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The Nectin family ligands, PVRL2
and PVR, in cancer immunology
and immunotherapy
Kosuke Murakami and Sudipto Ganguly*

The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of
Medicine, Baltimore, MD, United States
In recent years, immunotherapy has emerged as a crucial component of cancer

treatment. However, its efficacy remains limited across various cancer types,

highlighting unmet needs. Poliovirus receptor-related 2 (PVRL2) and Poliovirus

receptor (PVR) are members of the Nectin and Nectin-like Molecules family,

known for their role as cell-cell adhesion molecules. With the development of

immunotherapy, their involvement in tumor immune mechanisms as immune

checkpoint factors has garnered significant attention. PVRL2 and PVR are

predominantly expressed on tumor cells and antigen-presenting cells, binding

to PVRIG and TIGIT, respectively, which are primarily found on T and NK cells,

thereby suppressing antitumor immunity. Notably, gynecological cancers such

as ovarian and endometrial cancers exhibit high expression levels of PVRL2 and

PVR, with similar trends observed in various other solid and hematologic tumors.

Targeting these immune checkpoint pathways offers a promising therapeutic

avenue, potentially in combination with existing treatments. However, the

immunomodulatory mechanism involving these bindings, known as the

DNAM-1 axis, is complex, underscoring the importance of understanding it for

developing novel therapies. This article comprehensively reviews the

immunomodulatory mechanisms centered on PVRL2 and PVR, elucidating

their implications for various cancer types.
KEYWORDS

cancer immunotherapy, DNAM1, immune checkpoint inhibitor, PVR, PVRIG,
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1 Introduction

In recent years, immunotherapy has become a new treatment modality for solid and

non-solid cancers (1–3). It has become an essential pillar of cancer treatment, along with

surgery, chemotherapy, and radiation therapy. Among immunotherapies, anti-CTLA4 and

anti-PD-1/PD-L1 antibodies are the most common immune checkpoint inhibitors (ICIs)

for solid tumors (3). Starting with the 2011 FDA approval of the anti-CTLA4 antibody,

Ipilimumab, for metastatic melanoma (4), the anti-PD-1 antibodies (e.g., nivolumab,

pembrolizumab, dostarlimab) and the anti-PD-L1 antibodies (e.g., atezolizumab,
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durvalumab, avelumab) have been FDA-approved for a variety of

cancers (5). ICIs are a very promising treatment, sometimes

affecting dramatically in cases that would have otherwise had no

effective treatment (5). On the other hand, the therapeutic efficacy

of existing ICIs is limited, and even in potentially effective

carcinomas, response rates are limited to 20-40% (6). In addition,

there are many cases in which acquired resistance develops during

the treatment course (7, 8). Therefore, various attempts have been

made to improve therapeutic efficacy, including developing new

ICIs and combination therapy. Recently, combination therapy with

a new ICI, anti-LAG3 antibody (relatlimab) and anti-PD-1

antibody (nivolumab) was shown to be effective in melanoma and

was FDA-approved (9).

Recently, the Poliovirus receptor-related 2 (PVRL2)-

Poliovirus receptor-related immunoglobulin (Ig) domain

containing (PVRIG) pathway and the Poliovirus receptor

(PVR)-T cell immunoreceptor with Ig and immunoreceptor

tyrosine-based inhibitory motif (ITIM) domains (TIGIT)

pathway have been focused on as potential new targets for

cancer immunotherapy (10). These pathways are entirely

different from the CTLA4 and PD-1/PD-L1 pathways, which

have been previously targeted. The DNAX Accessory Molecule-

1 (DNAM1) axis, including the PVRL2-PVRIG and PVR-TIGIT

pathways, is a complex immunoregulatory mechanism, but recent

studies have revealed much. This review article will focus on

PVRL2 and PVR, which play vital roles in the DNAM1 axis, from

the viewpoint of tumor immunity.
2 PVRL2 and PVR as the Nectin and
Nectin-like molecule family

PVRL2, also known as Nectin-2, CD112, or PRR2, is a member

of the Nectin family. PVR, also known as Necl-5, CD155, or

TAGE4, has a domain structure like nectin and is one of the

Nectin-like Molecules (Necls) (11–13). The Nectin and Necl

Family have been identified to date as four types of Nectins

(Nectin-1 to Nectin-4) and five types of Necls (Necl-1 to Necl-5),

but they were discovered in different ways and given diverse names

(11–13). In this article, the terminology is unified as PVRL2

and PVR.

Nect in and Necl family are immunoglobul in- l ike

transmembrane cell adhesion molecules expressed in various cell

types (14–16). Nectins are mainly involved in cell-cell adhesion, and

Necls have a greater variety of cellular functions (14). They are

involved in the organogenesis of sperm, eyes, inner ear, teeth,

cerebral cortex, and nerves (12). Cell-cell adhesion can be

involved in various diseases, among which the Nectin and Necl

family is well known to be associated with Alzheimer's disease,

mental disorders, viral infections, and cancer (12). In cancer, the

expression of adhesion factors on the cell surface plays an essential

role in dissemination, metastasis, and growth (17). The Nectin

and Necl family also plays a vital role as a member of

immunomodulatory mechanisms and is deeply involved in tumor

progression (11).
Frontiers in Immunology 02
Cell-cell adhesion is mediated by tight junctions, adherens

junctions, and desmosomes, and the Nectin and Necl family

localizes to adherens junctions (16). Nectin has three extracellular

Ig-like domains (one variable region and two constant regions)

followed by a transmembrane region and a cytoplasmic tail

(Figure 1) (15). The cytoplasmic tail of nectin other than nectin-4

contains a conserved Afadin binding motif, Glu/Ala-X-Tyr-Val, to

which the PDZ domain of Afadin binds, causing nectin to bind to

actin filaments (18). Necls have the same domain structure as nectin

but do not have an Afadin binding motif in their cytoplasmic tail

(Figure 1) (19). PVR most closely resembles nectin compared to

other Necls, with PVRL2 and PVR having 51.7% amino acid

sequence identity in the extracellular region (12, 20).

Cell adhesion molecules form trans dimers and mediate cell-cell

adhesion by trans interaction (12). Cadherins form only trans homo

dimers, whereas the Nectin and Necl families form not only trans

homo dimers but also trans hetero dimers between family members

(14, 19, 21). PVRL2 has homophilic and heterophilic and PVR has

heterophilic cell-cell adhesion activity (12, 21). Unlike cadherins,

the Nectin and Necl family is also expressed in immune cells such as

T and NK cells and is characterized by its involvement in immune

mechanisms (22).
3 The function of the PVRL2 and PVR
in the immune system

While PVRL2 and PVR are known to be expressed on many

tumor cells, they are also expressed on immune cells and widely

regulate cell-cell interactions (22). However, most reports on

PVRL2 and PVR in the immune system focus on the interaction

of PVRL2 and PVR expressed in tumor cells with T and NK cells.

There is a lack of reports on how T and NK cells interact with

PVRL2 and PVR expressed in immune cells, especially myeloid

cells. In this section, we mainly summarize the functions of PVRL2

and PVR expressed on tumor cells, focusing on their immune

system regulation (Figure 2).
3.1 PVRL2 (Nectin-2, CD112)

PVRL2 was reported as Poliovirus Receptor Related 2 (PRR2), a

cell surface molecule homologous to PVR (15). The gene encoding

this molecule has two mRNA isoforms, a 3.0 kb short form and a 4.4

kb long form (15). PVRL2 is ubiquitously expressed in various cells,

including epithelial cells, endothelial cells, smooth muscle cells, and

fibroblasts (23, 24). However, PVRL2 expression in immune cells is

specific to myeloid cells, with little expression in lymphocytes (15).

PVRL2 is also characterized by high expression in Sertori and Leydig

cells in the testis and is involved in spermatogenesis (25). Disruption

of PVRL2 results in male infertility (25). PVRL2 is also expressed in

vascular endothelial cells and regulates angiogenesis (23, 24).

In the tumor immune axis, PVRL2 is expressed on tumor cells

and tumor-infiltrating immune cells, especially macrophages, and is

involved in tumor growth and metastasis (12, 13). For example,
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PVRL2 is highly expressed in CD14+ cells (as tumor-associated

macrophages) and CD45- cells (as tumor cells) in breast,

endometrial, ovarian, lung, and liver cancers (26). Regarding

regulation of expression on tumor cells, PVRL2 is primarily

expressed in the cytoplasm in tumor cell lines, and inhibition of

the ubiquitin pathway has been shown to increase surface

expression of PVRL2 and increase tumor cell sensitivity to NK

cell cytotoxicity (27).
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3.2 PVR (Necl-5, CD155)

In 1989, it was reported that human PVR is a transmembrane

protein with an amino acid and domain structure like nectins,

which is characteristic of the Ig superfamily and is expressed in

various human tissues (28). Like PVRL2, PVR is expressed on

epithelial cells, endothelial cells, smooth muscle cells, and

fibroblasts, as well as on immunocompetent cells such as
FIGURE 1

Molecular structures of PVRL2 and PVR. PVRL2 and PVR have the same structure of three extracellular Ig-like domains (one variable region and two
constant regions) followed by a transmembrane region and a cytoplasmic tail. PVRL2 has an Afadin binding motif in the cytoplasmic tail, but PVR
doesn't have it.
FIGURE 2

DNAM1 axis. PVRL2 binds to PVRIG and TIGIT, and PVR binds to TIGIT and CD96, acting in a tumor immunosuppressive manner. These bindings are
stronger than the immunostimulatory bindings of DNAM1 to PVRL2 or PVR.
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Neutrophils, T cells, and plasma cells (29). Quantification of PVR

mRNA in normal human tissues shows the highest expression in

the liver (30). Soluble PVR isoforms are present in human serum

and cerebrospinal fluid (30, 31).

PVR is involved in cell migration; PVR has been shown to

interact with the platelet-derived growth factor (PDGF) receptor to

regulate the interaction between the PDGF receptor and integrin,

effectively inducing directional cell migration (32). PVR also

attracts growing microtubules to the plasma membrane of the

leading edge of moving cells (33). PVR is also involved in cell

proliferation; PVR has been shown to promote activation of Ras-

Raf-MEK-ERK signaling, increase cyclin D2 and E expression,

decrease p27Kip1, and shorten the G0/G1 phase of the cell cycle

(34). It has also been suggested that PVR may regulate angiogenesis

by vascular endothelial growth factor (VEGF) (35). In the immune

system, PVR is involved in negative selection in the thymus using a

PVR-deficient mouse model (36). A pathway dependent on the

DNA damage response is involved in the elevated expression of

PVR (37). It has also been shown that DNA damage downregulates

PVR expression (38, 39). Hedgehog signaling is often activated in

cancer (40), and PVR is upregulated by the signaling (41). PVR

expression is induced through the Raf-MEK-ERK-AP-1 pathway by

upregulating fibroblast growth factor or KRAS (42).
3.3 Receptor expression and
regulatory mechanisms

As receptors for PVRL2 in the immune system, Poliovirus

receptor-related immunoglobulin domain containing (PVRIG,

CD112R), T cell immunoreceptor with Ig and ITIM domains

(TIGIT, VSTM3, VSIG9, WUCAM), DNAX Accessory Molecule-

1 (DNAM1, CD226, TLiSA1) are known. The binding of PVRL2 to

PVRIG or PVRL2 to TIGIT suppresses tumor immunity, whereas

the binding of PVRL2 to DNAM1 promotes tumor immunity (10).

TIGIT, DNAM1, and CD96 (TACTILE) are known receptors for

PVR in the immune system; binding of PVR to TIGIT suppresses

tumor immunity while binding to DNAM1 promotes tumor

immunity; binding to CD96 acts both to suppress and promote

tumor immunity (10).

PVRIG is a transmembrane protein consisting of an

extracellular IgV domain, a transmembrane domain, and an

intracellular ITIM-like motif with a high affinity for PVRL2 (43).

PVRIG is expressed in human T and NK cells and functions as an

immune checkpoint pathway (43). PVRIG is not expressed in

dendritic cells, neutrophils, monocytes, or B cells (43). The

expression of PVRIG in T cells can vary with the expression of

other immune checkpoint factors. For example, PVRIG has been

shown to correlate with the expression of T cell exhaustion markers

such as PD-1 and TIGIT in CD8+ T cells and CD4+ T cells (26). It

has also been shown that the blockade of PVRIG increases TIGIT

expression, but the blockade of TIGIT or PD-1 does not alter

PVRIG expression (26).

TIGIT is a member of the Ig superfamily and is a

transmembrane protein that contains an extracellular IgV

domain, a transmembrane domain, and a cytoplasmic tail
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containing an ITIM and an Ig tail tyrosine (ITT)-like motif (44).

TIGIT is expressed on various T cell subsets, NK, and NKT cells in

humans (44–50). TIGIT is a receptor for PVRL2 and PVR (44, 51).

TIGIT is the most crucial receptor for PVR; compared to the

binding of PVRL2 and TIGIT, the binding of PVR to TIGIT is

very strong and strongly immunosuppressive (44). The TIGIT/PVR

pathway suppresses IFN-g production in NK cells (52). TIGIT is

highly expressed predominantly in tumor-infiltrating T cells and

plays a vital role in suppressing the activity of CD8+ T cells (53).

TIGIT inhibits T cell cytotoxic function by competing with

DNAM1, as discussed below (54). The binding of PVRL2 to

TIGIT is much weaker than that of PVR to TIGIT, suggesting

that it does not play a significant role in the tumor immune system.

CD96, another receptor for PVR, was reported in 1992 as a

member of the Ig superfamily that activates T cells (55). CD96 is

mainly expressed in T and NK cells (55, 56) and highly expressed in

tumor-infiltrating CD8+ T cells (56, 57). It was also reported in 2014

that CD96 competes with and directly inhibits the binding of

DNAM1 and PVR, thereby limiting NK cell function (58). CD96

is also expressed on tumor cells and is associated with

chemotherapy resistance and poor prognosis (59).

DNAM1 is a member of the Ig superfamily of transmembrane

proteins with two extracellular IgV domains and an intracellular

ITIM-like motif (60). It is expressed in T, NK, B, and monocytes

(60–64). It binds to both PVRL2 and PVR and promotes activation

of T, NK, B, and monocytes (60–64). The expression of PVR

enhances NK cell activity via the DNAM1 pathway (65).

DNAM1, unlike PVRIG and TIGIT, exhibits antitumor activity

by enhancing the cytotoxic activity of immune cells through ligand

binding (66, 67). On the other hand, it has recently been reported

that under inflammatory conditions, DNAM1 promotes IFN-g
secretion by conventional CD4+ T cells and contributes to

tumorigenesis (68). The interaction between PVRL2 and DNAM1

requires the homodimerization or engagement of the homodimeric

interface of PVRL2 IgV (22). DNAM1 has a soluble form and can

bind to PVRL2 or PVR on tumor cells (69).
3.4 Relationships of PVRL2 and PVR in the
DNAM1 axis

DNAM1 axis, including PVRL2 and PVR, is very complex (10),

and the relationship needs to be well organized. PVRL2 and PVR are

both ligands for DNAM1 (62, 63). Both PVRL2 and PVR, which are

expressed on antigen-presenting cells, act in an immunostimulatory

manner when bound to DNAM1 to activate T and NK cells (70), but

the binding between PVR and DNAM1 is stronger than that between

PVRL2 and DNAM1 (63). PVRL2 binds to PVRIG and is expressed

on T and NK cells, acting immunosuppressively. Interestingly, the

immunosuppressive binding of PVRL2 to PVRIG is stronger than the

immunostimulatory binding of PVRL2 to DNAM1 (43). PVRIG

binds specifically to PVRL2, and there are no reports of PVRIG acting

with PVR. Both PVRL2 and PVR also bind to TIGIT and inhibit the

cytotoxic activity of immune cells (46). The action of PVRL2 and

TIGIT is the same as that of PVR and TIGIT (71). In the past, TIGIT

expressed on human NK cells was shown to bind to PVR and PVRL2
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and inhibit tumor killing by NK cells (46). Recently, however, it has

been demonstrated that the binding of PVRL2 to TIGIT is very weak,

with little interaction (26, 43, 51). In mice, binding to TIGIT is

restricted to PVR (72). The binding of PVR to TIGIT is very strong

and exhibits strong immunosuppressive activity (44). The binding of

PVR to TIGIT is stronger than PVR to DNAM1 (44, 73). PVR also

binds to CD96, expressed in T and NK cells (55). This binding has

been shown to stimulate the cytotoxicity of activated NK cells and act

in an immunostimulatory manner (74), while anti-CD96 antibodies

stimulate the cytotoxic function of NK cells (75). Signaling through

CD96 has also been shown to enhance the cytotoxic activity of CD8+

effector T cells (76). Therefore, whether this pathway acts in an

immunostimulatory or inhibitory direction is not constant. The

affinity between CD96 and PVR is higher than that between PVR

and DNAM1 but lower than between PVR and TIGIT (43, 44).

Blockade of each pathway of the DNAM1 axis has been shown

to affect the regulation of immune mechanisms. In PVRIG-deficient

mouse models of melanoma and colorectal cancer, tumor growth is

suppressed, and tumor-infiltrating CD8+ T cells are increased (77).

PVRIG inhibition effectively suppresses tumor growth and prolongs

the survival of tumor-bearing mice, which is associated with

enhanced frequency and cytotoxicity of tumor-infiltrating NK

cells (78). TIGIT inhibition also activates T cells (79). Although

blockade of either PVRIG or TIGIT slightly increases mitosis and

cytokine production in CD4+ T cells (43), double block of PVRIG
Frontiers in Immunology 05
and TIGIT has been shown to enhance significantly CD4+ T cell

proliferation and cytokine secretion, including IFN-g, IL-13, IL-10,
IL-5, IL-13, IL-10, IL-5, IL-2, and enhances the cytotoxicity of CD8+

T cells (26, 43). It also reduces the cytotoxicity of T cells and NK

cells by blocking DNAM1 (62, 63, 73). It has also been shown that

increased CD8+ T cells with high DNAM1 expression improve

response to anti-TIGIT therapy (80).
4 PVRL2 and PVR in cancer

So far, we have discussed the complex expression of PVRL2 and

PVR and their immunomodulatory mechanisms. In this section, we

summarize the expression of PVRL2 and PVR in cancer and their

effects on tumor immunoregulatory mechanisms (Table 1).

In 2013, gene expression profiling and immunohistochemistry

(IHC) showed that PVRL2 is overexpressed in breast and ovarian

cancer clinical tissues (81). Subsequently, The Cancer Genome

Atlas Program has published mRNA expression data for several

cancers and found high expression of PVRL2 mRNA in breast,

ovarian, prostate, endometrial, gastric, liver, pancreatic, and lung

cancers, with no carcinoma specificity (26). Expression of PVRL2 is

found in both PD-L1 negative and PD-L1 positive tumors (26).

PVR is overexpressed in many cancers compared to normal

tissue and has been shown to correlate with poor prognosis (82, 83).
TABLE 1 PVRL2 and PVR in various cancers.

PVRL2 expression
tumor growth

prognostic effect
PVR expression

tumor growth
prognostic effect

evidence
for treatment

Solid tumor

ovarian ● pro-tumor ● pro-tumor anti-TIGIT, anti-PVRIG

endometrial ● ● pro-tumor

liver ● pro/anti-tumor

pancreas ● pro-tumor ● pro-tumor anti-TIGIT

gastric ● pro-tumor ● pro-tumor anti-TIGIT

colorectal ● pro-tumor ● pro-tumor anti-PVRIG

breast ● pro-tumor ● pro-tumor anti-TIGIT

gallbladder ● pro-tumor ● pro-tumor

melanoma ● pro-tumor anti-TIGIT

prostate ● pro-tumor anti-TIGIT

head
and neck

● pro-tumor

esophageal ● pro-tumor

lung ● pro-tumor

bladder ● pro-tumor

cervical ● pro-tumor

Hematologic tumor

leukemia ● pro-tumor ● pro-tumor

lymphoma ● pro-tumor
● expression (+).
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It has also been demonstrated that PVR expression correlates with poor

prognosis in many cancers (82). Even if there is no prognostic

difference by PD-L1 expression, there may be a prognostic difference

by PVR expression (84). It has also been shown that patients with lung,

gastrointestinal, breast, and gynecological cancers have higher levels of

soluble PVR in their serum than healthy donors (31).

Depending on the type of cancer, either PVRL2 or PVR may be

expressed predominantly. Breast, ovarian, endometrial, and prostate

cancers express PVRL2 predominantly, while melanoma, esophageal,

and colorectal cancers express PVR predominantly (26). There are

also many reports on ligands for PVRL2 and PVR in cancer. PVRIG,

the ligand for PVRL2, is upregulated in various carcinomas, including

kidney, ovary, lung, prostate, and endometrial cancer (26). As

mentioned above, TIGIT functions particularly strongly as a ligand

for PVR and is highly expressed in tumor-infiltrating lymphocytes in

many cancers, including endometrial, breast, renal cell, non-small cell

lung, and colon cancer (53). It has also been shown that TIGIT+

CD8+ T cells frequently co-express PD-1 in melanoma and ovarian

high-grade serous carcinomas (82, 85).

Heterogeneity of expression of immune checkpoint pathways in

tumors is important for considering tumor immunity, but there are still

very few reports on the heterogeneity of DNAM1 axis expression so far.

Only one report has shown that the expression of PVR, PVRL2, TIGIT,

PD-1, and PD-L1 in lung adenocarcinoma is heterogeneous within and

between tumors and varies according to tumor growth patterns (86), so

future reports are expected. In addition, even though PVRL2 and PVR

are known to be expressed on both tumor cells and antigen-presenting

cells (especially macrophages), most studies have focused on the

expression on tumor cells.

Another critical factor in cancer is the change in expression that

occurs with treatment, such as chemotherapy. In vitro, Adriamycin

treatment of breast cancer cell lines increases PVR expression (39).

The combination of PVR knockdown and Adriamycin

administration induces more cell death and inhibits tumor

growth than either one (39). Myeloma cells treated with

doxorubicin, melphalan, and bortezomib also upregulate PVRL2

and PVR expression and suppress the antitumor effects of NK cells

(87). Thus, it is suggested that chemotherapy causes changes in the

expression of PVR and PVRL2, but there are still only a few reports.

However, these effects must be considered in clinical practice.
5 What is known in detail about each
cancer type?

5.1 Gynecologic Müllerian cancer

As mentioned above, PVRL2 and PVR are highly expressed in

ovarian and endometrial cancers. Therefore, the significance of

PVRL2 and PVR in these gynecologic Müllerian cancers is

very important.

5.1.1 Ovarian cancer
Ovarian cancer is one of the poorest prognoses among

gynecologic cancers (88). Among epithelial ovarian cancer, about
Frontiers in Immunology 06
three-quarters are high-grade serous ovarian cancer (HGSOC) (89).

HGSOC have a modest immunogenic repertoire (90). However, the

tumor immune microenvironment is known to be highly

suppressive (91). In the phase 3 clinical trials, ovarian cancer has

a limited response to existing ICIs (92–96), and new therapeutic

targets and combination therapies are expected to be developed.

In 2007, it was shown that PVR is expressed in ovarian cancer

cells and enhances NK cell activity via the DNAM1 pathway (97). In

clinical samples, PVR was also expressed well in tumor epithelial

cells of HGSOC (82). In this report, PVR expression did not

correlate with tumor-infiltrating lymphocytes, whereas PD-L1 was

highly expressed on tumor-associated macrophages and positively

correlated with TILs, indicating that PVR and PD-L1 have different

expression patterns (82).

Recently, focal adhesion kinase (FAK) was reported to function

in tumor immunosuppression of ovarian cancer via the PVR/TIGIT

pathway (98). In this report, it was shown that FAK and PVR are

coexpressed in tumor cells in HGSOC and that the combination of

FAK inhibitors and anti-TIGIT antibodies maintains elevated TIL

levels, decreases TIGIT-positive Tregs, prolongs survival, increases

CXCL13, and leads to the formation of tertiary lymphoid structure

in the ovary (98).

In 2013, gene expression profiling and immunohistochemical

studies first demonstrated that PVRL2 is overexpressed in clinical

ovarian cancer specimens and various human ovarian cancer cell

lines (81). In another cohort, PVRL2 was identified as the highly

expressed transcript, and immunohistochemistry confirmed that it

is overexpressed in HGSOC samples compared to normal or benign

samples (99). Similar results were also confirmed by analysis of gene

expression data from TCGA (99). Bekes et al. reported that in a

cohort of 60 patients with ovarian cancer, PVRL2 expression of

patients with lymph node metastases or residual tumors after

surgery had higher levels of PVRL2 gene expression than those

with negative lymph nodes or complete tumor resection (100).

Regarding the tumor microenvironment, peritoneal biopsies

showed clear co-localization of PVRL2 and CD31 in the vasculature,

and PVRL2 expression was suppressed in the peritoneal endothelium

of patients with high blood VEGF levels (100). In vitro, it has been

reported that VEGF causes downregulation of PVRL2 and that PVRL2

knockdown in endothelial cells is associated with increased endothelial

permeability (100). HGSOC often results in ascites accumulation, and

PVRL2 may be a contributing factor.

However, the role of the DNAM1 axis in ovarian cancer

through tumor immune mechanisms is still poorly understood. In

addition, previous studies have focused on HGSOC. The frequency

of endometriosis-associated ovarian cancers (EAOC), including

clear cell carcinoma, is high in Japan and other Asian countries

(101). The mechanism of occurrence of EAOC is entirely different

from that of HGSOC (102). Clinical trials have suggested the

efficacy of ICI for clear cell carcinoma (103, 104), and studies

involving the DNAM1 axis are also expected.

5.1.2 Endometrial cancer
Endometrial cancer is the fourth most common cancer in

women and the most common gynecologic cancer in the United
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States (105). Endometrial cancer is an important disease because,

unlike many other cancers, the number of patients is increasing

(106). Hypermutators due to POLE mutations are present in about

10% of cases of endometrial cancer (107). In endometrial cancer,

the frequency of DNA mismatch repair deficiency or microsatellite

instability-high is about 30%, the highest among all cancer types

(108). These endometrial cancers have high neoantigen loads and

many TILs and are highly immunogenic (109). The efficacy of anti-

PD-1 antibodies against endometrial cancer has also been shown in

a clinical trial (110), suggesting that endometrial cancer and

immunotherapy are compatible.

Analysis using TCGA data shows that both PVRL2 and PVR are

highly expressed in endometrial cancer, but PVRL2 expression is

more predominant (26). PVR+PVRL2+ tumor cells are the most

abundant compared to other cancers and have higher PVRIG

expression (26). It has also been reported that cancer-associated

fibroblasts derived from endometrial cancer have decreased PVR

expression and more substantial suppression of the cytotoxic

activity of NK cells (111).

However, even though the DNAM1 axis seems to be a

promising therapeutic target for endometrial cancer, no detailed

studies have been reported other than these, and future

development is expected.
5.2 Other solid tumors

5.2.1 Liver cancer
Hepatocellular carcinoma (HCC) has a moderate tumor

mutational burden (90). In the tumor immune microenvironment

of HCC, PD-1 expression is upregulated in lymphocytes, and PD-

L1 and PD-L2 expression is also upregulated in Kupffer cells and

hepatic sinusoidal endothelial cells (112). Inflammatory response

with PD-1 and PD-L1 overexpression is seen in 25% of HCC

samples (112).

It has been shown by bulk and single-cell RNA sequencing and

IHC that PVRL2 is overexpressed in HBV-associated hepatocellular

carcinoma (113). A liver cancer model using PVRL2 knockout mice

has been shown to restore T cell infiltration into tumors and reduce

T cell exhaustion, suppressing tumor growth (113). On the other

hand, a study of 159 human subjects diagnosed with hepatocellular

carcinoma showed that PVRL2 expression in tumor specimens was

lower than that in peritumoral liver tissue, and low PVRL2

expression was associated with poor prognosis (114), so the

significance is controversial. Single-cell RNA seq analysis of

hepatocellular carcinoma also suggests that blockade of the PVR/

PVRL2 and TIGIT pathways may exert an antitumor effect (115).

5.2.2 Pancreas cancer
Pancreatic ductal carcinoma (PDA) is one of the tumors with

extremely low immunogenicity (90). Despite promising Phase 1

clinical trials, subsequent trials have not shown the efficacy of

existing anti-PD-1/PD-L1 or anti-CTLA4 antibodies, except in

mismatch repair deficient cases (116). Thus, immunotherapy for

PDA remains challenging.
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PVRL2 expression is found in about half of cases of pancreatic

cancer but not in benign lesions or normal pancreatic tissue (117).

PVR expression is also higher in the tumor than adjacent normal

tissue (118). PVRL2 and PVR expression have been reported to be

poor prognostic factors (117, 119, 120). It has also been reported

that PVRL2 expression correlates not with prognosis but with

histologic grade (121).

Regarding tumor immunity, PVR expression was inversely

correlated with tumor-infiltrating lymphocytes (119). The

percentage of DNAM1+ and CD96+ NK cells is significantly lower

in pancreatic cancer patients than in healthy controls, and reduced

percentages of DNAM1+ and CD96+ NK cells are associated with

tumor histologic grade and lymph node metastasis (118). In a

pancreatic cancer pre-clinical model, combining a neoantigen

vaccine and anti-TIGIT/anti-PD-1 antibody enhances anti-tumor

effects (122). A detailed analysis of human samples showed that

pancreatic cancer has many TRM cells with a PD-1+TIGIT+

phenotype, and the promising potential of double blockade of

PD-1 and TIGIT has been suggested (123).

5.2.3 Gastric cancer
Esophagogastric adenocarcinoma (EGAC) is considered to have

a moderate tumor mutational burden (90). Immunotherapy for

EGAC is promising. Phase 3 clinical trials have shown the efficacy of

anti-PD-1 antibodies, which are already FDA-approved (124).

TIGIT-positive and PD-1-positive tumor-infiltrating CD8-

positive T cells are increased in gastric cancer (125, 126). In

addition, gastric cancer tissues and cell lines overexpress PVRL2

and PVR (125, 126). Soluble PVR is significantly higher in gastric

cancer patients and is reduced by surgical resection (30). High PVR,

PVRL2, and TIGIT expression are associated with poor prognosis

(126, 127). An immune checkpoint score system, including PVRL2

and PVR, can predict prognosis (128).

In vivo, PVR binds to TIGIT and inactivates CD8+ T cells, and

targeting PVR-TIGIT promotes CD8+ T cell responses and

improves survival in cancer-bearing mice (125). Furthermore,

inhibition of both TIGIT and PD-1 further promotes CD8+ T cell

activation and improves survival in tumor-bearing mice (125).

5.2.4 Colorectal cancer
Among colorectal cancers, mismatch repair deficient or

microsatel l i te instabi l i ty-high populat ions are highly

immunogenic, and ICI is effective (129). However, for mismatch

repair proficiency or microsatellite stability, existing ICIs are poorly

effective, and new strategies are required (129).

PVR is highly expressed in patients with colorectal cancer (130).

In 100 patients with stage III colorectal cancer, high expression of

PVR and TIGIT were independent poor prognostic factors (131).

Serum PVRL2 levels in patients with colorectal cancer were

significantly higher than those in healthy controls (132).

Expression of DNAM1 on CD8 T cells infiltrating liver

metastases has also been shown to be a favorable prognostic

factor (133).

In a colorectal cancer model, PD-L1 blockade inhibited tumor

growth in PVRIG-deficient mice but not in wild-type mice (77).
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Furthermore, anti-PVRIG antibodies have been reported to inhibit

tumor progression alone or in combination with PD-L1 inhibitors

(77). These data are valuable because they demonstrate the efficacy

of existing ICI and anti-PVRIG antibody combination therapy.

5.2.5 Breast cancer
Triple-negative breast cancer (TNBC), which accounts for 15-

20% of all breast cancers, is one of the most promising cancers for

immunotherapy (134). In the past, chemotherapy was the only

option, but now, many anti-PD-1/PD-L1 and anti-CTLA4

antibodies are FDA-approved and used in clinical practice (134).

However, their efficacy is still far from satisfactory, and there is a

need for further development of immunotherapy.

In breast cancer patients, high PVR expression is associated with

poor prognosis (135–137). In examining PVR expression and NK cell

infiltration by IHC, PVR expressed on the plasma membrane

strongly correlates with the tumor-infiltrating NK cells (138). PVR

expression is also associated with a mesenchymal phenotype (135).

PVR secreted by Brain metastasis cancer-associated fibroblasts has

been shown to enhance the invasive potential of cancer cells (139).

Serum-soluble PVR levels correlate with risk factors for breast cancer

(140). In addition, TIGIT expression correlates with age and

histologic grade in triple-negative breast cancer (141) and correlates

with poor prognosis in invasive breast cancer (142). Single-cell RNA

sequencing analysis suggests that the PVRL2-TIGIT pathway

promotes immune escape and lymph node metastasis (143, 144).

In vitro analysis showed that blockade of PVRIG or TIGIT

increased the number of IFN-g-producing NK cells under co-

culture of breast cancer cells, and the combination of anti-PVRIG

and anti-TIGIT antibodies induced a further increase in IFN-g-
producing NK cells and improved cytotoxicity of NK cells (145).

Although the direct relationship to immune mechanisms is unclear,

the knockdown of PVR also induced mesenchymal-epithelial

transition of TNBC cells, inhibited TNBC cell migration,

invasion, and metastasis in vitro and in vivo, and inhibited TNBC

cell growth and survival (135).

5.2.6 Melanoma
Melanoma is one of the most immunogenic tumors (90). Indeed,

the development of immunotherapy has revolutionized the treatment

of melanoma (146). Nevertheless, there is a need for different

therapeutic strategies, as many cases do not respond to existing

ICIs or become resistant to treatment at an early phase (146).

PVR is overexpressed in melanomas compared to melanocytes

and benign nevi and correlates with known poor prognostic factors

(147). Tumors with high PVR expression before treatment have a

higher proportion of PD-1+ CD8+ T cells, which correlates with a

lower response to anti-PD-1 and anti-PD-1/CTLA4 combination

therapy (148).

PVR is a vital ligand recognized by DNAM1 in inhibiting NK

cell-mediated melanoma metastasis (149). In vivo, soluble PVR

inhibits DNAM1-mediated NK cell cytotoxic activity and promotes

melanoma lung metastasis (150). TIGIT has also been well studied

in melanoma and has been shown to regulate cytotoxic responses of

T cells via the TIGIT-PVR pathway (85, 151). Analysis of tumor cell
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lines and paired TILs from ICI-treated melanoma patients showed

high expression of PVR, TIGIT ligand, and TIGIT in tumor cell

lines and tumor-infiltrating T cells, respectively, and functional

assays showed that TIGIT blockade or PVR deletion activated T

cells (10.1136/jitc-2021-003134). PVR expression was increased in

surviving tumor cells after co-culture with TILs from the responder

and inhibited TIGIT+ T cell activation (152). The combination of

IL15 and TIGIT blockade has also been shown to restore the

cytotoxicity of NK cells mediated by PVR (153).

5.2.7 Prostate cancer
Prostate cancer has low immunogenicity and a suppressive

tumor immune microenvironment (154). Therefore, anti-PD-1/

PD-L1 and anti-CTLA4 antibodies have minimal efficacy (154).

In castration-resistant prostate cancer, blocking the TIGIT/PVR

pathway with an anti-TIGITmonoclonal antibody has been shown to

enhance the antitumor effect of NK cells (155). In addition, there are

reports on the expression of PVR and PVRL2 in many other cancers.

The expression of PVR has been reported as a poor prognostic factor

in head and neck cancer (156), esophageal cancer (157), lung cancer

(84, 158–160), and bladder cancer (161, 162). In cervical cancer, PVR

expression increases as cervical lesions progress (163). It has also been

reported that miRNAs regulate PVR expression in lung

adenocarcinomas (164). It has also been shown that PVRL2

expression is a poor prognostic factor in gallbladder cancer (165)

or glial tumors of the brain (166). PVRL2 is highly expressed in

esophageal squamous cell carcinoma and is associated with

advanced-stage and histologic differentiation (167). It has also been

shown that decreased PVR expression induces cell apoptosis and

inhibits tumor cell growth by inhibiting PI3K/Akt and MAPK

signaling pathways (168). However, none of these reports have

directly demonstrated a role for PVRL2 or PVR in tumor

immune mechanisms.
5.3 Hematologic tumor

5.3.1 Acute myeloid leukemia
TIGIT, PVR, and PVRL2 are highly expressed in AML patients,

and high expression of PVR and PVRL2 correlates with poor

prognosis (169–171). In vitro, inhibition of PVR2 or PVR with

antibodies has a higher therapeutic effect on AML cell lines (170).

Knockdown of TIGIT also restores CD8+ T cell dysfunction (169).

There are reports that PVRIG is expressed in NK cells of AML

patients (172) and that DNAM1 is highly expressed in AML and is a

prognostic factor (173).

5.3.2 Lymphoma
In cutaneous T-cell lymphoma (CTCL), PVR is highly

expressed in tumor cells (174). It is interesting to note that the

expression of DNAM1 on NK cells and CD8+ cells in the peripheral

blood of CTCL patients was decreased, while DNAM1 levels in the

serum were increased, strongly reflecting disease activity, suggesting

that soluble DNAM1 in the serum was generated by the shedding of

membrane-form DNAM1 (174).
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6 Therapeutic applications and
clinical trials

The front runner in therapies targeting the DNAM1 axis is an

anti-TIGIT antibody. Several mechanisms have been proposed for

the immunosuppressive mechanism of TIGIT: cell-extrinsic

mechanisms include the interaction of TIGIT with PVR, which

has been shown to regulate cytokine production by DCs and affect T

cell activity (44). Cell-intrinsic mechanisms are also thought to be

involved, and agonistic anti-TIGIT mAbs have been shown to

inhibit human and mouse T cell proliferation and cytokine

production via anti-CD3/anti-CD28 mAbs in the absence of

antigen-presenting cells (47). Thus, TIGIT blockade may inhibit

these mechanisms and activate T cell cytotoxicity. Since the

introduction of anti-TIGIT antibodies in 2018 (175), many

clinical trials are ongoing (10). TIGIT and PD-1 can be co-

expressed in tumor-infiltrating lymphocytes, and inhibition of

both checkpoint pathways leads to greater activation of CD8+ T

cell effector functions (53). Therefore, the efficacy of combination

therapy with anti-TIGIT and anti-PD-1/PD-L1 antibodies is also

very promising. In non-small cell lung cancer, a phase II trial of

anti-TIGIT antibody (tiragorumab) plus anti-PD-L1 antibody

(atezolizumab) demonstrated an objective response rate of 31.3%

vs. 16.2%, compared with placebo plus atezolizumab. Median

progression-free survival was 5.4 months (95% CI: 4.2-not

estimable) vs. 3.6 months (2.7-4.4) for placebo plus atezolizumab

(176). Several phase III clinical trials are currently underway for

anti-TIGIT antibodies. Although in the preclinical stage, the

usefulness of TIGIT and PD-1 chimeric immune-checkpoint

switch receptors has also been reported (177).

A highly reactive anti-PVRIG drug known as COM701 is in its

first clinical trial phase (178). The combination of COM701 and

COM902, an anti-TIGIT monoclonal antibody, has shown good

antitumor effects in vivo and is expected to have clinical

applications (179).

A clinical trial of DNAM1 agonist for solid tumors was also

underway, but this study was terminated due to a strategic business

decision made by the company (180).

The anti-PVRL2 monoclonal antibody has also been shown to

exert anti-tumor effects by antibody-dependent cellular cytotoxicity

in vitro or in vivo (81). Antibody-drug conjugates targeting PVRL2

therapeutically have also been shown to exert antitumor effects in a

mouse xenograft model (181), and Fc2-modified anti-PVRL2

antibodies have been shown to exert antitumor effects with

controlled adverse effects in monkeys (182). There is also a report

that Bispecific anti-CD3 x anti-CD155 antibody is effective against

hematologic cancers (183), which is an interesting new direction.

Clinical trials of PVSRIPO in patients with recurrent malignant

glioblastomas (184) and unresectable melanoma treated with
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intratumoral PVSRIPO (185) have all shown promising results.

Still, these are direct effects on the tumor cells.
7 Conclusions

Among the Nectin and Necl family members, PVRL2 and PVR

are critical players in tumor immunity, and immune checkpoint

pathways mediated by them are potential therapeutic targets.

However, the antitumor effects mediated by PVRL2, PVR, and

other DNAM1 axis members remain to be elucidated and require

further study.
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