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monocytic dysregulation
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Zhiyan Huang1 and Ting Zhao3*

1The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China, 2College of
Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China, 3Key Laboratory of
Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical
Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University,
Hangzhou, China
Background: SLE and ME/CFS both present significant fatigue and share immune

dysregulation. The mechanisms underlying fatigue in these disorders remain

unclear, and there are no standardized treatments. This study aims to explore

sharedmechanisms and predict potential therapeutic drugs for fatigue in SLE and

ME/CFS.

Methods: Genes associated with SLE and ME/CFS were collected from disease

target and clinical sample databases to identify overlapping genes. Bioinformatics

analyses, including GO, KEGG, PPI network construction, and key target

identification, were performed. ROC curve and correlation analysis of key

targets, along with single-cell clustering, were conducted to validate their

expression in different cell types. Additionally, an inflammation model was

established using THP-1 cells to simulate monocyte activation in both diseases

in vitro, and RT-qPCR was used to validate the expression of the key targets. A

TF-mRNA-miRNA co-regulatory network was constructed, followed by drug

prediction and molecular docking.

Results: Fifty-eight overlapping genes were identified, mainly involved in innate

immunity and inflammation. Five key targets were identified (IL1b, CCL2, TLR2,
STAT1, IFIH1). Single-cell sequencing revealed that monocytes are enriched with

these targets. RT-qPCR confirmed significant upregulation of these targets in the

model group. A co-regulatory network was constructed, and ten potential drugs,

including suloctidil, N-Acetyl-L-cysteine, simvastatin, ACMC-20mvek, and

camptothecin, were predicted. Simvastatin and camptothecin showed high

affinity for the key targets.
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Conclusion: SLE and ME/CFS share immune and inflammatory pathways. The

identified key targets are predominantly enriched in monocytes at the single-cell

level, suggesting that classical monocytes may be crucial in linking inflammation

and fatigue. RT-qPCR confirmed upregulation in activated monocytes. The TF-

mRNA-miRNA network provides a foundation for future research, and drug

prediction suggests N-Acetyl-L-cysteine and camptothecin as potential therapies.
KEYWORDS

systemic lupus erythematosus, myalgic encephalomyelitis/chronic fatigue syndrome,
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1 Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease

with an unclear pathogenesis. The breakdown of immune tolerance,

characterized by abnormal T and B cell function, contributes to the

production and deposition of autoantibodies, leading to

multisystem damage (1). Fatigue is considered one of the most

common symptoms in the onset and progression of SLE. It is

reported by 67%-90% of patients and substantially affects their

quality of life (2–4). It is noteworthy that patients still have

significant fatigue even when clinical symptoms and serological

markers are well-controlled (5–7). While several factors

contributing to fatigue in SLE have been proposed, the precise

etiology and mechanisms remain unclear in most patients, and

effective treatment is lacking (4). Thus, investigating the

mechanisms of fatigue in SLE is essential and valuable. It may aid

in finding therapeutic approaches and drugs to reduce fatigue.

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/

CFS) is a diagnosis of exclusion, primarily characterized by severe

and unrelenting fatigue lasting more than six months (8, 9). The

pathogenesis of ME/CFS is also unclear, but etiological exploration

suggests that it may be related to genetic predisposition, viral

infections, and abnormal immune responses (10). ME/CFS shares
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certain similarities with SLE, such as fatigue, swollen lymph nodes,

musculoskeletal pain, and cognitive dysfunction (11–14). Infections

such as Epstein-Barr virus, Parvovirus B19, and Human

Herpesvirus establish an etiological connection between SLE and

ME/CFS (10, 15, 16). As understanding deepens, more details about

immune dysfunctions are gradually revealed. The tyrosine

phosphatase non-receptor type 22 (PTPN22) SNP rs2476601 and

the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) SNP

rs3087243 have also been shown to be associated with the risk of

developing SLE and ME/CFS (17). A subset of ME/CFS patients

have elevated immunoglobulin levels, and even the presence of

antinuclear antibodies and anti-dsDNA, which are consistent with

SLE patients (18). In ME/CFS patients, similar cellular

characteristics can be observed as in SLE patients, such as the

dysregulation of T cells, B cells, and monocytes (9, 19, 20). These

insights suggest a more intricate link in the pathogenesis of both

SLE and ME/CFS, beyond the common symptom of fatigue.

Therefore, we hypothesize that there are common pathways and

immune cell dysregulation between SLE and ME/CFS, leading to

their similar symptoms.

Bioinformatics methods are essential for the discovery of

unknown targets and mechanisms of disease. The overlapping

genes could offer valuable insights into fatigue associated with

SLE and ME/CFS. This study applied bioinformatics approaches

including analysis of gene ontology (GO), Kyoto Encyclopedia of

Genes and Genomes (KEGG), protein-protein interaction (PPI),

single-cell transcriptomics and TF-mRNA-miRNA co-regulatory

network. Furthermore, we predicted potential drugs using the

DSigDB database and measured drug molecule affinity through

molecular docking. Figure 1 illustrates our research workflow.
2 Materials and methods

2.1 Collecting overlapping genes between
SLE and ME/CFS

The Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.

nih.gov/geo/) is a database that contains a wide range of disease-
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related datasets from high-throughput sequencing and microarray

studies. For SLE, we selected the dataset GSE72326 - GPL10558,

comprising 157 SLE samples and 20 healthy controls. This dataset

was chosen for its peripheral blood analysis and large sample size,

which enhances statistical robustness. For ME/CFS, we selected the

dataset GSE14577 - GPL96, consisting of 8 ME/CFS samples and 7

healthy controls. GSE14577 was included because it was the only

GEO dataset that specifically analyzed peripheral blood in ME/CFS

patients, providing unique insights despite its smaller sample size.

The limma package is based on a linear model and uses weighted

least squares to estimate gene expression differences, while

employing a Bayesian method to adjust for multiple testing issues.

The datasets GSE72326 and GSE14577 were converted into

expression matrices and categorized, and analyzed using the

limma package (version: 3.40.2) in R software (v4.0.3). We

examined the adjusted p-values (adj. pValue) to correct for false

positives. We defined the threshold for filtering differentially

expressed genes (DEGs) as an adj. pValue < 0.05 and | fold

change (FC) | ≥ 1.3. To supplement the smaller number of DEGs

obtained for ME/CFS, we selected relevant genes from the

DisGeNet (https://disgenet.com/) (21) and GeneCards (https://

www.genecards.org/) (22) databases. GeneCards provides disease-

related gene scores through its built-in mining algorithms, and we

selected targets with a relevance score > 25 as high-confidence

targets for ME/CFS. Given the relatively small variance in scoring

and the limited number of genes from DisGeNet, we included all

associated genes from that database. Subsequently, we removed

duplicate entries from the gene lists obtained from the three

databases. An online Venn diagram tool (https://www.
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bioinformatics.com.cn/static/others/jvenn/example.html) was used

to identify the overlapping genes between SLE and ME/CFS.
2.2 Analysis of GO and KEGG

DAVID (23) (https://david.ncifcrf.gov/) is a comprehensive

bioinformatics web tool used for gene functional annotation, gene

set enrichment analysis, and data visualization. To identify the

functions of the overlapping genes, we utilized the DAVID database

to conduct GO and KEGG enrichment analyses. GO analysis

encompasses three terms: biological processes (BP), cellular

components (CC), and molecular functions (MF) (24). KEGG

analysis aids in identifying the involvement of overlapping genes

in signaling pathways. The enrichment analysis performed using

the DAVID database evaluates gene enrichment in annotation

terms through Fisher’s Exact Test. The false discovery rate (FDR)

helps identify a high number of significant features while

maintaining a relatively low proportion of false positives. We

selected the top 10 terms with the lowest FDR from both the GO

analysis (BP, CC, MF) and KEGG analysis as reliable

enrichment results.
2.3 Obtaining key targets and performing
correlation analysis

The construction of a PPI network helps to understand protein

function and interaction mechanisms, and can be used to identify
FIGURE 1

Workflow of our research.
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key targets. We used the STRING database (https://string-db.org) to

generate a PPI network for the overlapping genes and visualized it

using Cytoscape version 3.10.0. To obtain the key targets involved

in fatigue associated with SLE and ME/CFS, we used both the

cytoHubba plugin and the MCODE algorithm within Cytoscape.

We used the MCC (Maximal Clique Centrality) algorithm in

cytoHubba to extract the top 6 targets and identified the key

targets module using MCODE. Proteins that are common

between the results from cytoHubba and MCODE are considered

key targets for SLE and ME/CFS. To delve deeper into the

relationships among these key targets, correlation analysis was

performed on SLE samples obtained from the GSE72326 dataset

using the ggstatsplot package in R. Additionally, to assess the

diagnostic potential of the identified key targets (IL1b, CCL2,
TLR2, STAT1, and IFIH1), receiver operating characteristic

(ROC) analysis was conducted. For this purpose, we utilized two

independent datasets from the GEO database: GSE211700 (25),

which includes SLE patient samples, and GSE128078 (26), which

consists of ME/CFS patient samples. Receiver operating

characteristic curve analysis was performed for key targets using

the “rms” package, and the area under the curve (AUC) was selected

to evaluate its diagnostic potential.
2.4 Single-cell clustering analysis

The scRNA-seq datasets GSE135779 (27) for SLE and

GSE214284 (19) for ME/CFS were downloaded from GEO.

Samples include GSM4029896, GSM4029897, GSM4029898,

GSM4029899, GSM6603113, GSM6603115, GSM6603166 and

GSM6603118. Downstream analysis was performed using the

Seurat R package (version 4.4.1) (28). Data with fewer than 300

expressed genes or where genes were expressed in fewer than 5 cells

were excluded. Violin plots depicting the proportions of ribosomal

and mitochondrial genes were generated for quality control. The

Harmony package was utilized to remove batch effects, and the

FindVariableFeatures function was employed to identify highly

variable genes. Dimensionality reduction and clustering were

performed using ScaleData, RunPCA, RunTSNE, RunUMAP,

FindNeighbors, and FindClusters. The resulting clusters were

visualized using Uniform Manifold Approximation and

Projection (UMAP). Classic marker genes were used to annotate

subpopulations, and visualization was achieved using the

ggplot2 package.
2.5 Validation of key target expression
under monocyte activation

Based on the results from single-cell sequencing analysis, we

preliminarily confirmed the accumulation of these key targets in

monocytes. GO analysis also indicated a significant activation of the

LPS pathway. To further validate the expression levels of these key

targets in monocytes, we designed the following experiments. The

model group consisted of THP-1 monocyte cells differentiated by
Frontiers in Immunology 04
PMA induction, followed by LPS incubation to induce an

inflammatory phenotype. The control group consisted of

untreated THP-1 monocytes. Quantitative Reverse Transcription

Polymerase Chain Reaction (RT-qPCR) was then used to validate

the expression of the five key targets in both the model and control

groups. Statistical analysis was performed using an unpaired t-test.

2.5.1 Cell culture and inflammatory
model induction

THP-1 monocyte cells were cultured in RPMI-1640 medium

supplemented with 10% fetal bovine serum (Gibco, 10099141C)

and 1% penicillin-streptomycin (BL505A, Biosharp) in a 37°C, 5%

CO2 incubator. For the model group, THP-1 cells were treated with

5 ng/mL phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich)

for 48 hours to induce differentiation into adherent macrophages.

Subsequent ly , ce l l s were incubated with 100 mg/mL

lipopolysaccharide (LPS, Sigma-Aldrich) for 24 hours to induce

an inflammatory response (29). The control group consisted of

untreated THP-1 cells.
2.5.2 Key target expression by RT-qPCR

Total RNA was extracted from the cells using the SteadyPure

Fast RNA Extraction Kit (AG21023, ACCURATE BIOLOGY)

according to the manufacturer’s protocol. The extracted RNA was

then reverse transcribed into cDNA using the HiScript® II Q RT

Super Mix for qPCR (R223-01, Vazyme) following the

manufacturer’s instructions. RT-qPCR was performed using the

Pro Taq HS SYBR Green qPCR Kit (TaKaRa, RR820A), and gene

expression was measured with the LightCycler 96 instrument

(Roche, Basel, Switzerland). The cycle threshold (Ct) values of

target genes were normalized to the b-actin housekeeping gene to

obtain the DCt values. Relative gene expression levels were

quantified using the 2-DDCt method. The primer sequences for

the housekeeping gene and the five key targets were designed by

ACCURATE BIOLOGY (Hunan, China) and are listed in Table 1.
TABLE 1 Primer sequences for the housekeeping gene and five
key targets.

Gene Forward (5’-3’) Reverse (5’-3’)

b-actin TAGTCTCTCCCTCACGC
CATCC

GTCACGCACGATTTCCCT
CTCAG

IL-1b CCAGGGACAGGATATG
GAGCA

TTCAACACGCAGGACAGG
TACAG

CCL2 CTCATAGCAGCCACCTTC
ATTCC

AAGATCACAGCTTCTTTG
GGACA

TLR2 ACCGTTTCCATGGC
CTGTG

GATGTTCCTGCTGGGAG
CTTTC

STAT1 TGTGCCAGCCTGGTT
TGGTA

GTGCACATGGTGGAGT
CAGGA

IFIH1 AACAGCAACATGGGC
AGTGA

TGGCTGGGCAACTTC
CATTT
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2.6 Construction of TF-mRNA-
miRNA network

Transcription factors (TFs) play a critical role in the regulation

of gene expression (30). Transcription Factor Enrichment Analysis

(TFEA) (31) prioritizes TFs based on the overlap between a

provided list of genes and previously annotated TF targets from

various sources. ChEA3 (https://maayanlab.cloud/chea3/) (32) is a

web-based TFEA tool. By entering the overlapping genes of two

diseases into the ChEA3 website and selecting the top 10 TFs by

Mean Rank value, we can identify the important TFs for the

overlapping genes in the two diseases. The Enrichr (https://

maayanlab.cloud/Enrichr/) (33) website is a tool for gene set

enrichment analysis based on multiple databases. Among its

resources, the Enrichr Submissions TF Gene Co-occurrence

database integrates association data between TFs and target genes

from various studies, supporting the analysis of co-occurrence

relationships between TFs and genes (33). MicroRNA (miRNA) is

a type of endogenous non-coding small RNA that can cause

degradation of target mRNA or inhibit its translation (34).

MiRWalk (http://mirwalk.umm.uni-heidelberg.de/) (35) predicts

miRNA-target interactions by integrating known data and

literature, combined with a random forest algorithm. MiRTarBase

(https://awi.cuhk.edu.cn/~miRTarBase/miRTarBase_2025/php/

index.php) (36) is a large biological database that primarily provides

experimentally validated miRNA-target interactions. TarBase

(https://dianalab.e-ce.uth.gr/tarbasev9) (37) is a reference database

specifically dedicated to collecting and managing experimentally

validated miRNA target data. Using the miRWalk database, we

predict potential miRNA targets within the 3’ untranslated region

(3’UTR), 5’ untranslated region (5’UTR), and coding sequence

(CDS) of the overlapping genes. The key targets were imported

into the miRTarBase and TarBase databases to identify

experimentally validated miRNAs that interact with the key

targets. The intersecting miRNAs obtained from the three

databases were considered to significantly affect the key targets

and possess high credibility. Finally, we construct a network

diagram illustrating the interactions between TFs, miRNAs and

key targets. The network of TF-mRNA-miRNA interactions is

visualized using Cytoscape version 3.10.0.
2.7 Drug prediction and molecular docking

The Drug Signatures Database (DSigDB) (38) is a database that

allows drug enrichment analysis based on lists of genes, with the

goal of screening for potential therapeutic drugs (38). Using the

Enrichr platform based on DSigDB, we entered 58 overlapping

genes between SLE and ME/CFS and ranked them according to

their adj. pValue. From this analysis, we extracted the top 10

potential drug for the treatment of SLE-associated fatigue.

Molecular docking studies were conducted to assess the binding

affinities between the top five potential drugs and key targets. The

three-dimensional conformations of the drugs were obtained from

the PubChem (https://pubchem.ncbi.nlm.nih.gov/) compound
Frontiers in Immunology 05
repository, while protein structures corresponding to the key

targets were obtained from the Protein Data Bank (https://

www.rcsb.org/). Binding affinities were evaluated using the

AutoDock computational tool. Subsequently, the resulting drug-

target complexes were visualized for further examination.
3 Results

3.1 Collecting overlapping genes between
SLE and ME/CFS

By searching the GEO, DisGeNET, and GeneCards databases,

we collected genes associated with SLE and ME/CFS. In GSE72326,

we obtained 755 DEGs associated with SLE (Figure 2A). However,

the 217 DEGs in GSE14577 for ME/CFS are relatively few

(Figure 2B). To improve the credibility of the data, we obtained

118 and 817 ME/CFS-related genes from DisGeNET and

GeneCards databases, respectively. After removing duplicates in

the three databases, we had 966 genes associated with ME/CFS.

Finally, by overlapping related genes of SLE and ME/CFS, we

identified 58 common genes as overlapping genes and visualized

them using a Venn diagram (Figure 2C).
3.2 Analysis of GO and KEGG

The DAVID website was utilized to analyze the 58 overlapping

genes. The enrichment data for GO and KEGG were ranked

according to FDR-values, with the top 10 selected as significant

entries. Figure 3A illustrates the outcomes of GO analysis,

encompassing the three terms: BP, CC, and MF. Figure 3B shows

the findings derived from the KEGG analysis. Pathways related to

innate immune response and inflammation were significantly

enriched, including those associated with LPS, TNF, IL-8, IFN-g,
IL-1b, and MHC-II.
3.3 Obtaining key targets and performing
correlation analysis

The STRING platform was used for PPI network analysis of the 58

overlapping genes, resulting in a protein interaction graph with 49

nodes and 243 edges. The results were then visualized using Cytoscape

version 3.10.0 (Figure 3C). Within Cytoscape, the MCODE plugin was

implemented to analyze the protein network and construct a key

targets module containing 14 common genes. In addition, the

cytoHubba plugin in Cytoscape was used to analyze the protein

network, from which the top six targets with the highest scores were

extracted. By overlapping the targets identified by both plugins, five key

targets for SLE andME/CFS were determined (Figure 3D): IL1b, CCL2,
TLR2, STAT1, IFIH1. The correlation analysis between these five key

targets is shown in Figure 3E. The ROC analysis results for the five key

targets across the two diseases are summarized in Table 2. The ROC

curves for each key target are shown in Supplementary Data Sheet 1.
frontiersin.org

https://maayanlab.cloud/chea3/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
http://mirwalk.umm.uni-heidelberg.de/
https://awi.cuhk.edu.cn/~miRTarBase/miRTarBase_2025/php/index.php
https://awi.cuhk.edu.cn/~miRTarBase/miRTarBase_2025/php/index.php
https://dianalab.e-ce.uth.gr/tarbasev9
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
https://www.rcsb.org/
https://doi.org/10.3389/fimmu.2024.1440922
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2024.1440922
3.4 Expression of key targets in single-
cell clusters

Single-cell RNA sequencing analysis of datasets GSE135779 for

SLE and GSE214284 for ME/CFS identified distinct immune cell

populations across both disease conditions. UMAP visualization

(Figures 4A, B) revealed clusters of immune cell types, including

CD14+ monocytes, FCGR3A+ monocytes, dendritic cells (DC),

naive and memory CD4+ T cells, CD8+ T cells, B cells, NK cells,

and platelets. Each cell type showed a unique spatial distribution,

with some differences in abundance across cell populations between

SLE andME/CFS. Figures 4C, D show the expression patterns of the

five key targets across different cell types in SLE and ME/CFS

samples, respectively. The UMAP visualizations reveal that the

expression of these key targets is primarily concentrated within

monocytes in both diseases. Violin plots (Figures 4E, F) showed the

key target genes (CCL2, IFIH1, IL1B, STAT1, and TLR2) had

differential expression patterns across these cell types. Notably,

IL1B and STAT1 showed elevated expression in CD14+

monocytes. Further analysis of cell-type composition (Figure 5)

showed distinct differences in the percentage distributions of each

cell type across samples for SLE and ME/CFS. In SLE samples, the

proportion of CD8+ T and B cells is higher, while in ME/CFS, the
Frontiers in Immunology 06
main component is naive CD4+ T cells. At the same time, memory

CD4+ T cells and NK cells are more prominent in ME/CFS samples.

In contrast, SLE samples show a greater proportion of CD14+

monocytes and FCGR3A+ monocytes.
3.5 Key target expression under
monocyte activation

Our experiments further validated the changes in key target

expression in activated monocytes. We assessed mRNA expression

levels using RT-qPCR. As shown in Figure 6, compared to the

control group, mRNA levels of the five key targets—IL-1b, CCL2,
TLR2, STAT1, and IFIH1—were significantly increased in cells

treated with LPS for 24 hours, with IL-1b showing the most

pronounced change.
3.6 Construction of TF-mRNA-
miRNA network

After entering the 58 overlapping genes of the two diseases into

the ChEA3 and Enrichr website, 10 TFs were obtained from each
FIGURE 2

Volcano plot for 2 datasets and Venn diagram of overlapping genes between SLE and ME/CFS. (A) Volcano plot of GSE72326. (B) Volcano plot of
GSE14577. (C) Venn diagram of the overlap DEGs between SLE and ME/CFS. The identified 58 common genes that may be related to their shared
pathogenic mechanisms.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1440922
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2024.1440922
database. Among them, the Enrichr website identified one TF,

STAT1, which overlaps with the key targets, so it was excluded.

Taking the union of the two sets of TFs, a total of 16 TFs were

obtained, with three being duplicate TFs: BATF2 (basic leucine

zipper ATF-like transcription factor 2), IRF7 (interferon regulatory

factor 7), and SP100 (SP100 nuclear antigen). The five key targets

were imported into the miRTarBase, TarBase, and miRWalk

databases, resulting in 54, 189, and 891 miRNAs, respectively.

After taking the intersection, a final set of six miRNAs was
Frontiers in Immunology 07
obtained: hsa-miR-204-5p, hsa-miR-24-3p, hsa-miR-106b-5p,

hsa-miR-19a-3p, hsa-miR-145-5p, and hsa-miR-550a-3p. These

miRNAs are considered to significantly affect the key targets. The

interactions between TFs and miRNAs, derived from the

overlapping genes, were represented alongside the key targets

using Cytoscape version 3.10.0 to establish the regulatory network

diagram. This co-regulatory network consists of 27 nodes and 93

edges, with 16 TFs and 6 miRNAs interacting with the 5 key

targets (Figure 7).
3.7 Drug prediction and molecular docking

Using the DSigDB database through the Enrichr platform, drug

predictions were performed for the 58 overlapping genes. The top

10 potential drugs were selected based on the adj. pValue and the

results are presented in Table 3.

Molecular docking was performed on the top five predicted drugs

with 5 key targets using AutoDock computational tool. The binding

energy reflects the interaction potential between the drug and the

target; the lower the binding energy, the greater the affinity and stability

of the drug-target complex. Among them, N-Acetyl-L-cysteine (NAC)

and camptothecin show a strong binding effect on IL1B. Additionally,
FIGURE 3

GO and KEGG enrichment analysis of overlapping genes and identification of key targets (A, B) Strong association with innate immune response and
inflammation based on GO and KEGG Pathway Enrichment. (C) PPI Network Analysis of overlapping Genes Between SLE and ME/CFS. (D)
Identification of 5 key targets. (E) Correlation Analysis Among 5 key Targets.
TABLE 2 ROC analysis of key targets in SLE and ME/CFS.

Key Target AUC of ROC (95% CI)

SLE ME/CFS

IL1b 0.64 (0.43, 0.85) 0.75 (0.55, 0.95)

CCL2 0.76 (0.58, 0,93) 0.67 (0.45, 0.89)

TLR2 0.89 (0.75, 1) 0.75 (0.55, 0.95)

STAT1 0.90 (0.78, 1) 0.79 (0.59, 0.98)

IFIH1 0.96 (0.88, 1) 0.76 (0.55, 0.97)
This table presents the area under the ROC curve for five key targets in SLE and ME/CFS. The
95% confidence interval (CI) of the area under the curve (AUC) is provided in brackets.
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simvastatin and camptothecin also have good binding effects on CCL2,

TLR2, STAT1, and IFIH1. More binding energies (in kcal/mol) are

showed in Table 4. The more favorable molecular docking results were

visualized using PyMOL (in Supplementary Data Sheet 2), with some

of the results depicted in Figure 8.
4 Discussion

SLE and ME/CFS are two distinct diseases, but they share

certain commonalities. Patients of both frequently experience

fatigue, for which there are limited options available (39).

Immune dysregulation may serve as a bridge connecting the two,

although the specific extent and categories remain unclear. This

study aims to elucidate the shared mechanisms between the two

conditions and provide potential options for clinical management.

The 58 overlapping genes identified showed a strong correlation

with innate immunity and inflammation in GO term and KEGG.
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Specifically, the BP highlights the role of innate immunity and

inflammatory factors (such as TNF, IL-8, IFN-g, IL-1b, etc.) in SLE

and ME/CFS. Research supports the importance of innate immunity

and inflammatory factors in SLE. For example, abnormalities in the

phagocytic function of macrophages can lead to the exposure of

autoantigens and the initiation of autoimmune responses (40).

Inflammatory factors like TNF-a and IL-8 are elevated in SLE

patients, leading to apoptosis in various cells, resulting in the

release of nucleo-cytoplasmic contents (41–43). In the context of

ME/CFS, components of the innate immune system, such as natural

killer cells, DCs, and monocyte as well as pro-inflammatory cytokines

(TNF-a and IFN-g), also exhibit aberrant behavior (44). Specifically,

NK cells exhibit reduced cytotoxic activity (45), and the number of

plasmacytoid DCs is also significantly decreased, which may lead to

lower levels of type I interferon and hinder the effective clearance of

pathogens in ME/CFS patients (44). Classic monocytic dysregulation

has also been validated in ME/CFS patients, suggesting that

inappropriate differentiation and tissue migration may also be
FIGURE 4

UMAP and violin plot analysis of key target gene expression across cell types in SLE and ME/CFS samples (A, B) UMAP plots of single-cell RNA
sequencing data from SLE (A) and ME/CFS (B) samples. (C, D) Expression distribution of five key target genes across cell clusters in SLE (C) and ME/
CFS (D) samples. (E, F) Violin plots of the expression levels of five key target genes across cell types in SLE (E) and ME/CFS (F) samples.
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contributing factors (19). Dysregulation of the cytokine network

further supports the immune dysfunction in ME/CFS (46), with

elevated levels of TNF-a and IL-1b observed in ME/CFS patients

(47, 48). Another study reported increased TNF-a in fasting plasma

from 53 patients, which correlated with the severity of fatigue (49).

The abnormal levels of these factors may induce fatigue through

various mechanisms, including the regulation of indoleamine

2,3-dioxygenase by inflammatory factors, potentially explaining the

observed fatigue symptoms in SLE and ME/CFS (50–53). The

analysis of CC, MF, and KEGG suggests an etiological link between

SLE and ME/CFS, which includes viral and bacterial infections, as

well as variations in subsequent downstream pathways.

To further identify key targets, based on the PPI network, IL1b,
CCL2, TLR2, STAT1, and IFIH1 were declared as key targets due to

their high degrees of connectivity. IL-1b, secreted by monocytes,

macrophages, and DCs, exerts functions in peripheral immunity.

Additionally, it can also impact the dopaminergic and serotonergic
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neurotransmission systems in brain (54). During the acute phase of

ME/CFS, the concentration of IL-1b is significantly correlated with

fatigue symptoms (54). CCL2, also known as monocyte

chemoattractant protein (MCP-1), acts as an attractant for

monocytes and serves as an inflammatory mediator. Its

concentration is correlated with symptoms such as fatigue (55),

and the expression of CCL2 is elevated in blood samples from ME/

CFS patients (56). TLR2 is a membrane protein that can recognize

pathogens and induce cytokine production. Its activation may be

related to the pathophysiological mechanisms of immune-related

chronic fatigue triggered by various diseases (57, 58). The protein

MDA5, encoded by the IFIH1 gene, is involved in the identification of

virus (59). It has been reported that 64% of patients consider infection

as a peri-event (60), and our findings once again emphasize the

particular significance of the anti-pathogen pathway. STAT1 is a key

signaling molecule activated by IFN-a/b and IFN-g (61). Its

expression is upregulated in SLE (62). Increased expression of the
FIGURE 5

Composition of cell type in SLE and ME/CFS samples.
FIGURE 6

Expression of the five key targets in the THP-1 monocyte model group and the control group. The expression is elevated in IL1b (A), CCL2 (B), TLR2
(C), STAT1 (D), IFIH1 (E).
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IFIH1 gene in SLE patients promotes the production of type I IFN

and various cytokines, which significantly impact the onset and

severity of SLE (63, 64). Additionally, correlation analysis among

the key targets in SLE reveals a significant negative correlation

between STAT1 and IL-1b. The mechanism may be related to IL-

1b inhibiting IFNa/b-induced STAT1 phosphorylation through the
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proteasome (65, 66). The antagonism between these two cytokines

characterizes the heterogeneity of inflammatory responses.

Alterations in their dominant roles may lead to different

inflammatory properties and damage (66). In SLE, ROC analysis

for STAT1 and IFIH1 demonstrated superior performance, while

TLR2 and CCL2 showedmoderate discriminatory ability. InME/CFS,
TABLE 3 Medicine predictions based on the DSigDB database.

Medicines Mechanism Genes involved adj. pValue

Suloctidil Vascular relaxing activity; calcium antagonist; antithrombotic agent IL1RN,GCH1,STAT1,TAP2,EIF2AK2,TAP1,ADAR,TYMP,
IFIH1,MAFB,OAS2,CCL2,MYD88

2.55E-13

N-Acetyl-
L-cysteine

Antioxidant; precursor to glutathione, reduces oxidative stress and
modulates immune response.

ABCB1,STAT1,MPO,TYMP,ACTA2,CASP8,IL1B,CCL2,
ATM,NBN,CD14,TLR2,JAK1

4.23E-09

Simvastatin Statin; inhibits cholesterol synthesis and has anti-
inflammatory effects.

ACTA2,ABCB1,CASP8,CD40LG,STAT1,IL1B,IDH1,CTLA4,
CCL2,ATM,MPO,TLR2

3.52E-08

ACMC-
20mvek

Predicted compound; mechanism unclear. ABCB1,CASP8,CD40LG,IL1B,CCL2,CD14,TLR2,F5 2.23E-07

Camptothecin Topoisomerase I inhibitor; induces DNA damage,
mainly anticancer.

ABCB1,CASP8,IL1B,TAP1,CCL2,ATM,NOD2,JAK2 6.29E-07

Nitric oxide Signaling molecule; modulates vasodilation and immune response. CASP8,GCH1,STAT1,IL1B,CYBB,JAK2,MPO,MYD88,TLR2 0.000001239

Cardidigin Digitoxin, cardiac glycoside, increasing calcium, inhibits Na+/
K+-ATPase

ABCB1,CASP8,IDH1,IL1B,CCL2,NOD2 0.000001285

Fenbendazole Anthelmintic; disrupts microtubules, with emerging immune effects. ABCB1,STAT1,IDH1,CCL2,JAK2 0.000001662

ZINC
SULFIDE

Mechanism unclear. Zinc ions are involved in the regulation of
innate and adaptive immune responses.

IL1RN,IL1B,CCL2,NLRC4,CD14,MYD88 0.000001662

GNF-Pf-78 Predicted compound; mechanism unclear. STAT1,IDH1,IL1B,NOD2,JAK2 0.000004717
FIGURE 7

The network presents the TF-mRNA-miRNA coregulatory network. The network consists of 27 nodes and 93 edges including 16 TF-genes, 6 miRNA
and 5 key targets. The nodes in red color are the key targets, blue and green nodes represent TF-genes and yellow nodes indicate miRNA. The
green TFs (BATF2, IRF7, SP100) represent results obtained from both databases, indicating a higher level of credibility.
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ROC analysis for IL1b, TLR2, STAT1, and IFIH1 had moderate

discriminatory ability. This indicates that these targets can distinguish

the occurrence of the diseases to some extent, providing valuable

insights for identifying specific biomarkers of fatigue associated with

both diseases. In conclusion, key targets reveal the specifical

inflammation mechanism underlying the fatigue in SLE and

ME/CFS.

To validate the expression of key targets at the single-cell level,

we utilized public datasets for analysis. Dimensionality reduction

and clustering identified specific populations in the peripheral

blood samples of SLE and ME/CFS. The higher proportion of

CD8+ T and B cells in SLE samples reflects its unique disease

context, while the identification of memory CD4+ T cells in ME/

CFS may be related to the patients’ history of infections. The

expression patterns of key targets strongly suggest that the
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monocytic population may be involved in the shared pathological

processes of both conditions. Classic monocytic dysregulation

(CD14+) has been revealed in ME/CFS patients. GSEA of the

proteomics data confirmed an increased activation state of classic

monocytes in ME/CFS, with scores from the diseased cells

correlating with multidimensional fatigue scale scores of patients

(19). Although non-classic monocytes (CD16+, i.e., FCGR3A+)

have been shown to be associated with inflammation in SLE (67),

classical monocytes, which are major producers of TNF-a and IL-1

in response to LPS, still play a significant role in inflammatory

effects, especially under harmful stimuli (68). The results indicate

that the proportion of classic monocytes in SLE is higher than in

ME/CFS, suggesting that SLE patients also experience profound

monocytic dysregulation, which may bridge the connection

between immune dysregulation and fatigue.
FIGURE 8

Partial molecular docking results. (A) Depicts the docking interaction between Simvastatin and TLR2. (B) Depicts the docking interaction between
Simvastatin and IFIH1. (C) Depicts the docking interaction between camptothecin and IL1B. (D) Depicts the docking interaction between
camptothecin and STAT1.
TABLE 4 Therapeutic efficacies and molecular affinities of medicines.

Medicine Efficacy Molecular affinity (kcal/mol)

IL1B CCL2 TLR2 STAT1 IFIH1

Suloctidil Vasodilation -4.21 -4.79 -5.51 -2.51 -5.5

N-Acetyl-
L-cysteine

Management of acetaminophen overdose,
mucolytic activity

-5.09 -3.45 -3.36 -2.91 -3.44

Simvastatin Lipid lowering, atherosclerosis prevention -4.8 -6.64 -6.94 -4.11 -8.72

ACMC-20mvek Unreported -4.8 -6 -5.63 -2.94 -7.5

Camptothecin Antineoplastic therapy -6.04 -6.24 -6.6 -5.37 -8.55
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THP-1 is a human leukemia-derived monocyte cell line that is

CD14-positive and CD16-negative (69). Under the influence of PMA,

THP-1 cells exhibit adhesion and differentiation processes similar to

those of classical monocytes (70). In the biological processes

identified by GO analysis, LPS pathway ranks third in enrichment,

representing a shared mechanism between SLE and ME/CFS.

Therefore, we selected LPS as an inflammatory stimulus for further

experiments. While single-cell analysis did not show notable

expression of CCL2 and IFIH1 in CD14+ monocytes, RT-qPCR

results indicated that all five key targets had significantly increased

expression in LPS-incubated THP-1 cells compared to the control

group.We believe this may relate to monocyte system distribution, as

CCL2 creates a strong concentration gradient to attract monocytes

(71). Activated monocytes/macrophages are more likely to migrate to

tissues rather than remain in peripheral blood, potentially explaining

the observed differences. This tendency was also noted in a study by

Luyen et al., where classical monocytes from ME/CFS patients

showed a propensity for tissue migration and macrophage

differentiation (19). However, further research is needed to confirm

classical monocyte dysregulation in SLE patients.

In addition, we explored the intrinsic regulatory mechanisms of

the key targets. TFs are proteins that bind to specific DNA

sequences and regulate the transcription of genetic information

(72). MiRNAs, which are approximately 22-nucleotide-long non-

coding small RNAs, participate in silencing the expression of target

genes by degrading mRNA or inhibiting translation (73, 74). We

selected the top 10 TFs from two databases to construct the

network. Among them, BATF2, IRF7, and SP100 are considered

high-confidence TFs. BATF2 has immune regulatory functions (75)

and is associated with IRF1, playing a role in the inflammatory

response in macrophages induced by IFN-g and LPS activation (76).

IRF7 is a interferon regulatory factor that respond to the activation

of pattern recognition receptors (PRRs) by immune complexes in

SLE (77). SP100 can limit the replication of many clinically

significant DNA viruses and is an important component of the

innate immune response (78). PLSCR1 and IKZF3 are associated

with SLE thrombosis and disease risk (79, 80). In ME/CFS, these

TFs have been found to be upregulated or downregulated to varying

degrees, with their specific significance still to be explored (81–83).

We predicted the miRNAs regulating the key targets using the

miRWalk database and validated them in the MiRTarBase and

TarBase experimental databases. The predicted miRNAs have been

shown to play roles in cellular apoptosis, tumor suppression, and

the development of SLE (84–89). The reduced cytotoxic activity of

NK cells may be related to the differential expression of miRNAs,

with miR-106, which is involved in cell proliferation, significantly

decreased in NK cells (90). MiR-19a-3p has been found to inhibit

M1 macrophage polarization by targeting STAT1 and suppressing

the STAT1/IRF1 pathway (91). MiR-204-5p has emerged as a key

factor influencing M2 macrophage polarization (92). miR-145-5p

may suppress cell proliferation in LPS-treated HUVECs by

modulating macrophage polarization towards the M2 phenotype

(93). The downregulation of m24 is considered essential during the

differentiation of monocytes into macrophages, as it promotes the

generation of functional macrophages and DCs (94). More relevant

studies are needed to enrich the exploration in this field.
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Finally, we predicted potential drugs and validated them

through molecular docking. NAC is an antioxidant that promotes

the synthesis of glutathione (95). A randomized controlled trial has

shown that NAC can reduce the disease activity and complications

of SLE (96). Another study indicated that SLE patients prescribed

NAC (2.4g/day or 4.8g/day) experienced significant relief in both

activity and fatigue symptoms (97), indirectly confirming our

research findings. Other teams have also noted the potential role

of NAC. A clinical trial (NCT04542161) on glutathione treatment

for ME/CFS is currently underway and has entered the second

phase, expected to conclude in 2025. Camptothecin is an antitumor

agent that inhibits topoisomerase (98). Previous studies have

demonstrated that low doses of camptothecin can significantly

reduce lupus nephritis in mice (99) and exhibit anti-inflammation

effect (100). The strong affinity for key targets suggests potential

anti-inflammation effect, aligning with the strategy mentioned

previously. However, camptothecin may pose significant toxicity

risks, and efforts to mitigate its toxicity, along with further research,

are needed to enhance the feasibility (101). Simvastatin has also

shown promising results in molecular docking, its therapeutic effect

on SLE and ME/CFS remains controversial (102). Lipid

abnormalities are frequently observed in SLE, and statin therapy

helps to reduce the risk of mortality and end-stage renal disease in

these patients (103). Statins may contribute to fatigue symptoms by

reducing the energy supply to muscle cells (102). Some case reports

have also suggested that statins may have the unexpected effect of

triggering SLE (104). Therefore, the use of statins should be

cautious, as they may exert opposite effects. Furthermore, both

suloctidil and ACMC-20mvek demonstrate affinity for the key

targets. However, the clinical use of suloctidil has been

constrained by reports of hepatotoxicity (105). As for ACMC-

20mvek, being an experimental molecule, it requires appropriate

molecular modifications and thorough toxicity validations before

practical application.

In this study, we explored the shared molecular mechanisms

between SLE and ME/CFS through bioinformatics analysis. Some

limitations should be acknowledged. First, the small sample size of

the ME/CFS dataset (GSE14577) with only 8 samples may reduce

the robustness and statistical power of the differential expression

analysis. This limitation may affect the generalizability and

reliability of our findings. Second, our findings have not yet been

validated in clinical samples, which may affect the robustness of the

conclusions. Third, our analysis primarily relies on existing

bioinformatics tools and databases. The predictive accuracy of

these tools and the update frequency of the databases may impact

the reproducibility of our study. The results of molecular docking

alone cannot directly validate the effects of the predicted drugs,

further in vitro and in vivo experiments are needed for verification.

While these are shortcomings of our work, we believe they does not

compromise the reliability of our conclusions.
5 Conclusion

In summary, we explored and identified overlapping genes in

patients with SLE and ME/CFS, providing potential targets for
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fatigue in two diseases. Through a series of bioinformatics analyses,

we obtained the key targets, BP, CC, MF and KEGG of overlapping

genes, and TFs-mRNA-miRNA network. We also validated the

expression of key targets in single-cell samples, and the results

emphasize the potential involvement of monocytes in the fatigue

symptoms of both diseases. Additionally, based on the overlapping

genes, we predicted potential drugs for treating fatigue in SLE and

ME/CFS. Combining molecular docking results with current

clinical research, we propose that NAC and camptothecin are

potential effective drugs. Our future work will deepen these

findings, including an exploration of monocyte dysregulation

related to fatigue in SLE and ME/CFS, as well as assessing drug

efficacy in fatigue modulation. We believe that these findings have

the potential to guide clinical trials and translational research in

autoimmune conditions.
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