1 levels.

Increasing butyrate-producing capacity may contribute to the

maintenance of blood pressure in obese pregnant women (18).

The study on PROM has revealed that being infected with

Helicobacter pylori is a risk factor for PROM (19). Furthermore, it

is widely believed that infection is the primary cause of PROM,

which has led to an oversight of the crucial role played by gut

microbiota. The current links between gut microbiota and PROM

are primarily derived from observational studies, which may be

influenced by confounding factors, such as lifestyle, age, and
02
environment (20, 21). Hence, these conditions limit the inference

of causality between gut microbiota and PROM, highlighting the

need for further research to elucidate their relationship.

Mendelian randomization (MR) has been widely utilized to

estimate the causal association between exposure and outcome by

using genetic variants as instrumental variables (IVs) (22). Genetic

variants are randomly inherited from parents to offspring, making

themmore independent. This characteristic effectively assists MR in

mitigating bias from reverse causality and confounding factors (23,

24). Large-scale genome-wide association studies (GWAS) on gut

microbiota and PROM provide an opportunity for MR analysis

with greatly improved statistical power.

This study aims to evaluate the potential causal association

between gut microbiota and PROM using GWAS summary

statistics from the FinnGen and MiBioGen consortiums through

two-sample MR analysis. Our findings may identify specific

pathogenic microbiota and offer new insights for early prediction

and intervention in PROM.
Materials and methods

Study design and data sources

In the investigation, we followed the guidelines established in

the STROBE-MR Statement (Guidelines for strengthening the

reporting of MR studies) for reporting observational studies in

epidemiology (25).

MR statistical analysis utilizes genetic instrumental variables

(single nucleotide polymorphisms, SNPs) to infer the relationship

between exposure and outcome based on three key assumptions: (1)

a strong correlation between instrumental variables and exposure

factors, (2) no correlation between instrumental variables and

confounding factors, (3) the sole association of instrumental

variables with outcomes through exposure (26, 27). The flowchart

of this MR study has been shown in Figure 1.

Genetic data on gut microbiota was obtained from a large-scale

GWAS meta-analysis conducted by the MiBioGen consortium

(www.mibiogen.org), which aimed to study the influence of

human genes on intestinal flora at the whole genome level and
frontiersin.org
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included 18340 participants from 24 cohorts, most of whom had

European ancestry (Canada, Netherlands, Sweden, United States,

United Kingdom, Belgium, Denmark). Bacteria contain three kinds

of rRNA sequences, namely 23S, 16S and 5S. Among them, 16S

rRNA is the most commonly used molecular clock in bacterial

systematics because of its moderate number of nucleotides, large

amount of information, high stability, and easy extraction and

analysis. Variable regions (V4, V3-V4, V1-V2) of the 16S rRNA

gene were used to profile the composition of gut microbiota, and

microbiota quantitative trait loci (mbQTL) mapping was performed

to identify the host genetic variants in the relative abundance of

microbial taxa. A total of 210 taxa (9 phyla, 16 classes, 20 orders, 31

families, 119 genera, 3 unknown families, and 12 unknown genera)

were extracted for analysis in this study. Further details on the gut

microbiota can be found in the original study or the website (http://

mibiogen.gcc.rug.nl) (28). GWAS datasets on PROMwere extracted

from the IEU OpenGWAS project and derived from the FinnGen

consortium (http://www.finngen.fi/en), including 3011 cases and

104247 controls (19). More details (endpoint definition, mean age,

and other longitudinal metrics) can be found in the

FinnGen database.

All relevant data sources are publicly available. Ethical approval

and participant consent were obtained in the original studies

included in the GWAS, thus further ethical clearance for this

study was not required.
Instrumental variable selection

First, SNPs closely associated with gut microbiota (significant

threshold p < 1.0×10-5, genetic distance = 10000 kb, r2 < 0.001) were

screened to ensure the correlation assumption and test the effect of

linkage disequilibrium (LD) and the independence of IVs (29). IVs

with the F-statistics < 10 were excluded to mitigate weal

instrumental bias (30). The formula of the F-statistics calculation
Frontiers in Immunology 03
is as follows: F= R2 × (n-1-k)/[(1-R2) × k], where R2 represents the

portion of exposure variance explained by the IVs, k represents the

number of IVs, n is the sample size. Following the above steps, the

remaining SNPs were used for MR analysis (31).
Data analysis

The data analyses were conducted by the “TwoSampleMR”

package in R4.2.3. Five methods, including inverse variance

weighted (IVW), MR Egger, simple mode, weighted mode, and

weighted median, were employed to assess the causal association

between gut microbiota and PROM. The IVWmethod can combine

with the Wald ratio of each SNP to obtain the total effect of gut

microbiota on PROM when SNP fully conforms to the three

principles of MR study. Significant results obtained through the

IVW method (p < 0.05) can be deemed credible in the absence of

pleiotropy and heterogeneity, even if other methods yield non-

significant findings (32). The MR-Egger method is used to evaluate

potential pleiotropic effects of IVs. MR-Egger intercept analysis can

better explain why this potential pleiotropy exists. If the intercept

significantly deviates from zero (p < 0.05), it indicates the presence

of horizontal pleiotropy associated with the IVs (33). This suggests

that the outcome may be influenced by factors other than exposure.

When the pleiotropic effect is unrelated to its genetic association

with the exposure, the slope of the MR-Egger regression still offers a

valid MR estimate, even in the presence of horizontal pleiotropy.

The simplemode, weightedmode, and weightedmedian are used as

complementary methods. The simple model serves as a robust method

for evaluating causal relationships between genes and phenotypes,

effectively addressing potential biases. In contrast, the weighted model

calculates SNP effect estimates using weights and identifies the SNPwith

the greatest weighted effect as the final estimate. The weighted median

method takes into account the weights (inverse of standard error, SE) of

IVs and calculates the median of MR-related evaluation (34).
FIGURE 1

Flow chart of study design.
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In the sensitivity analysis, Cochran’s Q statistics with Q and p-

value were used to quantify the heterogeneity in IVs, A pval > 0.05

indicates the absence of heterogeneity (32). Horizontal pleiotropy

was evaluated using MR Egger intercept analysis, with pval > 0.05

indicating no pleiotropy. Outlier analysis was conducted to

ascertain the presence of influential SNPs through the leave-one-

out method.

For a more rigorous interpretation of causality, we employed

the Bonferroni method to examine the p-value for various

classifications of gut microbiotas. The results were as follows:

genus p = 3.82 × 10−4 (0.05/131), family p =1.47× 10−3 (0.05/34),

order p = 2.50 ×10−3 (0.05/20), class p = 3.13×10−3 (0.05/16), and

phylum p = 5.56 × 10−3 (0.05/9).
Results

Instrumental variable selection

After undergoing a series of rigorous quality control procedures

for IV screening, a total of 2722 independent SNPs from 210 gut

microbiotas were extracted in the analysis (Supplementary Table 1),
Frontiers in Immunology 04
with statistical significance at pval<1.0×10-5, kb=10000, r2<0.001.

All IVs exhibited F-statistics > 10, indicating robust IV effects and

alleviating concerns of weak IV bias. Additionally, to mitigate

potential confounding effects on causal inferences, PhenoScanner

was utilized for screening, resulting in no exclusions of SNPs.

Therefore, the genetic IVs should be deemed valid for use in this

MR analysis.
MR analysis

Two-sample MR analysis results
After conducting MR analysis, we generated a heatmap using

IVW method to screen 193 gut microbiotas (Figure 2). This

approach provides a more intuitive representation of the gut

microbiota that play a significant role in PROM, as indicated by

their p value and OR value. Based on the significance levels

(pval<0.05) obtained from any of the five methods (IVW, MR

Egger, simple mode, weighted mode and weighted median), a forest

plot was generated, and 14 gut microbiotas (including class

Mollicutes, family Actinomycetaceae, genus Collinsella, genus

Dorea, genus Family XIII AD3011 group, genus Intestinibacter,
FIGURE 2

All results of IVW between gut microbiota and PROM.
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genus Lachnoclostridium , genus Marvinbryantia , genus

Ruminococcaceae UCG003, genus Ruminococcaceae UCG010,

genus Turicibacter, order Actinomycetales, phylum Actinobacteria,

phylum Tenericutes) were identified as potentially related to PROM,

excluding undefined microbiotas (Figure 3; Supplementary

Table 2). The scatter plots had been shown in Figure 4. IVW

estimates suggested that the class Mollicutes (IVW, OR=0.773, 95%

CI: 0.61-0.981, pval = 0.034), genus Marvinbryantia (OR=00.736,

95%CI: 0.555-0.977, pval = 0.034), genus Ruminooccaceae UCG003
Frontiers in Immunology 05
(OR=0.734, 95%CI: 0.568-0.947, pval = 0.017) and phylum

Tenericutes (OR=0.773, 95%CI: 0.566-1.067, pval = 0.034) were

associated with a reduced risk of PROM and demonstrated

protective effects. Conversely, the genus Collinsella (OR=1.444,

95%CI: 1.028-2.026, pval = 0.034), genus Intestinibacter

(OR=1.304, 95%CI: 1.047-1.623, pval = 0.018) and genus

Turicibacter (OR=1.282, 95%CI: 1.02-1.611, pval = 0.033) were

associated with an increased r isk of PROM showed

pathological effects.
FIGURE 3

Forest plots of MR results for 14 gut microbiotas on PROM.
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Although the IVW method did not support the causal

associations of other six gut microbiotas, Weighted median

estimates revealed that several microbial taxa exhibited potential

associations with PROM. Specifically, family Actinomycetaceae

(OR=0.61, 95%CI: 0.413-0.9, pval = 0.013), genus Dorea

(OR=0.61, 95%CI: 0.375-0.991, pval = 0.046), genus Family XIII

AD3001 group (OR=1.541, 95%CI: 1.053-2.256, pval= 0.026), genus

Ruminococcaceae UCG010 (OR=1.786, 95%CI: 1.127-2.829,

pval=0.013), order Actinomycetales (OR=0.61, 95%CI: 0.413-0.901,

pval=0.013) and phylum Actinobacteria (OR=1.458, 95%CI: 1.004-

2.117, pval=0.048) were found to have a suggestive association with

PROM. Additionally, among these 14 gut microbiotas, MR Egger

estimate of genus Lachnoclostridium (OR=3.593, 95%CI: 1.37-9.424,

pval=0.02) showed a suggestive relationship with PROM as well,

however, it is important to note that there was evidence of

horizontal pleiotropy (pval=0.045).
Sensitivity analysis

Sensitivity analyses were conducted to assess the robustness of

the results. IVW and MR Egger in Cochran’s Q test showed no
Frontiers in Immunology 06
significant heterogeneity in the IVs associated with PROM (Figure 5

and Supplementary Table 3). Additionally, MR Egger intercept

analysis detected horizontal pleiotropy only in genus

Lachnoclostridium (pval=0.045), while no pleiotropy was found in

the other 13 gut microbiotas (pval>0.05). The detailed results were

showed in Supplementary Table 4.

Leave-one-out sensitivity analyses indicated that removing

specific SNPs did not alter the causal inference outcomes,

suggesting no individual IVs were solely responsible for the

associations (Figure 6). Collectively, these findings indicated that

there was no significant bias attributable to individual gut

microbiota SNPs on PROM.
Discussion

This MR study provides compelling evidence for the causal

relationship between specific gut microbiota and PROM,

identifying bacteria that either decrease or increase the risk. By

utilizing extensive GWAS summary data from the MiBioGen

consortium for gut microbiota and the FinnGen consortium for

PROM, we have pinpointed specific gut bacteria that either decrease
FIGURE 4

Scatter plots of MR analysis on the causal relationship between 14 gut microbiotas and PROM. (A–N) represents different gut microbiotas, respectively.
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or increase the risk of PROM. These findings are consistent with

existing literature, highlighting the intricate relationship between

gut microbiota and pregnancy outcomes. To ensure the robustness

of our findings, we employed multiple MR methods, including

inverse variance weighted (IVW), MR-Egger, simple mode,

weighted median, and weighted mode approaches. Sensitivity

analyses such as MR-Egger intercept tests, Cochran’s Q tests, and

leave-one-out analyses were performed to detect and correct for

pleiotropy and heterogeneity. These methods help ensure that our
Frontiers in Immunology 07
results are not confounded by other factors. For example, genus

Lachnoclostridium was excluded due to evidence of pleiotropy

(pval=0.045), highlighting the importance of rigorous quality

control in MR studies. These findings not only enhance our

understanding of the link between gut microbiota and PROM,

but also pave the way for new therapeutic strategies and

personalized medicine in managing pregnancy complications.

Several studies have revealed the complex relationship between

gut microbiota and adverse pregnancy outcomes and complications
FIGURE 5

Funnel plots of heterogeneity analysis on 14 gut microbiotas and PROM. (A–N) represents different gut microbiotas, respectively.
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(17, 19, 35–37). This study identified 147 SNPs linked to 14 gut

microbiotas associated with PROM. It was found that Mollicutes

(IVW, OR=0.773, 95%CI: 0.61-0.981, pval = 0.034) and Tenericutes

(IVW, OR=0.773, 95%CI: 0.566-1.067, pval = 0.034) were protective

factors against PROM. Mollicutes, which include species like

Mycoplasma and Ureaplasma, are known for their unique

immunomodulatory properties (38–40). Mycoplasma and

Ureaplasma can modulate the immune system by reducing pro-

inflammatory cytokines, which may help maintain the integrity of
Frontiers in Immunology 08
fetal membranes and reduce PROM risk (41–44). This finding is

consistent with previous studies indicating that Mollicutes can

influence immune responses and protect against membrane

rupture (45). Similarly, Marvinbryantia (IVW, OR=0.736, 95%CI:

0.555-0.977, pval = 0.034) and Ruminococcaceae UCG003 (IVW,

OR=0.734, 95%CI: 0.568-0.947, pval = 0.017) also demonstrated

protective effects on PROM.Marvinbryantia is associated with anti-

inflammatory properties as it produces metabolites that have been

shown to reduce inflammation (46, 47). Ruminococcaceae UCG003
FIGURE 6

Leave-one-out plots of sensitivity analysis on 14 gut microbiotas and PROM.
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plays a crucial role in fermenting dietary fibers into short-chain

fatty acids (SCFAs) like butyrate. Butyrate enhances gut barrier

function and has systemic anti-inflammatory effects, which likely

contribute to the strengthening of fetal membranes and reducing

the risk of PROM (48, 49).

On the contrary, our study has identified specific gut

microbiotas that are associated with an increased risk of PROM.

Collinsella (IVW, OR=1.444, 95%CI: 1.028-2.026, pval = 0.034) was

significantly associated with a higher risk. Collinsella has been

linked to systemic inflammation and metabolic disorders, both of

which can compromise gut barrier integrity (50–52). Elevated levels

of Collinsella can disrupt gut barrier function and promote

inflammatory pathways, weakening fetal membranes and

increasing the risk of PROM. Additionally, Intestinibacter (IVW,

OR=1.304, 95%CI: 1.047-1.623, pval = 0.018) and Turicibacter

(IVW, OR=1.282, 95%CI: 1.02-1.611, pval = 0.033) were also

found to be associated with an increased risk. Intestinibacter is

associated with inflammatory conditions and has been shown to

exacerbate inflammation and disrupt gut barrier function leading to

weakened fetal membranes and ultimately contributing to PROM

(53). Turicibacter has been known to influence immune responses

and promote pro-inflammatory cytokines, further compromising

membrane integrity thus increasing the likelihood of PROM

(54, 55).

The identification of specific gut microbiota associated with

PROM has significant clinical implications. These microbiotas may

affect pregnancy health through various mechanisms such as

metabolites, endocrine, inflammation, or immune system (41, 56,

57). The changes of gut microbiota through dietary interventions,

probiotics, or prebiotics could be a viable strategy to prevent

PROM. Increasing the abundance of protective bacteria such as

Marvinbryantia and Ruminococcaceae UCG003 through probiotic

and prebiotic supplements could help maintain membrane

integrity. Additionally, dietary interventions aimed at reducing

harmful bacteria like Collinsella and Intestinibacter could also be

beneficial in preventing PROM.

MR analysis was performed to ascertain the causal relationship

between gut microbiota and PROM, effectively mitigating the

influence of confounding factors. However, our study has several

limitations, which could affect the interpretation of the results.

Firstly, summary statistics from the public database rather than raw

data were used in this MR analysis, which prevented us from

performing subgroup analyses such as term PROM and preterm

PROM. Secondly, the population of this study mainly focused on

European ancestry, raising the possibility that the findings may not

be fully applicable to other racial groups. Thirdly, due to the

moderate sample size of the gut microbiota, we did not perform

reverse MR analysis as it may be prone to potential instrumental

biases in the findings. Fourthly, because 16S rRNA sequencing only

allowed for taxonomic classification at the genus level, we were

unable to investigate more specific species levels between gut

microbiota and PROM. Finally, based on previous microbiota

studies, we selected a relaxed p-value threshold (pval <1.0×10-5)

to screen genetic instruments, which may lead to weak bias. To

address this issue, we calculated the instrument strength and
Frontiers in Immunology 09
excluded the F statistics <10 as a conventional cutoff to mitigate

potential bias effects.

Future research should focus on diverse population, detailed

subgroup analysis, larger sample size, longitudinal studies tracking

the gut microbiome composition during pregnancy to strengthen

the important relationship between microbiotas and PROM. And

the precise biological mechanisms also make us better explore the

PROM’s therapeutic targets.
Conclusion

In conclusion, this study provides strong evidence for the

causal relationship between specific gut microbiota and the risk of

PROM. By identifying both protective and pathogenic

bacteria, our findings open new avenues for preventive

strategies and therapeutic interventions, and aim at improving

maternal and fetal health condition. Further research will be

essential to refine these strategies and gain a comprehensive

understanding of the complex interactions between gut

microbiota and pregnancy.
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