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Background: Cardiac arrhythmias are the main cause of sudden death due to

Chronic Chagasic Cardiomyopathy (CCC). Here we investigated alterations in

connexin 43 (Cx43) expression and phosphorylation in cardiomyocytes as well as

associations with cardiac arrhythmias in CCC.

Methods: C57Bl/6 mice infected with Trypanosoma cruzi underwent cardiac

evaluations at 6 and 12 months after infection via treadmill testing and EKG.

Histopathology, cytokine gene expression, and distribution of total Cx43 and its

phosphorylated forms Cx43S368 and Cx43S325/328/330 were investigated. Human

heart samples obtained from subjects with CCC were submitted to

immunofluorescence analysis. In vitro simulation of a pro-inflammatory

microenvironment (IL-1b, TNF, and IFN-g) was performed in H9c2 cells and

iPSC-derived cardiomyocytes to evaluate Cx43 distribution, action potential

duration, and Lucifer Yellow dye transfer.

Results: Mice chronically infected with T. cruzi exhibited impaired cardiac

function associated with increased inflammation, fibrosis and upregulated IL-

1b, TNF, and IFN-g gene expression. Confocal microscopy revealed altered total

Cx43, Cx43S368 and Cx43S325/328/330 localization and phosphorylation patterns in

CCC, with dispersed staining outside the intercalated disc areas, i.e., in lateral

membranes and the cytoplasm. Reduced co-localization of total Cx43 and N-

cadherin was observed in the intercalated discs of CCC mouse hearts compared

to controls. Similar results were obtained in human CCC heart samples, which

showed Cx43 distribution outside the intercalated discs. Stimulation of human

iPSC-derived cardiomyocytes or H9c2 cells with IL-1b, TNF, and IFN-g induced
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alterations in Cx43 localization, reduced action potential duration and dye

transfer between adjacent cells.

Conclusion: Heart inflammation in CCC affects the distribution and

phosphorylation pattern of Cx43, which may contribute to the generation of

conduction disturbances in Chagas disease.
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Introduction

Considered by the World Health Organization (WHO) to be

both a neglected disease and a major public health problem, Chagas

disease, caused by the protozoan Trypanosoma cruzi, is endemic to

Latin America and present mainly in low-income regions (1). Due

to the migration of infected individuals to other regions of the world

for socioeconomic reasons (2), the disease has also spread to other

continents. Currently, it is estimated that 25,000 people acquire the

disease annually, and approximately 10,000 people die worldwide

each year due to Chagas disease (1).

The course of disease begins with an acute phase, which

corresponds to the onset of infection and parasite spread

throughout the body, while the chronic phase mainly affects the

digestive system and/or the heart (3). Chronic Chagasic

Cardiomyopathy (CCC), the most common clinical manifestation

of Chagas disease, displays high morbidity and mortality (4), with

cardiac arrhythmias being the main cause of sudden death in

affected patients (5, 6).

Cardiac arrhythmias have been associated with alterations in

the function and distribution of connexin 43 (Cx43) in cardiac cells

(7). Cx43 is the main protein responsible for forming gap junction

channels located in the intercalated discs between adjacent cardiac

cells (8). Gap junctions play an important role in synchronizing

rhythmic contractions and the maintenance of cardiac homeostasis

through the exchange of small metabolites (9). Previous studies

demonstrated that cardiomyocytes infected by T. cruzi present

impaired cell-cell communication due to reduced Cx43 expression

(9–12). Alterations in Cx43 have also been observed in

arrhythmogenic cardiac diseases of other etiologies, such as

ischemic and bacterial myocarditis (13–15).

The precise regulation of gap junctions is crucial for cell-cell

communication and the proper propagation of electrical signals

between cardiomyocytes. The phosphorylation of Cx43 is critical

for regulating Cx43 activity, as well as this protein’s lifespan,

structure, and localization (7). Among the phosphorylation sites,

serines 368 (S368) and the triplet 325/328/330 (S325/328/330) have

been well investigated, demonstrating their role in the regulation of

Cx43 function (13, 15, 16). While Cx43S368 is involved in gap
02
junction inactivation and disassembly, which contributes to the

electrical uncoupling of cardiomyocytes, Cx43S325/328/330 has been

associated with gap junction assembly (13, 16–18).

The importance of Cx43 to proper electrical activity in the

heart, coupled with the fact that no specific treatments exist for

CCC, highlights the need to further our understanding of the role

played by Cx43 alterations and investigate relevant relationships

with arrhythmias in Chagas disease. Therefore, the present study

aimed to evaluate the expression and distribution of total Cx43, as

well as its phosphorylated forms, in mice and the hearts of CCC

patients. Additionally, we performed an in vitro investigation into

the role of the pro-inflammatory chagasic microenvironment in

Cx43 expression.
Materials and methods

Animals

Four-week-old male C57BL/6 mice were used for T. cruzi

infection and as uninfected controls. All animals were obtained

from the animal care facilities of the Biotechnology and Cell

Therapy Center, São Rafael Hospital (CBTC-HSR), and the

Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-

FIOCRUZ), and kept at room temperature (20 ± 2°C) under

controlled humidity (50%) conditions. Food and water were

provided ad libitum and all animals were exposed to constant 12-

hour light-dark cycles. All procedures were approved by the Animal

Use Ethics Committee of the São Rafael Hospital (Protocol 011/18)

and the Gonçalo Moniz Institute (Protocol 17/2017).
Trypanosoma cruzi infection and
experimental design

Mice were infected by intraperitoneal (i.p) injection of saline

solution (100 µL) containing 103 trypomastigotes of T. cruzi

(Colombian strain), obtained from cultures of LCC-MK2 cells

previously infected with T. cruzi. Parasitemia was assessed at
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different time points after infection using a standard protocol (19).

All animals were evaluated for cardiac function (exercise testing and

electrocardiogram) at 6 or 12 months after T. cruzi infection to

compare groups of uninfected (n=10) and infected animals (n = 15)

at each infection time. Following these evaluations, animals were

euthanized using xylazine (50 mg/kg) and ketamine (100 mg/kg) via

intraperitoneal, and murine hearts were collected to perform

histopathological and immunofluorescence analysis, evaluate gene

expression, and undergo transmission electron microscopy

(Supplementary Figure S1).
Treadmill testing

Exercise performance was evaluated by placing each mouse on a

treadmill in a chamber (LE 8700; Panlab, Barcelona, Spain).

Treadmill speed and shock intensity (mA) were controlled by

potentiometer (LE 8700-treadmill control, Panlab). The initial

speed was 6 cm/s, with increases of 6 cm/s every five minutes

until reaching exhaustion. Exhaustion was considered following an

animal’s permanence for a period of 10 seconds on the electrified

stainless-steel grid that served as a stimulus to perform the activity.

The parameters evaluated were walking distance and total exercise

time (20).
Electrocardiographic analysis

Mice were submitted to inhalational anesthesia with isoflurane

(0 . 5 t o 2%) to a cqu i r e e l e c t ro ca rd iog r aph i c da t a .

Electrocardiographic (EKG) records were obtained using the

BioAmp Powerlab system (PowerLab 2\20, ADInstruments,

Castle Hill, NSW, Australia) via bipolar leads I and II. The

obtained data was then analyzed using LabChart7 software

(PowerLab), applying filters in the range of 1 to 100 Hz to

minimize environmental signal disturbances, with a sampling rate

of 1 kHz. The parameters evaluated on EKG included heart rate, PR

interval, P wave duration, QT interval, corrected QT interval (QTc),

and the presence of arrhythmia. Wave durations (ms) and heart rate

were automatically calculated by the software. QTc was calculated

as the ratio of the QT interval to the square root of the RR interval

(Bazett’s formula) (20, 21).
Histopathological and
morphometric analyses

Following euthanasia, murine heart samples were fixed in 4%

formalin for paraffinization and the preparation of histological

sections. The quantification of inflammatory cells and the

percentage of fibrotic tissue were performed on slides under

bright field microscopy following staining with hematoxylin-eosin

(H&E) and Sirius red, respectively. Images were captured using a

CoolSnap digital camera adapted to an AX-70 microscope

(Olympus) and analyzed using Image-Pro Plus software, version

5.0 (Media Cybernetics). To quantify the number of inflammatory
Frontiers in Immunology 03
infiltrate cells, 5 fields/animal were captured from HE-stained slides

at 400x magnification. The extent of fibrosis was estimated in Sirius

red-stained heart sections using the same program by comparing

areas of fibrotic and non-fibrotic tissue in 10 fields per animal at

200x magnification (21). The micrography analyses were

done blinded.
Gene expression analysis by RT-qPCR

RNA was extracted from murine heart tissue using TRIzol

reagent (Invitrogen, Carlsbad, CA), with concentrations

determined by photometric measurement. A High-Capacity

cDNA Reverse Transcription Kit (Applied Biosystems, Foster

City, CA) was used to synthesize cDNA from 1 mg of RNA in

accordance with the manufacturer’s recommendations. cDNA

synthesis and RNA expression analysis were performed by Real-

Time PCR using TaqMan Gene Expression Assays for Gja1

(Mm004391 0 5_m1 ) , Tn f (Mm00443 25 8_m1 ) , I l 1 b

(Mm0043228_m1) and Ifng (Mm01168134_m1). All reactions

were run in duplicate on an ABI 7500 Real Time PCR System

(Applied Biosystems) under standard thermal cycling conditions. A

non-template control (NTC) and non-reverse transcription

controls (No-RT) were also included. Samples were normalized

with Hprt (endogenous control). The threshold cycle (2-DDCt)
method of comparative PCR was used to analyze the obtained

results (22).
Human heart samples

Tissue samples of explanted hearts were obtained from the heart

transplant service of Hospital de Messejana in Fortaleza (Ceará-

Brazil). Left ventricular sections were obtained from the explanted

hearts of patients with CCC (n = 3). As a control, a sample was

obtained from the heart of a patient without cardiomyopathy who

died from stomach cancer (n = 1) (Supplementary Table S1).

Sections were processed and then subsequently subjected to

immunofluorescence analysis. The local institutional review board

of the Hospital de Messejana approved the present study protocol

(Approval number: 3.255.044).
Cardiac tissue immunofluorescence

Sections of paraffin-embedded hearts fixed in formalin were

used to detect the expression and distribution of total Cx43, as well

as phosphorylated Cx43S368 and Cx43S325 / 32 8 / 3 30 by

immunofluorescence. Heart sections were incubated overnight

with anti-total Cx43 (1:50; Santa Cruz Biotechnology, Santa Cruz,

CA; SC-9059), anti-Cx43S368 (1:100; Thermo Fisher Scientific; 48-

3000), anti-Cx43S325/328/330 (1:2000) (23) and N-cadherin (1:100;

Thermo Fisher Scientific; 33-3900) antibodies, at 4°C. Next,

secondary anti-rabbit IgG AlexaFluor 488 conjugated antibody

(1:1000; Life Technologies; A21441) and Wheat Germ Agglutinin

(1:1000; WGA - AlexaFluor 594; W11262), or anti-mouse IgG
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AlexaFluor 568 conjugated (1:1000; Life Technologies, A10037)

were added, followed by a 1-hour incubation period at room

temperature. Slides were mounted using Vectashield mounting

medium with DAPI (Vector Laboratories). Images were obtained

using a TCS SP8 spectral confocal microscope (Leica) and analyzed

using ImagePro version 7.0 software (Media Cybernetics). The

micrography analyses were done blinded.
Transmission electron microscopy –
immunogold labeling

Left ventricle heart fragments obtained from infected and

healthy mice were fixed using a solution containing

glutaraldehyde (1%), paraformaldehyde (4%), picric acid (0.2%),

and 0.1 M sodium cacodylate for at least 3 h at 4°C. After fixation,

the fragments were processed as previously described for inclusion

in LR-White resin (24). Next, ultra-thin sections were obtained and

transferred to collodion-coated nickel gratings. Grids were blocked

with 50 mM glycine, 10% BSA (Aurion, Wageningen, Netherlands)

and 0.1% Tween 20 (Sigma-Aldrich, Hamburg, Germany) for 30

minutes each. After blocking, the grids were incubated overnight at

4°C with primary anti-connexin antibody 43 (1:10; Santa Cruz

Biotechnology), and then for 1 h with secondary goat anti-rabbit

antibody conjugated to colloidal gold (10 nm) (1:100; Sigma-

Aldrich; G7-402). For negative controls, grids were incubated in

0.1 M phosphate-buffered saline (PBS) instead of the primary

antibody. All grids were finally stained with uranyl acetate and

lead citrate, and subsequently examined under a JEOL TEM-1230

transmission electron microscope operating at 80Kv. The

micrography analyses were done blinded.
H9c2 cell cultures

H9c2 cells, initially isolated from an embryonic BD1X rat heart,

were used to analyze Cx43 expression in vitro (25). H9c2 cells were

cultured in Dulbecco’s modified Eagle’s medium (DMEM; Life

Technologies, GIBCO-BRL, Gaithersburg, MD) supplemented

with 10% fetal bovine serum (FBS; GIBCO) and 50 µg/mL of

gentamicin (Life Technologies), maintained at 37°C under a

humidified atmosphere of 5% CO2, with the culture medium

changed every two days until reaching 80%-90% confluence.

H9c2 cells were plated at a density of 5x105 cells per well on 24-

well plates containing glass coverslips. Following cell adherence to

the coverslips, cultures were stimulated with a combination of pro-

inflammatory cytokines (IL-1b, TNF, and IFN-g; 10 ng/ml of each

cytokine; Cell Signaling Technology) (26, 27) in DMEM

supplemented with 10% FBS for 48 h. Glass coverslips containing

H9c2 cells were then washed with PBS and fixed in 4%

paraformaldehyde (Thermo Scientific, Wilmington, DE) for 15

minutes at room temperature. The cells were washed again with

PBS and nonspecific sites were blocked with PBS plus 5% BSA for

30 minutes and then incubated overnight at 4°C with the primary

antibody, anti-total Cx43 (1:100; Santa Cruz Biotechnology). Next,

the cells were washed with PBS-Tween and PBS 1x and incubated
Frontiers in Immunology 04
with the secondary anti-rabbit IgG antibody (AlexaFluor 488;

1:400) and Wheat Germ Agglutinin (WGA – AlexaFluor 594; 1:

1000) diluted in PBS plus 1% BSA. Slides were mounted using

Fluoroshield mounting medium with DAPI (Sigma-Aldrich).

Images were obtained using a TCS SP8 spectral confocal

microscope (Leica), with fluorescence intensity evaluated using

ImagePro software version 7.0 (Media Cybernetics).
Dye transfer analysis

The functional assessment of gap junctions was carried out

through in vitro dye transfer analysis. Firstly, H9c2 cells cultivated

on 24-well plates at a density of 5x105 cells/well were stimulated

with pro-inflammatory cytokines for 48h. Incisions through

monolayers were performed with the tip of a scalpel in the

presence of Lucifer Yellow (LY) dye (Sigma-Aldrich) for 5

minutes. Next, cells were washed three times with PBS containing

Ca2+ and Mg2+ to remove excess dye, and then fixed in 10%

formaldehyde for 15 minutes at room temperature (28). Images

were obtained using a ZOE Fluorescent Cell Imager (BioRad).
Cardiomyocyte action potential and
immunofluorescence analysis

Induced pluripotency stem cell (iPSC)-derived cardiomyocytes,

originally collected from healthy donor, were obtained from the

Laboratory of Cellular and Molecular Cardiology, Federal

University of Rio de Janeiro (UFRJ) (29). iPSCs were cultured in

RPMI medium (LGC Biotecnologia) supplemented with B-27

(GIBCO) without insulin. Activation of the Wnt pathway was

performed by treatment with CHIR99021(9 mM), a glycogen

synthase kinase 3 (GSK3) inhibitor (R&D Systems), on day 0

(D0). Subsequently, the Wnt pathway was inhibited by treatment

with the antagonist XAV939 (R&D Systems) at concentrations of 10

and 5 mM, respectively on days 3 and 4 (D3 and D4). After this step,

from D7 onwards, the medium initially used was replaced by

medium containing insulin and RPMI/B-27 Plus, which was

regularly changed every two days until complete cardiomyocyte

maturation was achieved on D30. This protocol was adapted from

Lian et al. (2013). The cell line Pac25 used in this work was obtained

from a healthy donor was previously approved by a national ethical

rev i ew board in Braz i l (CONEP: # 409960/2013-6 ;

CEP: 63167722.0.0000.5272).

Next, iPS-derived cardiomyocytes were characterized by flow

cytometry. Cells were fixed and permeabilized with BD Cytofix/

Cytoperm™ (BD Biosciences) and stained with pluripotency

markers OCT3/4 (1:100; BD Biosciences), SOX2 (1:100; BD

Biosciences), and cardiac marker Troponin T (1:100; Thermo-

Fisher). (Supplementary Figure S2) (29).

Human iPSC-derived cardiomyocytes (3x105 cells) were plated

in 35 mm culture dishes in RPMI/B-27 Plus in the absence or

presence of recombinant IL-1b, TNF, and IFN-g (10 ng/ml of each

cytokine) to induce an in vitro inflammatory microenvironment.

After 24 or 48 h, cultures were used for electrophysiology analysis.
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Cells were continuously perfused with a Tyrode solution containing

(in mM) 140 NaCl, 5.4 KCl, 1.8 CaCl2, 1.0 MgCl2, 11 D-glucose and

10 HEPES, at pH 7.4 under a constant temperature of 37°C.

Action potential was recorded using a glass microelectrode with

a resistance of 40-100 MW (1.5 x 0.86 mm – P-97 Flaming/Brown

Micropipette Puller – Sutter Instrument), filled with KCl solution (3

M) and connected to a signal amplifier (MultiClamp 700B,

Molecular Devices, USA). The amplified signal was digitized

(DIGIDATA 1440 A/D interface, Axon Instrument, Inc.) and the

obtained data was analyzed using LabChart 7.3 software

(ADInstruments, Australia). Action potential duration (APD) was

analyzed at 10, 50, and 90% of repolarization, considering at least

five action potentials from each group.

In addition, human iPSC-derived cardiomyocytes were also

used for immunofluorescence analys is . iPSC-der ived

cardiomyocytes were washed with PBS following the same

protocol described above for H9c2 cells. By contrast, these cells

were incubated overnight at 4°C with the primary antibody anti-

total Cx43 (1:100; Santa Cruz Biotechnology) diluted in PBS

containing 1% BSA. Next, the cells were washed with PBS-Tween

and PBS 1x and incubated with the secondary anti-rabbit antibody

(AlexaFluor 568; 1:800) and phalloidin (AlexaFluor 488; 1:400) for

1 hour at room temperature. Slides were mounted using

Fluoroshield mounting medium with DAPI (Sigma-Aldrich).
Statistical analysis

Data are expressed as means ± standard error of the mean for

the number of animals in each group. The normal distribution of

data was confirmed by the Shapiro-Wilk test Student’s t test was

used to compare quantitative variables between groups at a given

timepoint. For comparisons between three groups, data were

analyzed using one-way ANOVA, followed by the Newman-Keuls

multiple comparison test. Significant differences were considered

for p values below 0.05. All analyses were performed using Graph

Pad Prism version 8.0 (Graph Pad Software, San Diego, CA).
Results

Chronic infection with T. cruzi reduces
treadmill performance, promotes cardiac
arrhythmias, inflammation and fibrosis

The cardiac function of mice with CCC was evaluated at 6 and 12

months after infection. The treadmill performance of T. cruzi-infected

mice was significantly impaired (P < 0.001) compared to uninfected

control littermates, which run greater distances (Figure 1A) for longer

times of exercise (Figure 1B) at both times after infection.

Additionally, EKG analysis revealed that T. cruzi-infected mice

present severe cardiac conduction disturbances (Figures 1C–E). The

alterations identified correspond to different types of arrhythmias,

including polymorphic ventricular tachycardia, junctional rhythm,

atrioventricular dissociation, and atrioventricular block. By contrast,

uninfected control animals presented normal sinus rhythm. No
Frontiers in Immunology 05
significant differences were observed in the severity of arrhythmias

presented by T. cruzi-infected mice when comparing 6 versus 12

months after infection (Figure 1).

Heart sections prepared from the left ventricles were stained

with H&E or Sirius red for morphometric analysis of inflammation

and fibrosis, respectively. An intense multifocal inflammatory

infiltrate predominantly composed of mononuclear cells was

found in the heart sections from T. cruzi-infected mice (at both 6

and 12 months). The number of inflammatory cells was

significantly higher compared to uninfected controls (Figures 2A–

C). Collagen deposition analysis indicated a greater area of fibrosis

deposition in the cardiac sections of infected mice compared to

controls at both time points evaluated (Figures 2D–F). Moreover,

increased expression of genes encoding for the pro-inflammatory

cytokines TNF, IL-1b, and IFN-g was detected in heart samples

obtained from the infected group compared to uninfected controls 6

or 12 months after infection (Figures 2G–I).
Cardiac Cx43 gene expression, cell
distribution, and phosphorylation patterns
are affected by T. cruzi infection

To evaluate Cx43 gene expression, the left ventricles of mouse

hearts were analyzed at 6 and 12 months after T. cruzi infection.

The expression of Gja1, which encodes Cx43, was reduced in the

hearts of chagasic mice compared to naïve mice at 6 months, but

not at 12 months after infection (Figure 2J).

Next, the distribution of total Cx43 (Cx43T) and its

phosphorylated forms (Cx43S368 and Cx43S325/328/330) were

evaluated by confocal microscopy in the left ventricles. The pattern

of Cx43T localization was significantly altered in T. cruzi-infected

mice compared to uninfected animals. While predominantly located

in the intercalated discs in the cardiac sections of uninfected control

mice (Figure 3A), in chagasic hearts Cx43T was frequently identified

outside the intercalated discs, appearing in the lateral membrane and

scattered into the cytoplasm (Figure 3B). Similar results were

observed in heart sections stained with antibodies against

phosphorylated Cx43, as Cx43S368 and Cx43S325/328/330 were

detected in the lateral membrane and within the cytoplasm in

infected mice compared to uninfected mice, in which Cx43 was

mostly restricted to intercalated discs (Figures 3C–F).

Confocal microscopy analysis of heart sections co-stained with

anti-Cx43T and anti-N-cadherin antibodies also indicated alterations

induced by chronic T. cruzi infection. In the hearts of uninfected

animals, staining for these two proteins revealed the localization of

both N-cadherin and Cx43T in the intercalated discs (Figures 4A, B).

In contrast, staining for Cx43 was weaker in the intercalated discs in

chagasic mice areas, with N-cadherin almost exclusively detected in

some areas. Cx43T staining was often observed in areas adjacent to

the intercalated disks, and also scattered into the cytoplasm as well as

into lateral membranes (Figures 4C, D).

Next, we performed ultrastructural analysis to evaluate Cx43T

distribution by immunogold labeling using transmission electron

microscopy in fragments of murine left ventricles. Heart samples

from uninfected mice showed Cx43T localized in the interplicate
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regions of cardiomyocyte intercalated discs, adjacent to plicate areas

containing loops and desmosomes (Figures 5A–C). The hearts of

chronic chagasic mice also showed staining for Cx43T in interplicate

regions (Figures 5D–F), as well as in invaginations adjacent to the

intercalated discs (Figure 5).
Frontiers in Immunology 06
Cell distribution of Cx43 is altered in
human chagasic hearts

Samples of cardiac ventricles from patients with heart failure

due to chronic Chagas disease who underwent heart transplantation
B

C

A

D

E

FIGURE 1

Functional analysis: Treadmill testing and EKG analysis of chagasic and uninfected mice. (A, B) Distance run and time of exercise on a motorized
treadmill involving mice after 6 and 12 months of infection, respectively; Representative EKG images: (C) EKG of an uninfected mouse with regular
sinus rhythm; (D) EKG of a chagasic mouse with total atrioventricular block; (E) EKG of chagasic mouse with polymorphic ventricular tachycardia.
* = P wave; # = QRS complex. Treadmill test: Values represent means ± S.E.M. of 10 and 14 mice (6 months of infection) and 7 and 8 mice (12
months of infection) from uninfected and chagasic groups, respectively. ***P< 0.001 compared to uninfected group.
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were also evaluated for the distribution of Cx43T, Cx43S368, and

Cx43S325/328/330. In a healthy heart sample, Cx43T staining was

predominantly localized in cardiomyocyte intercalated discs

(Figure 6A). By contrast, Cx43T localization was altered in the

Chagasic hearts, as evidenced by expression in lateral membranes as

well as the cytoplasm (Figure 6B). Using an antibody specific for

Cx43S368, weak staining was observed in the healthy heart

(Figure 6C) compared to intense labeling in chagasic heart

sections, mainly localized in the lateral membranes and

cardiomyocyte cytoplasm (Figure 6D). Similar results were

obtained with antibodies against Cx43S325/328/330 (Figures 6E, F).

Double-staining with Cx43T and N-cadherin revealed the

expression of both Cx43T and N-cadherin in the intercalated

discs of the control heart sample (Figure 6G). However, in

chagasic hearts, less intense co-staining of Cx43T and N-cadherin

was seen in the intercalated disc areas, with scattered Cx43T staining

observed in regions adjacent to the intercalated discs (Figure 6H).
Frontiers in Immunology 07
A pro-inflammatory microenvironment
induces alterations in Cx43 distribution,
reduces dye transfer capacity, and reduces
action potential duration in
cardiomyocytes in vitro

IPSC-derived cardiomyocytes and H9c2 cells were stimulated in

vitro with pro-inflammatory cytokines (IL-1b, TNF, IFN-g) to

simulate the inflammatory microenvironment found in chagasic

hearts (Figure 7A). Confocal microscopy analysis revealed marked

alterations in Cx43 distribution in both cell cultures, with staining

spread throughout the cytoplasm of cardiomyocytes in contrast to

non-stimulated cells, in which this protein was mainly localized in

the plasma membrane region (Figure 7B). Immunofluorescence in

H9c2 cells and iPSC-derived cardiomyocytes indicated perinuclear

and dispersed Cx43 staining throughout the cytoplasm in cells

stimulated with pro-inflammatory cytokines, while non-stimulated
B C

D E F

G H I J

A

FIGURE 2

Morphological analysis and gene expression of pro-inflammatory cytokines in the hearts of uninfected and chagasic mice at 6 and 12 months after
infection. (A, B) Representative micrographs of hematoxylin and eosin-stained heart sections of uninfected and chagasic mice at 12 months
following infection. (C) Inflammatory cells quantified by morphometric analysis. (D, E) Micrographs of picrosirius red-stained heart sections of
uninfected and chagasic mice. (F) Fibrotic area represented by percentage of collagen deposition in heart sections. Gene expression of pro-
inflammatory cytokines (G) Tnf, (H) Il1b, (I) Ifng, and (J) Gja1 assessed by RT-qPCR using cDNA samples prepared from mRNA extracted from
experimental mouse hearts. Values represent means ± S.E.M. of 5-6 mice per group. ***P< 0.001; **P< 0.01; *P<0.05 compared to
uninfected group.
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cells showed higher Cx43 fluorescence intensity in cell membranes

that frequently coincided with N-cadherin staining (Figure 7C).

Functional analyses were performed in vitro to evaluate the

influence of an inflammatory microenvironment on action

potential duration in human iPSC-derived cardiomyocytes and

dye transfer between adjacent cells in H9c2 cells (Figure 8A).

IPSC-derived cardiomyocytes stimulated for 24 or 48 hours with

a combination of pro-inflammatory cytokines showed significant

reductions in APD at different repolarization points (10, 50, and
Frontiers in Immunology 08
90%) compared to control cells, with a marked further reduction

resulting from longer stimulation (Figure 8B). Finally, the extent of

lucifer yellow dye transfer was assessed in H9c2 cells, revealing less

diffusion of dye in stimulated cells compared to unstimulated

control cells (Figure 8C). Dye diffusion was quantified by

measuring the stained area, confirming a statistically significant

difference (unstimulated cardiomyocytes: 511.8 ± 223.3 mm2,

compared to 248.8 ± 122.9 mm2 in cytokine-stimulated

cardiomyocytes; p = 0.015).
B

C D

E F

A

FIGURE 3

Distribution of total Cx43, Cx43S368, and Cx43S325/328/330 in hearts of chagasic mice and uninfected controls. (A, C, E) Heart sections from
uninfected mice and (B, D, F) chagasic mice. Samples were stained with WGA (red), cell nuclei stained with DAPI (blue), and with anti-total Cx43,
anti-Cx43S368, and anti-Cx43S325/328/330 (green) antibodies; images analyzed by confocal microscopy. Scale bars = 25 µm. White arrows indicate
lateralization, while yellow asterisks indicate Cx43 in cytoplasm. WGA, Wheat Germ Agglutinin; Cx43, Connexin 43.
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Discussion

Under pathological conditions, cardiomyocyte Cx43

localization can change, contributing to improper electrical

potential conduction within the heart (14, 16, 23, 30). The

present study investigated alterations in conduction and

correlated it with Cx43 localization in CCC. Our results indicate

that CCC is associated with marked alterations in Cx43 distribution

and phosphorylation patterns in an experimental mouse CCC

model. Importantly, our analysis of human heart samples

obtained from end-stage CCC subjects revealed similar alterations

in Cx43 distribution. Moreover, in vitro experimentation

mimicking the inflammatory microenvironment found in CCC

also induced alterations in Cx43 distribution in both human and

murine cardiomyocytes, as well as impaired intercellular

communication through gap junctions. Taken together, these

results reinforce the role played by inflammation in promoting

structural and functional cardiac alterations, as well as highlighting
Frontiers in Immunology 09
the potential of immunomodulation as a potential strategy for the

treatment of CCC (31).

Mice with CCC exhibited impaired cardiac function, as

evidenced by electrical conduction disturbances, which is

consistent with previous studies employing a similar experimental

approach (20, 21, 32). Our EKG analysis revealed different degrees

of arrhythmias in animals with CCC, which is also convergent with

previous reports (20, 32, 33). Additionally, mice with CCC

exhibited a reduced ability to run on a treadmill, which could be

associated with a compromised cardiac function (20, 32), as well as

skeletal muscle alterations, since chronic T. cruzi infection is also

characterized by intense myositis (34).

Intense inflammation and fibrosis, hallmarks of chronic Chagas

cardiomyopathy, were identified in the hearts of chronically

infected mice, similarly to reports in previous studies (20, 21, 32).

Both processes may contribute to the development of the

conduction disturbances observed in our model. Fibrosis

deposition constitutes an important factor in the genesis of
B

C D

A

FIGURE 4

Co-staining with Cx43 and N-Cadherin in hearts of chagasic mice and uninfected controls. (A, B) Non-infected hearts show the presence of Cx43
(green) and N-cadherin (red) in the intercalated disk area; (C, D) chagasic hearts frequently presented N-cad exclusively in intercalated disc areas,
with Cx43 dispersed into the cytoplasm. White arrows indicate Cx43 in cytoplasm, while white asterisks indicate intercalated discs with only N-cad
expression. N-cad, N-cadherin; Cx43, Connexin 43. Scale bars = 25 µm.
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arrhythmias, suppressing the propagation of cardiac action

potential (35). At the same time, a persistent inflammatory

process leads not only to the loss of myofibers and the

replacement of contractile fibers with fibrosis, but is also

responsible for neuronal destruction of the autonomic nervous

system that may contribute to the genesis of conduction

disturbances (36).
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Phosphorylation at different serine and/or tyrosine residues in the

C-terminal domain of Cx43 plays an important role in the regulation

of this protein’s biological activity, causing electrical decoupling in the

heart, which may lead to reentry circuits and enable the onset of

ventricular arrhythmias (5, 6, 37–39). Here, we observed alterations

in the localization of Cx43T, Cx43S368, Cx43S325/328/330 in both the

experimental animal model as well as in human hearts. Altered
B

C

D

E

F

A

FIGURE 5

Ultrastructural analysis of total Cx43 in intercalated discs. Hearts from uninfected and chagasic control mice (n = 3 per group) were processed for
analysis by transmission electron microscopy. Ultrathin sections were incubated with total anti-Cx43 antibody, with labeling revealed by the
immunogold technique. (A–C) representative sections from uninfected control mice; (D–F) representative sections from chagasic mice. Red arrows
indicate the presence of gap junctions in the intercalated discs; yellow asterisks indicate desmosome; P, plicate; IP, interplicate; M, myofibrils.
Scale bars = 0.5 µm (A, B, D, E), 0.2 µm (C, F).
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staining patterns for Cx43 isoforms were observed in the lateral

membrane and internalized in the cytoplasm of cardiac cells.

Previous studies have shown that the localization of Cx43 outside

the intercalated disks reduces the speed of the action potential

propagation (40). Conversely, in the hearts of uninfected mice,

Cx43 was predominantly localized in the intercalated discs, which

is indicative of effective “cell-cell” conduction of electrical potential

between neighboring cardiomyocytes (15, 41–43). The increased

phosphorylation of Cx43S368 is known to reduce permeability and
Frontiers in Immunology 11
promote lateralization and internalization of communicating

channels, a phenomenon observed in experimental models of

cardiac ischemia (18, 44, 45). Moreover, Lampe et al. (2006)

suggested that the dephosphorylation of Cx43S325/328/330 plays an

important role in compromising permeability in gap junctions,

reducing communication between cardiomyocytes, in the context

of heart disease, which may also be occurring in CCC.

Inflammation is known to induce alterations in the gap

junctions formed by Cx43 by impairing protein expression and
B

C D

E F

G H

A

FIGURE 6

Distribution of total Cx43, Cx43S368, and Cx43S325/328/330 in human cardiac muscle tissue. (A, C, E) Sections of explanted hearts from non-Chagas
patients and (B, D, F) sections of explanted hearts from Chagas patients who underwent heart transplantation were analyzed by
immunofluorescence. Samples were labeled with WGA (red), cell nuclei with DAPI (blue), and total Cx43 total, Cx43S368 or Cx43S325/328/330 (green).
(G, H) Co-labeling of Cx43 (green) and N-cadherin (red), and co-localization between Cx43 and N-cadherin (yellow). White arrows indicate the
presence of Cx43 outside the intercalated disc area. Scale bars = 50 µm. WGA, Wheat Germ Agglutinin; N-cad, N-cadherin; Cx43, Connexin 43.
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localization (5, 20, 21). Elevated levels of pro-inflammatory

cytokines, such as TNF, IL-1b, and IFN-g, have been shown to

promote alterations in Cx43 expression (15, 27, 46–48), as well as

increase Cx43S368 phosphorylation by activating different signaling
Frontiers in Immunology 12
pathways (7, 13, 15, 18, 46, 49). These observations underscore the

significance of our findings in this study, in which increased

expression of genes encoding cytokines IL-1b, TNF and IFN-g
was observed in the hearts of mice with CCC. The correlation
B

C

A

FIGURE 7

Effect of inflammatory microenvironment on Cx43 distribution in vitro. (A) Experimental in vitro design involving H9c2 cells and iPSC-derived
cardiomyocytes, with both cell types stimulated by pro-inflammatory cytokines (IL-1b, TNF, and IFN-g, 10 ng/ml of each cytokine) for 48 hours for
immunofluorescence analysis. (B) Immunofluorescence of H9c2 cells and iPSC-derived cardiomyocytes; (C) Analysis of Cx43 distribution by
fluorescence intensity in H9c2 cells and iPSC-derived cardiomyocytes after 48 hours of stimulation with pro-inflammatory cytokines IL-1b, TNF, and
IFN-g. Cells were stained with WGA (red), cell nuclei with DAPI (blue), and total Cx43 with anti-Cx43 antibody (green). Images analyzed by confocal
microscopy. Scale bars = 50 µm. WGA, Wheat Germ Agglutinin; Cx43, Connexin 43; IL-1b, Interleukin 1 beta; TNF, Tumor necrosis factor; IFN-g,
Interferon gamma; C, Cytoplasm; N, Cell Nucleus. Created with BioRender.com.
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between inflammatory cytokine production and changes in Cx43

phosphorylation and localization observed in our study further

highlights the intricate interplay between inflammation and cardiac

electrical coupling in the context of CCC.

Alterations in intercalated disc structure influence the

regulation of cardiac conduction and are associated with
Frontiers in Immunology 13
pathological conditions (50). To better investigate the distribution

of Cx43 in intercalated discs, we performed co-staining with an

antibody against N-cadherin (a protein present in intercalated

discs) along with Cx43. This analysis revealed scarce staining for

Cx43 in the intercalated discs of chagasic heart sections, whereas

uninfected mice exhibited more uniform and correlated staining for
B

C

A

FIGURE 8

Functional in vitro analysis of Cx43: Action Potential Duration and Lucifer Yellow dye transfer. (A) Schematic drawing of functional testing performed
on iPSC-derived cardiomyocytes and H9c2 cardiomyocytes, stimulated with pro-inflammatory cytokines to respectively analyze the duration of
action potential and dye transfer between neighboring cells. (B) After stimulation, action potential duration (APD) of iPSC-derived cardiomyocytes
was determined at 10%, 50% and 90% levels. (C) Lucifer Yellow dye transfer test (green) performed in H9c2 cells (bright field) stimulated with pro-
inflammatory cytokines IL-1b, TNF, and IFN-g for 48 hours. Predominance of dye observed in cells at the margin where scalpel incision was made,
while absence of stimulation resulted in dye reaching more distant cells; IL-1b = Interleukin 1 beta; TNF = Tumor necrosis factor; IFN-g = Interferon
gamma; CTRL = Control group; ***P< 0.001 compared to unstimulated cells. Scale bars = 100 mm.
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N-cadherin and Cx43 in the intercalated discs. This alteration in

distribution pattern aligns with findings reported by Himelman and

colleagues in a model of Duchenne muscular dystrophy (23).

Alterations in Cx43 distribution were further confirmed by

transmission electron microscopy, which demonstrated the

localization of Cx43 in the interplicate regions of intercalated

discs, as well as frequent labeling in concentric ring structures,

which is suggestive of alterations in gap junctions containing

membranes during internalization. Similar ultrastructural

alterations were also reported by Hesketh and collaborators

(2010), who evaluated Cx43 distribution in canine models of

heart failure (41).

The present study observed significantly lower expression of the

gene that encodes Cx43 (Gja1) in mice at six months after infection,

similarly to previous studies reporting the downregulation of Cx43

in the heart (45, 51). However, at 12 months after infection, higher

Gja1 expression was noted, which may indicate the presence of a

compensatory mechanism in response to the cardiac damage

caused during disease progression (51). Further analysis will be

necessary to fully clarify the long-term regulation of Cx43 gene

expression within the context of CCC.

To further elucidate the influence of inflammation on Cx43

expression and function, we simulated an inflammatory

microenvironment in cultures of human iPSC-derived

cardiomyocytes and H9c2 cells by incubation with a pool of pro-

inflammatory cytokines (IL-1b, TNF and IFN-g). After 48 hours of
stimulation, a reduction in the duration of action potential in iPSC-

derived cardiomyocytes was noted, as well as the decreased ability of

H9c2 cells to transfer LY dye between neighboring cells and greater

Cx43 dispersion throughout the cytoplasm in both cell types

investigated. Previous studies demonstrated that T. cruzi-infected

cardiomyocytes lose the ability to transfer LY dye to adjacent cells

(9, 48, 52–54). Taken together, our results indicate that the

persistence of a pro-inflammatory microenvironment due to

scarce residual parasitism during the chronic phase of infection

may also play a major role in Cx43 disorganization (10, 12, 55), as

well as contribute to the conduction disturbances seen in CCC.

In conclusion, the pro-inflammatory milieu associated with

CCC provokes a marked impairment in Cx43 distribution and

cardiac function. The present findings suggest possibilities for

further investigations to seek a deeper understanding of the

signaling pathways that may be activated by pro-inflammatory

cytokines, resulting in the dysregulation of Cx43. Additionally, we

highlight the importance of exploring potential therapeutic targets

that could improve Cx43 function and prevent the development of

serious arrhythmias in patients with CCC.
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