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in cancer patients: a review
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Xin Luo3, Bao-zhen Liao3, Xing-heng Lei3 and Jun-ming Ye3*

1Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Ganzhou,
Jiangxi, China, 2Suzhou Medical College of Soochow University, Suzhou, China, 3Gannan Medical
University, Ganzhou, Jiangxi, China
This review comprehensively examines the impact of anesthesia and surgical

interventions on the immune function of cancer patients postoperatively. Recent

studies have shown that surgery and its accompanying anesthesia management

can significantly influence immune function in cancer patients, potentially

affecting their prognosis. This review synthesizes clinical studies and basic

research to summarize the specific effects of anesthesia methods, drugs,

postoperative analgesia, intraoperative transfusion, surgical techniques, and

trauma extent on the immune function of cancer patients post-surgery.

Additionally, this review discusses optimization strategies based on current

research, aiming to refine anesthesia and surgical management to maximize

the preservation and enhancement of postoperative immune function in cancer

patients, with the potential to improve clinical outcomes.
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1 Introduction

Surgical intervention remains the primary and most effective treatment approach for

malignant tumors. Surgical resection can completely remove the tumor mass and is

potentially curative for many patients with early-stage cancers. However, in many cases, a

small number of cancer cells may still remain in the body after tumor excision. During

surgical procedures, such as palpation and resection, tumor cells may be released if the tumor

mass ruptures. Additionally, tumor cells can enter the bloodstream during tumor removal.

Studies (1, 2) have found that circulating tumor cells can be detected in the blood of cancer

patients after surgery using PCR technology. Therefore, residual cancer cells may persist in

patients’ bodies after cancer surgery. Combined with surgical trauma and postoperative bed

rest, a compromised immune system after surgery increases the risk of incisional and

pulmonary infections. Theoretically, postoperative immune function is crucial in suppressing
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the development of residual cancer cells. Both surgery and anesthesia

significantly inhibit postoperative immune function, which can be

detrimental to recovery. Reducing these impacts to minimize

immune suppression and maintain postoperative immune function

is a key focus of current medical research.
2 Composition of the immune system
and anti-tumor immunity

The immune system is composed of immune organs, immune

cells, and immune-active substances. Immune organs include the

bone marrow, thymus, spleen, lymph nodes, tonsils, and appendix.

The immune cells consist of lymphocytes, monocytes, phagocytes,

neutrophils, eosinophils, basophils, mast cells, and platelets. Among

these, lymphocytes include B cells, T cells, and NK cells, with T cells

accounting for approximately 65%-75% of the total lymphocyte

count. Immune-active substances comprise components such as

complement, immunoglobulins, interferons, interleukins (IL), and

tumor necrosis factors (TNF).Within the immune-active

substances, there are pro-inflammatory and anti-inflammatory

cytokines. Common pro-inflammatory cytokines include IL-1, IL-

6, IL-8, and TNF-a, whereas common anti-inflammatory cytokines

include IL-4 and IL-10. T lymphocytes do not produce antibodies

but instead exert direct effects, hence their immune function is often

referred to as cell-mediated immunity. B lymphocytes function by

producing antibodies that exist within bodily fluids, thus their

immune response is termed humoral immunity.

The host’s anti-tumor immune response is predominantly

mediated by cellular immunity, particularly through T lymphocyte

subsets and natural killer (NK) cells, which play a pivotal role. These

immune cells are capable of directly recognizing and attacking tumor

cells by mechanisms such as the release of cytotoxins and the

induction of apoptosis, thereby killing the tumor cells. In addition,

immunomodulatory substances such as cytokines (e.g., interferons,

interleukins) and antibodies also participate in regulating and

enhancing the host’s anti-tumor immune response. Upon

recognition of tumor cell surface antigens by immune cells, the

immune system initiates an immune response, which includes the

attack and cytotoxic action of immune cells against tumor cells. In

clinical practice, the assessment of the levels and functional states of

immune cells, such as CD3+ (representing mature T lymphocytes),

CD4+ (which can enhance immune function), and CD8+ (inhibitory T

lymphocytes), and the CD4+/CD8+ ratio, serves as an indirect

reflection of the host’s immunological status and provides critical

data for cancer treatment and prognostic evaluation.
3 Surgery and postoperative immune
function in cancer

The intense trauma and stress resulting from surgery can

significantly suppress the postoperative immune function of cancer

patients. This suppression primarily impacts cellular immune

function, as evidenced by reduced lymphocyte counts and
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cytotoxicity, diminished NK cell activity, and decreased secretion of

anti-inflammatory cytokines. In contrast, humoral immune function

is less affected. Study (3) has shown that local tissue damage during

surgical procedures can activate the Toll-like receptor 4/nuclear

factor-kB (TLR4/NF-kB) signaling pathway, triggering the release

of a cascade of inflammatory cytokines. Activation of the TLR4/NF-

kB pathway is associated with tumor progression, and its inhibition

can exert anti-tumor effects, whereas activation promotes metastasis

or recurrence of tumor cells. Greater surgical trauma leads to more

pronounced suppression of postoperative immune function. Simpler

or minimally invasive surgical techniques result in less suppression of

postoperative immune function. Additionally, longer surgery

duration tends to increase trauma and consequently exacerbate the

suppression of postoperative immune function. Shi et al. (4)

conducted a prospective study on patients with colorectal cancer,

evaluating changes in postoperative immune function by measuring

CD3, CD4, and CD8 T lymphocytes, and the CD4/CD8 ratio. They

found that, compared to open surgery, laparoscopic colorectal

surgery could effectively enhance postoperative immune function

and reduce immunosuppression. Cho et al. (5) found that in liver

cancer surgery, laparoscopic radical hepatectomy offers significant

advantages over open surgery in treating hepatocellular carcinoma.

This minimally invasive approach significantly reduces the impact on

liver and immune function, decreases tissue damage, and improves

postoperative inflammatory responses, thereby promoting faster

patient recovery. A recent study (6) compared minimally invasive

surgery to traditional open surgery in breast cancer patients and

found that the minimally invasive approach significantly reduces

immunosuppression within the first 7 days after surgery.

Enhanced Recovery After Surgery (ERAS) is a surgical treatment

concept and comprehensive management model designed to

minimize postoperative complications and accelerate patient

recovery. ERAS encompasses preoperative, intraoperative, and

postoperative phases, integrating surgical treatment, anesthesia

management, postoperative analgesia, and nursing care. These

interventions aim to reduce surgical stress, pain, and postoperative

complications, thereby shortening hospital stays and expediting

recovery. Numerous studies (7–9) have shown that implementing

ERAS principles in cancer patients significantly enhances recovery

and improves postoperative immune function.
4 Anesthetic techniques and
postoperative immune function

Previous research (10, 11) has indicated that general

anesthesia exerts the most substantial suppressive effect on

postoperative immune function, followed by spinal anesthesia and

nerve blocks, with local anesthesia showing the weakest

suppression. Among the modalities of general anesthesia, a

combination of general anesthesia with epidural or nerve blocks

is associated with less immunosuppression compared to

general anesthesia alone. Intravenous general anesthesia is found

to be less immunosuppressive than inhalational general anesthesia

alone (12).
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Current literature suggests that combining general anesthesia

with neuraxial anesthesia or nerve blocks results in less suppression of

postoperative immune function than using general anesthesia alone

in cancer patients. Thus, combining general anesthesia with spinal

anesthesia or nerve blocks may be advantageous for maintaining

postoperative immune function in cancer surgery patients. A meta-

analysis (13) of nine studies showed that, compared to general

anesthesia (GA) alone, combined epidural-general anesthesia

(EGA) can improve the overall survival of colorectal cancer

patients, particularly those with colon cancer. A large-scale

retrospective study (14) demonstrated that a combination of

epidural anesthesia with general anesthesia improved 3-year and

5-year survival rates in patients with ovarian cancer post-surgery.

These positive effects of combined anesthesia on survival rates have

also been reported in studies on other types of cancer (15–17). A

clinical study (18) found that intravenous anesthesia with propofol

combined with paravertebral nerve block can reduce the rate of

locoregional recurrence in patients with invasive ductal carcinoma of

the breast. A study (19) utilizing animal models and clinical samples,

including both retrospective and prospective studies, also yielded

similar results in breast cancer. Current evidence suggests that the

mechanisms by which general anesthesia combined with spinal

anesthesia or nerve blocks improve postoperative immune function

in cancer patients are primarily twofold. First, combined anesthesia

more effectively suppresses the stress response compared to general

anesthesia alone. Second, it allows for a reduction in the dosage of

anesthetic agents, particularly opioids, thereby minimizing the

immunosuppressive effects.

In a prospective study by Cho et al. (20), propofol-based

intravenous anesthesia was found to provide better protection of

immune function in breast cancer patients post-surgery compared to

sevoflurane inhalational anesthesia. Yu et al. (21) compared propofol

and sevoflurane anesthesia in colorectal cancer surgery, finding that

the propofol group had CD45RA+/CD45RO+ levels that were similar

to preoperative levels immediately and 72 hours post-surgery,

whereas the sevoflurane group showed significantly higher levels

than preoperative levels, suggesting that propofol intravenous general

anesthesia facilitates better recovery of postoperative immune

function compared to sevoflurane. A large retrospective analysis

(22) involving 10,696 patients showed that compared to

inhalational general anesthesia, intravenous general anesthesia was

associated with a significantly higher incidence of postoperative

pulmonary complications and other postoperative complications

varied, suggesting that intravenous general anesthesia might be the

preferred modality for general anesthesia in cancer surgeries.
5 Anesthetic drugs

5.1 Opioid drugs

Opioid drugs primarily act on u-opioid receptors. Studies (23,

24) have shown that while exerting analgesic effects, opioids also

inhibit the immune function of the body, suppress NK cells

function, and possess potential immunosuppressive and tumor-

promoting effects. These effects are particularly evident with
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potent opioids such as morphine, fentanyl, sufentanil,

r emi f en tan i l , oxycodone , pe th id ine , t r amado l , and

hydromorphone. Morphine suppresses the immune function of

gastric cancer patients by regulating the percentage of CD4+,

CD25+, FoxP3+ regulatory T lymphocytes (Tregs) in vitro and

increasing the CD4+/CD8+ ratio and Tregs (25). Morphine can

decrease the number of Th1 cells and the Th1/Th2 ratio in

patients with colorectal cancer, which may accelerate tumor

invasion, recurrence, and metastasis (26). An animal study (27)

indicates that sufentanil postoperative analgesia can reduce the

increase of T helper 17 (Th17) cells and Tregs in a rat

hepatocellular carcinoma surgical model. Furthermore,

compared to morphine, sufentanil has a lesser impact on the

CD4/CD8 ratio and Treg frequencies, making it more suitable for

postoperative analgesia. A retrospective clinical study (28)

revealed that in patients with advanced lung cancer treated with

immune checkpoint inhibitors, the use of opioids may diminish

the therapeutic efficacy of these inhibitors, resulting in

significantly poorer clinical outcomes. Recent studies (29, 30)

have also reached similar conclusions. Additionally, the indirect

impact of opioids on the immune function of cancer patients

involves the activation of the hypothalamic-pituitary-adrenal

(HPA) axis, which inhibits the release of catecholamines

while increasing the secretion of pro-inflammatory and

immunosuppressive substances, such as cortisol (31, 32).
5.2 Intravenous anesthetics

Propofol has antitumor and immune-protective effects, and its

antitumor effect may be related to its voltage-gated channels. In a

large-scale retrospective study (33) involving 2856 cases, it was

found that intravenous propofol anesthesia is beneficial for

improving the long-term survival rate of patients undergoing

gastric cancer resection. Wang et al. (34) found that propofol in

pancreatic cancer patients undergoing surgical anesthesia can

enhance patients’ immune function and reduce inflammation

levels. A study (35) evaluated the effects of five anesthetics,

including sodium thiopental, midazolam, etomidate, ketamine,

and propofol, on the expression of inflammatory genes in three

cell lines, colon cancer cells (Caco-2), renal proximal tubular

epithelial cells (HK-2), and hepatocellular carcinoma cells

(HepG2). The study found that sodium thiopental, ketamine, and

propofol significantly inhibited the expression of NF-kB and its

downstream cytokines IL-1b and IL-18, while also reducing TNF-

a-induced inflammatory activity, whereas midazolam and

etomidate did not demonstrate this anti-inflammatory effect.

Midazolam (36) inhibits the upregulation of CD80 in THP-1 cells

and PMDMs cells induced by lipopolysaccharide (LPS) as well as

the release of IL-6 and NO, suppressing the activation of NF-kB/
AP-1 and MAPKs in human THP-1 cells and inhibiting immune

function (THP-1 cells are human monocytic leukemia cells, and

PMDMs cells are peripheral blood monocyte-derived

macrophages). Two clinical studies (37, 38) indicate that

etomidate has minimal impact on postoperative immune function

in patients with lung adenocarcinoma or gastric cancer. Ketamine is
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commonly used clinically for pediatric basic anesthesia or

intravenous anesthesia. Sun et al. (39) used young rats as

experimental subjects to measure immune indicators such as IL-2,

IL-4, and IL-10. They found that serum IL-4 and IL-10 levels were

significantly increased in the experimental group, indicating that

ketamine inhibits the immune function of young rats. The

combination of ketamine and morphine may decrease the CD4

percentage, CD4/CD8 ratio, and the levels of IFN-g, IL-2, and IL-17
through the JAK3/STAT5 pathway in cervical cancer (40).
5.3 Inhalation anesthetics

Inhalation anesthetics have a significant impact on

postoperative immune function in cancer patients. Inhalation

anesthetics such as isoflurane, sevoflurane, and halothane can

reduce the cytotoxicity of NK cells, thereby suppressing immune

function (41, 42). Research (43) indicates that inhalation anesthetics

such as sevoflurane, isoflurane, and desflurane can upregulate the

expression of various proteins associated with tumor growth,

migration, and metastasis in ovarian cancer cells, such as VEGF-

A, MMP11, TGF-b1 and CXCR2, with desflurane having the

most significant effect. These findings suggest that inhalation

anesthetics may affect cancer progression by influencing the

tumor microenvironment and promoting the invasive behavior of

tumor cells.

However, it should be noted that the impact of inhalation

anesthetics on immune function may vary depending on the type

of cancer and patient condition. For example, one study (44)

showed that the inhalation anesthetic sevoflurane has no

significant effect on NK cell count, cytotoxic T lymphocyte (CTL)

count, or apoptosis rate in breast cancer patients postoperatively.

Additionally, sevoflurane does not significantly affect the co-culture

of breast cancer cells, further suggesting its limited impact on

postoperative immune function in breast cancer patients.

Moreover, a study (45) has indicated that sevoflurane may

improve immune function by inhibiting the activation of the

TLR4 signaling pathway, thereby reducing the production of

inflammatory mediators such as 5-lipoxygenase products and

IL-10, and decreasing the expression of CD11b on neutrophils

and intercellular adhesion molecule-1.
5.4 Dexmedetomidine

Dexmedetomidine is an auxiliary drug widely used in clinical

anesthesia. It is a highly selective and efficient a2 adrenergic

receptor agonist, possessing sedative, analgesic, anxiolytic, and

anti-stress effects. Numerous studies (46–48) in recent years has

confirmed that dexmedetomidine can effectively reduce

postoperative stress-induced inflammatory responses, alleviate

postoperative immune function suppression in cancer patients,

and improve overall immune function. The mechanisms of action

may primarily involve two aspects: reducing the dosage of other

anesthesia drugs (such as opioid analgesics, inhalation anesthetics,

etc.) to alleviate immune suppression, and providing analgesia, anti-
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stress, and anti-inflammatory responses to alleviate immune

suppression in tumor surgery patients.

A meta-analysis study (47) evaluated the immunomodulatory

effects of dexmedetomidine in patients undergoing digestive tract

cancer surgery, finding that it could decrease postoperative levels of

C-reactive protein (CRP), TNF-a, and IL-6, while simultaneously

increasing the level of IL-10, indicating that dexmedetomidine

contributes to mitigating postoperative systemic inflammatory

responses. Furthermore, it was observed to increase the number

of CD4+ T cells and the CD4+/CD8+ ratio, thereby improving

immune function. Other research (48) found that it could elevate

interferon-gamma levels, reduce the severity of early postoperative

pain, and decrease opioid consumption in patients undergoing

uterine cancer surgery.

Furthermore, one study (49) has shown that dexmedetomidine

can alleviate immune suppression and improve postoperative

immune function by improving postoperative sleep and reducing

postoperative sleep disturbances. An animal experiment shows that

dexmedetomidine (50) effectively inhibits insulin-like growth factor

2 (IGF2) signaling pathway activation in ovarian cancer rats,

thereby enhancing their immune function and suppressing the

invasion and migration of ovarian cancer cells. Additionally, it

has been shown that dexmedetomidine exerts systemic anti-

inflammatory effects and alleviates immune suppression in

patients undergoing modified radical mastectomy, with this effect

being dose-dependent; medium to high doses (0.5 or 0.75 µg/kg)

show more significant effects.
5.5 Nonsteroidal anti-inflammatory drugs

NSAIDs are among the most commonly used medications during

the perioperative period. They inhibit cyclooxygenase (COX), reduce

the synthesis of prostaglandins, thereby exerting anti-inflammatory

and immunomodulatory effects. NSAIDs can also affect the activity of

immune cells and regulate the production and release of cytokines

involved in inflammation (51, 52). The administration of flurbiprofen

during thoracoscopic radical surgery for lung cancer (53) can attenuate

the levels of programmed cell death protein 1 (PD-1), an important

immune checkpoint molecule, on CD8+ T cells within 72 hours

postoperatively. PD-1 interacts with PD-L1 to promote immune

escape in cancer (54). The reduction in PD-1 levels suggests that

flurbiprofen may inhibit tumor immune escape. A longer-term follow-

up study (55) indicated that postoperative analgesia with parecoxib

sodium improves postoperative pain and immune function in patients

undergoing hepatectomy for liver cancer, and may help delay tumor

recurrence after surgery. Overall, the use of NSAIDs during the

perioperative period provides benefits in pain management and

controlling inflammatory responses. However, high doses or

prolonged use may also exert immunosuppressive effects.
5.6 Local anesthetic

A study (56) conducted on animals found that intravenous

injection of lidocaine can reduce postoperative lung metastasis in
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mice with breast cancer, possibly through its anti-inflammatory and

anti-angiogenic effects. Clinically relevant concentrations of

bupivacaine reduced the cell viability of ovarian (SKOV-3) and

prostate (PC-3) cancer cells and inhibited cell proliferation and

migration. It activated both intrinsic and extrinsic apoptotic

pathways in ovarian cancer cells, while in prostate cancer cells, it

only activated the intrinsic pathway, thereby demonstrating direct

“anticancer” properties (57). Several studies (58–60) have

demonstrated that intravenous infusion of lidocaine is beneficial

both as a chemotherapy treatment and as an adjunct to

chemotherapy in both perioperative and non-operative setting.
5.7 Other drugs

Dexamethasone, a glucocorticoid, is widely utilized during the

perioperative period for preventing and treating allergic or

hypersensitivity reactions, as well as for mitigating postoperative

nausea and vomiting. An in vitro cell experiment (61) has shown

found that dexamethasone upregulates the expression of CTLA-4

mRNA and protein in CD4 and CD8 T cells, blocking CD28-

mediated cell cycle entry and differentiation, thereby inhibiting

immune function.

Overall, commonly used anesthetic drugs have varying effects

on the postoperative immune function of cancer patients.

Therefore, these factors should be taken into consideration when

optimizing anesthetic regimens. For more details, please refer

to Table 1.
6 Postoperative analgesia

Postoperative acute pain can impair immune function. Effective

pain management can alleviate postoperative pain and stress,

thereby enhancing postoperative immune function in cancer

patients. Among different postoperative analgesia methods,
Frontiers in Immunology 05
epidural analgesia and nerve block analgesia can better maintain

the immune function of patients (62). Intravenous analgesia has a

stronger immunosuppressive effect on the body. The main reason is

that intravenous analgesia often includes a certain amount of opioid

drugs, which can inhibit immune function, and systemic circulation

exacerbates the immunosuppressive effect of the body. In contrast,

intrathecal analgesia or nerve block anesthesia utilizes the local

effects of local anesthetics, which minimally affect the whole body. It

effectively interrupts pain conduction, provides more effective

analgesic effects, thereby alleviating the body’s stress response and

improving postoperative immune function.

In postoperative intravenous analgesia, opioid drugs are the

most commonly used. Despite their significant analgesic effects,

they also have a substantial immunosuppressive effect. NSAIDs

reduce prostaglandin synthesis to exert anti-inflammatory and

immunomodulatory effects, while dexmedetomidine effectively

alleviates inflammatory stress responses. Therefore, postoperative

intravenous analgesia should avoid using opioid drugs alone as

much as possible. Adopting multimodal analgesia strategies with

reduced opioid drugs or the exclusion of opioid drugs, such as

combining opioids with NSAIDs or dexmedetomidine, or

combining NSAIDs with dexmedetomidine, can effectively

improve postoperative immune function (63, 64).
7 Intraoperative blood transfusion

Cancer patients often present with varying degrees of anemia

preoperatively, which is exacerbated by intraoperative blood loss

during tumor resection, necessitating blood transfusion. However,

perioperative blood transfusion is a double-edged sword. Although

it effectively improves anemia or hypoalbuminemia and corrects

coagulation disorders, it also suppresses postoperative immune

function. A study (65) comparing the effects of allogeneic and

autologous blood transfusion on immune function and prognosis in

hepatocellular carcinoma patients found that autologous blood
TABLE 1 Effects of anesthetics drugs on postoperative immune function in cancer patients and potential mechanisms.

Drugs Effects on
Immune Function

Mechanism

Opioid drugs (23–32) Inhibit Suppress the function of T and NK cells, regulation of cytokines and activation of the hypothalamic-
pituitary-adrenal axis

Propofol (33–35) Benefit Related to its voltage-gated channels and anti-inflammatory effects

Midazolam (35, 36) Have no significant impact Both proinflammatory and
anti-inflammatory

Etomidate (37, 38) Have no significant impact Inhibition of adrenal cortex function and anti-inflammatory effects

Ketamine (39, 40) Inhibit Decrease CD4 percentage, CD4/CD8 ratio and the levels of inflammatory cytokines

Inhalation Anesthetics (41–45) Inhibit Reduce the cytotoxicity of NK cells and increase pro-inflammatory factors, affect the tumor
microenvironment and promote tumor cell invasion

Dexmedetomidine (46–50) Benefit Reduce the usage of anesthetic drugs especially opioids, implement anti-inflammatory and anti-
stress measures, and improve postoperative sleep.

NSAIDs (51–55) Benefit Anti-inflammatory and immunomodulatory effects

Local anesthetic (56–60) Benefit Anti-inflammatory and anti-angiogenic effects, inhibited cancer cells proliferation and migration
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transfusion had a smaller impact on immune function compared to

allogeneic transfusion. It even improved postoperative immune

function and recurrence-free survival in these patients. Several

studies (66, 67) have shown that intraoperative blood transfusion

increases the incidence of postoperative infections and tumor

recurrence in cancer patients, while reducing long-term survival

rates. The mechanism by which blood transfusion causes

postoperative immune suppression is not fully understood, but it

is generally believed to involve exogenous tissue-compatible

antigens, which increase prostaglandin E2 (PGE2) synthesis,

inhibit monocytes, NK cells, and IL-2, alter lymphocyte subset

ratios, and lead to the formation of specific antibodies

and alloantibodies.
8 Body temperature

Perioperative temperature management plays a crucial role in

the postoperative immune function of cancer patients.

Hypothermia can suppress the immune system, increasing the

risk of postoperative immune dysfunction and infectious

complications. Shao et al. (68) divided patients undergoing open

gastrectomy for gastric cancer into four groups: a normal

temperature group and three groups with varying degrees of

hypothermia. They monitored levels of TGF-b, IL-10, CD3+,

CD4+/CD25+, and Treg cell counts. They found that lower body

temperature was associated with greater suppression of

postoperative immune function, and maintaining normal body

temperature minimized changes in immune function.

Temperature can have different effects on adaptive immunity at

various levels; higher temperature generally promotes activation,

function, and communication of immune cells, while lower

temperature inhibits these processes (69).
9 Discussion

9.1 Human studies

The references cited in this manuscript include clinical human

studies, animal studies and cell studies, with a predominant focus on

human studies, which more directly reflect the relationship between

anesthesia factors and immune function and prognosis in cancer

patients. Human studies are conducted in actual clinical settings,

providing a more accurate reflection of patient realities, making them

crucial in evaluating the impact of anesthesia on cancer prognosis.

Many studies have suggested a correlation between anesthesia

methods and the prognosis of cancer patients. However, a

significant number of these studies lack stratified statistical

analyses based on pathological grade, preoperative vascular

invasion, and lymph node metastasis. Consequently, there

remains considerable debate regarding the impact of anesthesia

on prognosis in cancer surgery patients. Further research is needed

to substantiate these findings and to explore the specific effects of

anesthesia methods on the prognosis of patients with different

pathological characteristics.
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9.2 Animal and cell studies

Animal model studies and cell studies typically allow for more

stringent control of variables and quicker results, which are particularly

important in the initial exploratory stages. Through animal and cell

research, the impact of specific anesthetics and surgical methods on

immune function can be studied in detail in a controlled environment.

Additionally, animal studies provide the opportunity for invasive

procedures, enabling a deeper understanding of mechanisms

and pathways.

However, animal models and cell studies also have significant

limitations. There is no perfect non-human cancer model, and these

models may lack many key biological steps of tumor development

and metastasis. Furthermore, there are significant differences

between animal and human immune systems, which can limit the

translational applicability of the findings. Cell studies, while

valuable for understanding basic mechanisms at a cellular level,

cannot replicate the complex interactions present in a whole

organism. Animal models and cell studies may not fully reflect

the complex interactions between the immune system and tumors

observed in human cancer patients.
10 Conclusion

In conclusion, it is evident that both surgery and anesthesia

impact the postoperative immune function of cancer patients.

However, current research has primarily focused on the effects

within the first week after surgery, with limited studies and

insufficient exploration of the longer-term effects on immune

function. Future studies should focus on the long-term changes in

postoperative immune function to gain a more comprehensive

understanding of the impact of surgery and anesthesia on cancer

patients, thereby guiding clinical management. Furthermore, their

impact on the long-term prognosis of cancer patients is still debated.

Although numerous retrospective studies have demonstrated that

certain factors related to anesthesia can improve the prognosis of

cancer patients, the complexity of factors influencing cancer

prognosis means that there is currently insufficient evidence to

draw definitive conclusions. Surgical procedures with minimal

trauma-induced stress have less suppression on postoperative

immune function. Among different anesthesia techniques, local

anesthesia has the least impact on postoperative immune function,

followed by nerve block anesthesia and spinal anesthesia. General

anesthesia has the strongest immunosuppressive effect on

postoperative immunity in cancer patients , with the

immunosuppressive effect of sevoflurane inhalation anesthesia

being stronger than that of propofol intravenous anesthesia.

Among anesthetic drugs, those implicated in suppressing

postoperative immune function include opioid analgesics, high

doses of etomidate, ketamine, midazolam, and sevoflurane.

Conversely, drugs that may potentially benefit or exhibit minimal

suppression of postoperative immune function include propofol,

melatonin, dexmedetomidine, and NSAIDs such as flurbiprofen.

Additionally, effective postoperative analgesia can improve

postoperative immune function, while intraoperative blood
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transfusion, especially allogeneic blood transfusion, perioperative

hypothermia, and delayed emergence from general anesthesia, may

inhibit the postoperative immune function of cancer patients.

In recent years, targeted therapy and immune checkpoint

blockade for cancer have emerged as research hotspots in the

field of tumor immunotherapy, particularly targeting immune

checkpoints such as CTLA-4 and PD-1/PD-L1 (70). These

therapeutic approaches aim to inhibit the immune escape of

tumor cells and thereby achieve anti-tumor effects. Consequently,

optimizing the selection and management of anesthesia and surgery

during the perioperative period is crucial to maximize the

preservation of postoperative immune function in cancer patients,

mitigate the immune escape of residual cancer cells, and reduce the

risk of postoperative tumor metastasis or recurrence, which is

highly beneficial for cancer surgery patients. It is anticipated that

in the near future, research on anesthesia and surgical factors

related to tumor prognosis will become more comprehensive and

in-depth, particularly through clinical follow-up studies on

prognosis and long-term survival rates in a large sample of

multicenter postoperative cancer patients. These studies will

directly confirm their clinical effects, providing more direct and

concrete evidence for the implementation of “perioperative anti-

cancer anesthesia and surgical strategies” in clinical practice.
11 Strengths and limitations of
this study
Fron
• This review provides a comprehensive and innovative

assessment of the relationship between anesthesia, surgical

factors and postoperat ive immune function in

cancer patients.

• This review particularly comprehensively elucidates the

relationship between various aspects of anesthesia and

postoperative immune function in cancer patients,

whereas previous studies have largely been confined to

specific aspects.
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• Language restrictions to English may have led to exclusion

of additional studies.
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