
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Ping Yuan,
Tongji University, China

REVIEWED BY

Lan Jiang,
First Affiliated Hospital of Wannan Medical
College, China
Wei Tan,
Shandong Second Medical University, China
Qun Zhao,
Fourth Hospital of Hebei Medical University,
China

*CORRESPONDENCE

Wen Gu

guwen@xinhuamed.com.cn

Xuejun Guo

guoxuejun@xinhuamed.com.cn

†These authors have contributed equally to
this work

RECEIVED 31 May 2024

ACCEPTED 05 July 2024
PUBLISHED 24 July 2024

CITATION

Qin Q, Yu H, Zhao J, Xu X, Li Q, Gu W and
Guo X (2024) Machine learning-based
derivation and validation of three immune
phenotypes for risk stratification and
prognosis in community-acquired
pneumonia: a retrospective cohort study.
Front. Immunol. 15:1441838.
doi: 10.3389/fimmu.2024.1441838

COPYRIGHT

© 2024 Qin, Yu, Zhao, Xu, Li, Gu and Guo. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 24 July 2024

DOI 10.3389/fimmu.2024.1441838
Machine learning-based
derivation and validation of
three immune phenotypes for
risk stratification and prognosis
in community-acquired
pneumonia: a retrospective
cohort study
Qiangqiang Qin1†, Haiyang Yu1†, Jie Zhao2†, Xue Xu1,
Qingxuan Li3, Wen Gu1* and Xuejun Guo1*

1Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiaotong University School of
Medicine, Shanghai, China, 2Department of Hematology, Xinhua Hospital, Shanghai Jiaotong
University School of Medicine, Shanghai, China, 3Department of Respiratory and Critical Care
Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
Background: The clinical presentation of Community-acquired pneumonia

(CAP) in hospitalized patients exhibits heterogeneity. Inflammation and

immune responses play significant roles in CAP development. However,

research on immunophenotypes in CAP patients is limited, with few machine

learning (ML) models analyzing immune indicators.

Methods: A retrospective cohort study was conducted at Xinhua Hospital,

affiliated with Shanghai Jiaotong University. Patients meeting predefined

criteria were included and unsupervised clustering was used to identify

phenotypes. Patients with distinct phenotypes were also compared in different

outcomes. By machine learning methods, we comprehensively assess the

disease severity of CAP patients.

Results: A total of 1156 CAP patients were included in this research. In the

training cohort (n=809), we identified three immune phenotypes among

patients: Phenotype A (42.0%), Phenotype B (40.2%), and Phenotype C (17.8%),

with Phenotype C corresponding to more severe disease. Similar results can be

observed in the validation cohort. The optimal prognostic model, SuperPC,

achieved the highest average C-index of 0.859. For predicting CAP severity,

the random forest model was highly accurate, with C-index of 0.998 and 0.794 in

training and validation cohorts, respectively.
Abbreviations: CAP, Community-acquired pneumonia; ML, Machine learning; SCAP: Severe community-

acquired pneumonia; MV, mechanical ventilation; IRVS, intensive respiratory or vasopressor support; IDSA,

Infectious Diseases Society of America; ATS, American Thoracic Society; ARDS, Acute respiratory distress

syndrome; t-SNE, t-distributed Stochastic Neighbor Embedding; PCA, Principal Component Analysis;

UMAP, Uniform Manifold Approximation and Projection; CDF, Cumulative distribution function; ROC,

Receiver Operating Characteristic; IRB, Institutional Review Board; ARDS, Acute Respiratory Distress

Syndrome; RCT, Randomized Controlled Trial.
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Conclusion: CAP patients can be categorized into three distinct immune

phenotypes, each with prognostic relevance. Machine learning exhibits

potential in predicting mortality and disease severity in CAP patients by

leveraging clinical immunological data. Further external validation studies are

crucial to confirm applicability.
KEYWORDS

community-acquired pneumonia, immune phenotype, machine learning, unsupervised
clustering, risk stratification
Introduction

Community-acquired pneumonia (CAP) is an acute parenchymal

lung infection caused by a variety of microorganisms outside the

hospital. Despite advancements in rapid diagnostic testing, novel

treatment options, and vaccine development, CAP continues to be

one of the predominant causes of hospitalization, morbidity, and

mortality globally (1). Severe community-acquired pneumonia

(SCAP) is presently defined as the condition of patients requiring

admission to the Intensive Care Unit (ICU) for mechanical ventilation

(MV) or intensive respiratory or vasopressor support (IRVS) (2).

Among 7,449 patients enrolled in the United States between 2014 and

2016, the 30-day mortality rate for SCAP was 6% (3). Consequently,

the prompt identification and immediate management of SCAP are

crucial for reducing its mortality rate. Presently, numerous methods

are employed to evaluate the severity of CAP, primarily relying on

established scores and guidelines. Nonetheless, these methods exhibit

multiple limitations that impede their utility as clinical decision

support tools (4–6).

In recent decades, machine learning (ML) algorithms have

shown better performance in predicting various diseases or

clinical conditions. Research has consistently illustrated the

efficacy of ML in managing critically ill patients by predicting

length of stay, risk of ICU readmission, and mortality rates.

Recently, Jeon Et al. established that ML models significantly

outperform traditional severity-of-illness scoring systems in

predicting ICU mortality among patients with severe pneumonia

(7). Xu et al. found that the ML model based on available clinical

features is feasible and effective in predicting adverse outcomes such

as mortality inCAP patients and ICU admission (8).

The clinical manifestations of CAP are highly variable. As a

result, patients with CAP who are hospitalized present with a wide

range of clinical symptoms, vital signs, and laboratory findings.

Previously, Stefano Aliberti et al. divided patients into three

different clinical phenotypes based on the presence or absence of

acute respiratory failure and severe sepsis at admission, which

showed significant differences in mortality (9). As infections

advance, a range of resident and mobilized immune cells are

activated to combat the invading pathogens. Research indicates that
02
both the inflammatory response and immune regulation are pivotal

in the pathogenesis of SCAP and acute respiratory distress syndrome

(ARDS) (10). However, to date, limited studies have explored the

immune phenotypes associated with CAP and their correlation with

patient clinical outcomes. Therefore, we hypothesize that distinct

clusters of characteristics present in CAP patients at admission may

form identifiable subgroups or phenotypes, potentially signaling

disparate prognoses for the illness and serving a vital function in

the early detection of SCAP. This study sought to ascertain if immune

phenotypes in patients with CAP can be identified using

immunological data, to evaluate their correlation with prognosis,

and to predict the likelihood of SCAP.
Methods

Study design

In this research, electronic health records of patients diagnosed

with CAP admitted to the Respiratory and Critical Care department

of Xin Hua Hospital Affiliated to Shanghai Jiao Tong University

School of Medicine between January 1, 2020 and October 31, 2023

were retrospectively collected. All patients incorporated in this

research were required to meet the diagnostic criteria of CAP and

to have blood samples collected within the first 24 hours of

admission. However, the study excluded patients who met any of

the following exclusion criteria: (1) age under 18 years; (2) diagnosis

of an autoimmune or hematologic malignancy; (3) a subsequent

diagnosis of conditions such as pulmonary tuberculosis or

idiopathic pulmonary fibrosis; and (4) those who declined further

treatment or were transferred to another hospital. (see Figure 1,

Supplementary Figure S1 for details). Additionally, in this study, we

exclusively consider data from the initial hospital admission for

individuals who experienced multiple admissions (11). Vital signs

(heart rate, systolic blood pressure and diastolic blood pressure,

temperature, respiratory rate and mentation), demographic

information(age, sex, height, weight), laboratory indicators(WBC,

Neutrophil cell count, IgA, IgE, IgM, IL-6, IL-8, CD3, CD4, CD8,

etc.) were collected within 24h after admission, and other variables
frontiersin.org
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(days from symptom onset, chief complaint, length of stay,

application of assisted ventilation, and clinical outcome) were also

extracted after patients discharged. Upon applying our predefined

inclusion and exclusion criteria, we successfully enrolled a cohort of

1,165 eligible patients for this study.
Candidate variables for clustering
and phenotyping

Patients were randomly allocated to the training and validation

cohorts in a ratio of 7:3 to ensure reproducibility and consistency in

the modeling outcomes (12). And a meticulously curated dataset

comprising various laboratory indicators has been compiled for this

analysis. When addressing missing values, we employed two

distinct strategies. For variables with less than 20% missing data,

imputation was performed using the Multivariate Imputation by

Chained Equations (MICE) package (13). Conversely, variables

with 20% or more missing data were excluded entirely to preserve

the integrity and robustness of the study (14). This methodological

approach refined our dataset to encompass 79 laboratory indicators.
Frontiers in Immunology 03
Moreover, given the study’s emphasis on exploring the immune

phenotype of community-acquired pneumonia, we cumulatively

identified 31 immunological laboratory variables as the focal point

for clustering analysis. To identify commonalities among different

patients based on laboratory examinations, we applied the

unsupervised ‘consensus clustering’ algorithm within the training

cohort to ascertain the optimal number of clusters. Subsequently,

we corroborated the findings in both the validation cohort and the

meta-cohort. Additionally, to verify the integrity of the clustering

process, our dataset underwent analysis using the NBclust (15)

clustering algorithm. Additionally, we employed an alluvial plot to

visualize the discrepancies between conventional grading systems

and our machine learning approach. Lastly, we presented chord

diagrams to illustrate the associations between laboratory indicators

and clinical immune phenotypes.
Definitions and clinical outcomes

CAP patients were classified into three distinct immune

phenotypes (Phenotype A, Phenotype B, and Phenotype C).
FIGURE 1

The flowchart of this research.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1441838
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qin et al. 10.3389/fimmu.2024.1441838
Utilizing prior knowledge and clinical expertise, indicators such as

the necessity for mechanical ventilation, admission to the intensive

care unit, or mortality due to the disease were employed as

surrogate markers of SCAP in this investigation. The primary

outcome was the in-hospital mortality rate. Secondary outcomes

included the 28-day mortality rate, the likelihood of progressing to

severe pneumonia, length of stay, days of ventilation, days in the

ICU, ICU-free days, and the probability of respiratory support.

Upon stratification of pneumonia patients into three immune

phenotypes, we assessed differences in all-cause in-hospital

mortality rates across the meta, training, and validation cohorts.

Simultaneously, we examined the 28-day mortality rate and the

risk of severe disease progression within these cohorts. This

approach facilitated a detailed evaluation of mortality outcomes

associated with different immune phenotypes in community-

acquired pneumonia.
Integrated machine learning based model
construction and evaluation

To assess the predictive performance of machine learning (ML)

methods based on Zaoqu liu’s framework (16), nine algorithms

were employed for patient prognosis prediction in both the training

and validation cohorts. The model with the highest average

concordance index (C-index) across these cohorts will be

considered the most effective. Additionally, this study expanded

its methodology to include thirteen ML algorithms for forecasting

the risk of severity in CAP patients, specifically: Lasso, Ridge, Elastic

Net (Enet), Stepwise GLM (Stepglm), Support Vector Machine

(SVM), Gradient Boosting Machine (GBM), Linear Discriminant

Analysis (LDA), Partial Least Squares and Logistic Regression

Model (plsRglm), Random Forest, and Naive Bayes (17–19).

Consistently, the model that exhibits superior performance across

both cohorts will be identified as the optimal model. To guarantee

the robustness and reliability of our models, we meticulously

selected only those comprising more than five variables. This

strategy enabled clinicians to concentrate on the most informative

and stable combinations of predictors. Moreover, we incorporated

the publicly accessible dataset GSE188309 (20), which concentrates

on community-acquired pneumonia, into our analysis to ascertain

potential immune infiltration from a transcriptomic perspective.
Association between clinical immune
phenotype and traditional scoring system

Generally, CURB-65 and PSI scoring systems were frequently

utilized in clinical settings to evaluate the severity of pneumonia

patients with CAP. However, recent studies have highlighted

significant limitations within these systems (21, 22). In response,

we developed a model utilizing machine learning techniques and

evaluated its predictive accuracy using the Receiver Operating

Characteristic (ROC) curve, in comparison to traditional

scoring systems.
Frontiers in Immunology 04
Statistical analysis

In this study, the Shapiro-Wilk test was utilized to assess the

normality of continuous variables prior to the formal analysis. For

comparisons, the Mann–Whitney U-test was applied to non-

normally distributed continuous variables, while the Student’s t-

test was used for those with a normal distribution, as appropriate.

For categorical variables, the Kruskal-Wallis test or the Chi-square

test was employed where relevant. Continuous variables were

presented as mean ± SD for normally distributed data and as

median (interquartile range, IQR) for non-normally distributed

data. Categorical variables were reported as frequencies and

percentages. All data generation, processing, statistical analyses,

and plotting were performed using R software version 4.2.0. A p-

value of less than 0.05 was considered statistically significant,

although this was not explicitly mentioned in the report.
IRB statement

Approval was obtained from the Institutional Review Board

(IRB) of Xinhua Hospital, Shanghai Jiao Tong University School of

Medicine, Shanghai, China, and a waiver of consent was granted

because the study used electronic medical record data and blood test

results from normal clinical visits (Approval Number: XHEC-C-

2024-026-1; Approval Date: 2024-03-19; Study Title: Clinical Study

Based on Comprehensive Multi-omics Analysis of Peripheral Blood

for Community Acquired Pneumonia). All procedures were

followed in accordance with the IRBs standards on human

experimentation and the Helsinki Declaration of 1975.
Results

Baseline characteristics of CAP patients

This study reviewed the records of 12,000 individuals

discharged from the Respiratory Department of Xinhua Hospital

between January 1, 2020, and October 31, 2023. Of these, 1,379 were

diagnosed with CAP. Following the application of exclusion criteria,

223 patients were omitted from the study. Consequently, a cohort of

1,156 CAP patients was established for inclusion in the research.

Patients were allocated into two groups: a training cohort consisting

of 809 patients and a validation cohort of 347 patients, using a

randomization ratio of 7:3. Table 1 presents the baseline

characteristics of the combined meta-cohort, along with those of

the training and validation cohorts separately. Among the

participants, 8 required treatment with an invasive ventilator, 96

received non-invasive ventilation, and 46 underwent therapy with

high-flow nasal cannula. In this study, 53 patients succumbed to

their conditions, while 239 required admission to the intensive care

unit. The median hospital stay for the meta cohort was 9 days, with

an interquartile range (IQR) of 7–14 days. The three most frequent

symptoms among the patients were cough (76%, n=880), fever

(54%, n=626), and sputum production (52%, n=600). Consistent
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1441838
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qin et al. 10.3389/fimmu.2024.1441838
TABLE 1 Characteristics of the study population and outcomes of community acquired pneumonia patients.

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Demographics

Sex, n (%) 0.715

Female 492 (43) 151 (44) 341 (42)

Male 664 (57) 196 (56) 468 (58)

Age (years), median (IQR) 65 (54, 73) 66 (58, 73) 65 (53, 73) 0.534

Height (cm), median (IQR) 166 (160, 172) 167 (160, 173) 166 (160, 172) 0.783

Weight (kg), median (IQR) 64 (56, 73) 64.75 (57, 73.08) 64 (55, 73) 0.356

Mentation, n (%) 0.721

1 1141 (99) 343 (99) 798 (99)

2 4 (0) 1 (0) 3 (0)

3 5 (0) 2 (1) 3 (0)

4 2 (0) 0 (0) 2 (0)

5 1 (0) 0 (0) 1 (0)

6 0 (0) 0 (0) 0 (0)

7 2 (0) 0 (0) 2 (0)

8 1 (0) 1 (0) 0 (0)

Vital signs

Fever peak, median (IQR) 38.1 (37.3, 39) 38 (37.3, 39) 38.1 (37.3, 39) 0.661

Temperature admission, median (IQR) 37 (36.6, 37.7) 37 (36.7, 37.7) 37 (36.6, 37.7) 0.568

Tmax during the course, median (IQR) 37.4 (37.1, 38) 37.3 (37.05, 38) 37.4 (37.1, 38) 0.405

Heart rate, median (IQR) 92 (83, 101) 90 (82, 101) 92 (83, 101) 0.202

Respiration Rate, median (IQR) 20 (18, 20) 20 (19, 20) 20 (18, 20) 0.204

Systolic blood pressure, median (IQR) 132 (120, 149) 131 (120, 148.75) 133 (120, 149) 0.684

Diastolic blood pressure, median (IQR) 79 (71, 87) 79 (72, 86) 78 (70, 88) 0.762

CURB-65 score, n (%) 0.883

0 452 (39) 130 (37) 322 (40)

1 444 (38) 137 (39) 307 (38)

2 222 (19) 70 (20) 152 (19)

3 37 (3) 10 (3) 27 (3)

4 1 (0) 0 (0) 1 (0)

PSI score, median (IQR) 70 (53, 89) 71 (54, 88) 69 (52, 90) 0.274

Chief Complaint

Cough, n (%) 0.339

No 276 (24) 76 (22) 200 (25)

Yes 880 (76) 271 (78) 609 (75)

Sputum, n (%) 0.281

No 556 (48) 158 (46) 398 (49)

Yes 600 (52) 189 (54) 411 (51)

(Continued)
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Chief Complaint

Chest Pain, n (%) 0.792

No 1081 (94) 326 (94) 755 (93)

Yes 75 (6) 21 (6) 54 (7)

Dyspnea, n (%) 0.469

No 874 (76) 257 (74) 617 (76)

Yes 282 (24) 90 (26) 192 (24)

Chest Tightness, n (%) 0.329

No 1025 (89) 313 (90) 712 (88)

Yes 131 (11) 34 (10) 97 (12)

Fever, n (%) 0.661

No 530 (46) 163 (47) 367 (45)

Yes 626 (54) 184 (53) 442 (55)

Fatigue, n (%) 0.364

No 1112 (96) 337 (97) 775 (96)

Yes 44 (4) 10 (3) 34 (4)

Consciousness Disorder, n (%) 0.207

No 1149 (99) 343 (99) 806 (100)

Yes 7 (1) 4 (1) 3 (0)

Difficulty Breathing, n (%) 0.706

No 1128 (98) 340 (98) 788 (97)

Yes 28 (2) 7 (2) 21 (3)

Hemoptysis, n (%) 0.364

No 1112 (96) 337 (97) 775 (96)

Yes 44 (4) 10 (3) 34 (4)

Comorbidity

Respiratory system

COPD, n (%) 0.537

No 1007 (87) 306 (88) 701 (87)

Yes 149 (13) 41 (12) 108 (13)

Bronchiectasis, n (%) 0.602

No 1088 (94) 329 (95) 759 (94)

Yes 68 (6) 18 (5) 50 (6)

Emphysema bullae, n (%) 1

No 1105 (96) 332 (96) 773 (96)

Yes 51 (4) 15 (4) 36 (4)

Pulmonary hypertension, n (%) 0.842

No 1126 (97) 337 (97) 789 (98)

Yes 30 (3) 10 (3) 20 (2)

(Continued)
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Respiratory system

Lung cancer, n (%) 0.602

No 1097 (95) 327 (94) 770 (95)

Yes 59 (5) 20 (6) 39 (5)

PE, n (%) 0.379

No 1116 (97) 338 (97) 778 (96)

Yes 40 (3) 9 (3) 31 (4)

Asthma, n (%) 0.188

No 1108 (96) 328 (95) 780 (96)

Yes 48 (4) 19 (5) 29 (4)

OSAHS, n (%) 0.225

No 1110 (96) 329 (95) 781 (97)

Yes 46 (4) 18 (5) 28 (3)

Bronchitis, n (%) 1

No 1136 (98) 341 (98) 795 (98)

Yes 20 (2) 6 (2) 14 (2)

Cardiovascular system

Hypertension, n (%) 0.107

No 689 (60) 194 (56) 495 (61)

Yes 467 (40) 153 (44) 314 (39)

Atrial fibrillation, n (%) 0.08

No 1086 (94) 333 (96) 753 (93)

Yes 70 (6) 14 (4) 56 (7)

Coronary heart disease, n (%) 1

No 1026 (89) 308 (89) 718 (89)

Yes 130 (11) 39 (11) 91 (11)

Arrhythmia, n (%) 0.015

No 1005 (87) 315 (91) 690 (85)

Yes 151 (13) 32 (9) 119 (15)

Heart failure, n (%) 0.694

No 994 (86) 301 (87) 693 (86)

Yes 162 (14) 46 (13) 116 (14)

Digestive system

Liver dysfunction, n (%) 1

No 992 (86) 298 (86) 694 (86)

Yes 164 (14) 49 (14) 115 (14)

Gastric cancer, n (%) 1

No 1146 (99) 344 (99) 802 (99)

Yes 10 (1) 3 (1) 7 (1)

(Continued)
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Digestive system

Colorectal cancer, n (%) 0.132

No 1138 (98) 345 (99) 793 (98)

Yes 18 (2) 2 (1) 16 (2)

Esophageal cancer, n (%) 0.33

No 1151 (100) 347 (100) 804 (99)

Yes 5 (0) 0 (0) 5 (1)

Hepatitis, n (%) 0.163

No 1151 (100) 344 (99) 807 (100)

Yes 5 (0) 3 (1) 2 (0)

Urinary system

Renal Insufficiency, n (%) 0.163

No 1076 (93) 329 (95) 747 (92)

Yes 80 (7) 18 (5) 62 (8)

Urological tumors, n (%) 0.573

No 1141 (99) 344 (99) 797 (99)

Yes 15 (1) 3 (1) 12 (1)

Kidney Stones, n (%) 0.473

No 1125 (97) 340 (98) 785 (97)

Yes 31 (3) 7 (2) 24 (3)

Endocrine system

Diabetes, n (%) 0.065

No 904 (78) 259 (75) 645 (80)

Yes 252 (22) 88 (25) 164 (20)

Nervous system

Senile dementia, n (%) 0.465

No 1147 (99) 343 (99) 804 (99)

Yes 9 (1) 4 (1) 5 (1)

Cerebral infarction, n (%) 1

No 1056 (91) 317 (91) 739 (91)

Yes 100 (9) 30 (9) 70 (9)

PD, n (%) 1

No 1144 (99) 344 (99) 800 (99)

Yes 12 (1) 3 (1) 9 (1)

History of mlignancy, n (%) 0.572

No 1042 (90) 309 (89) 733 (91)

Yes 114 (10) 38 (11) 76 (9)

(Continued)
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Full Blood Count

Hemoglobin (g/L), median (IQR) 125 (113, 135) 125 (116, 135.5) 125 (112, 135) 0.284

Neutrophil percent (%), median (IQR) 69 (58.9, 80.6) 69.8 (58.4, 80.3) 68.6 (59.3, 80.8) 0.789

Neutrophil count (*10^9/L), median (IQR) 4.43 (3.18, 6.75) 4.32 (3.1, 6.78) 4.46 (3.23, 6.72) 0.683

MCV (fl), median (IQR) 90.7 (88.3, 94) 90.8 (88.5, 93.95) 90.7 (88.1, 94) 0.435

MCH (pg), median (IQR) 30.3 (29.1, 31.4) 30.4 (29.3, 31.45) 30.2 (29.1, 31.4) 0.225

MCHC (g/L), median (IQR) 333 (325, 340) 334 (325, 341) 332 (325, 340) 0.295

MPV (fl), median (IQR) 9.4 (8.6, 10.2) 9.5 (8.7, 10.4) 9.3 (8.6, 10.2) 0.278

WBC Count (*10^9/L), median (IQR) 6.66 (5.18, 8.77) 6.61 (5.18, 8.62) 6.7 (5.18, 8.81) 0.925

Lymphocyte percent (%), median (IQR) 20.4 (11.6, 30) 20.1 (11.9, 29.65) 20.5 (11.2, 30) 0.86

Lymphocyte count (*10^9/L), median (IQR) 1.3 (0.86, 1.78) 1.34 (0.86, 1.78) 1.29 (0.87, 1.78) 0.481

Eosinophil percent (%), median (IQR) 1.5 (0.5, 2.9) 1.5 (0.5, 2.9) 1.5 (0.5, 2.8) 0.75

Monocyte percent (%), median (IQR) 6.7 (5.2, 8.53) 6.7 (5.2, 8.55) 6.8 (5.2, 8.5) 0.942

Monocyte count (*10^9/L), median (IQR) 0.44 (0.33, 0.61) 0.44 (0.32, 0.62) 0.44 (0.33, 0.61) 0.885

RDW (%), median (IQR) 13 (12.5, 13.6) 12.9 (12.4, 13.5) 13 (12.5, 13.6) 0.148

Arterial Blood Gas

HCO3 (mmol/L), median (IQR) 25.4 (23.3, 27.4) 25.5 (23.35, 27.4) 25.3 (23.3, 27.3) 0.513

HCO3std (mmol/L), median (IQR) 25.3 (23.7, 26.9) 25.4 (23.7, 26.85) 25.2 (23.7, 26.9) 0.72

pCO2 (kPa), median (IQR) 5.21 (4.72, 5.66) 5.23 (4.75, 5.66) 5.21 (4.7, 5.65) 0.352

pH, median (IQR) 7.42 (7.4, 7.45) 7.42 (7.4, 7.45) 7.42 (7.4, 7.45) 0.996

pO2 (kPa), median (IQR) 11.95 (10.3, 14.6) 11.7 (10.1, 14.15) 12.1 (10.5, 14.7) 0.061

TCO2 (mmol/L), median (IQR) 49.9 (44.98, 54.4) 50.1 (45.5, 54.45) 49.8 (44.7, 54.4) 0.556

Glu (mmol/L), median (IQR) 5.28 (4.66, 6.66) 5.3 (4.69, 6.76) 5.26 (4.64, 6.64) 0.264

Renal Function

Cr (umol/L), median (IQR) 60 (51, 73) 58.8 (50, 72) 60 (51, 74) 0.141

BUN (mmol/L), median (IQR) 5.2 (4.02, 7) 5.2 (4.02, 7) 5.2 (4.02, 6.99) 0.963

GFR (mL/min per1.75m^2), median (IQR) 104.72 (84.94, 125.35) 106.05 (87.31, 125.96) 104.37 (84.2, 124.44) 0.522

UA (umol/L), median (IQR) 269 (213, 338) 264 (217, 313.5) 269 (210, 345) 0.354

ACE (U/L), median (IQR) 23.5 (17.28, 30.2) 23.4 (17, 29.9) 23.6 (17.5, 30.5) 0.97

Blood lipids

LDL-C (mmol/L), median (IQR) 2.41 (1.89, 2.97) 2.53 (1.94, 3.08) 2.38 (1.87, 2.95) 0.05

TG (mmol/L), median (IQR) 1.04 (0.77, 1.41) 1.08 (0.79, 1.43) 1.02 (0.76, 1.4) 0.303

ApoE (mg/dL), median (IQR) 3.6 (2.9, 4.6) 3.7 (2.9, 4.5) 3.6 (2.9, 4.7) 0.846

Coagulation

D-Dimer (mg/L), median (IQR) 0.61 (0.34, 1.16) 0.61 (0.32, 1.14) 0.61 (0.34, 1.17) 0.513

TT (s), median (IQR) 13.7 (12.8, 14.7) 13.8 (12.8, 14.65) 13.7 (12.8, 14.8) 0.773

APTT (s), median (IQR) 11.9 (11, 12.9) 11.8 (11, 12.9) 11.9 (11.1, 13) 0.31

INR, median (IQR) 1.05 (0.97, 1.14) 1.04 (0.97, 1.14) 1.05 (0.97, 1.15) 0.346

PTT (s), median (IQR) 30.9 (28.5, 33.4) 30.5 (28.05, 32.95) 31.1 (28.7, 33.6) 0.024
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Coagulation

ATA (%), median (IQR) 83 (72, 93) 84 (71.5, 95) 83 (72, 93) 0.258

Inflammatory Cytokine

IL-10 (pg/mL), median (IQR) 5 (5, 5) 5 (5, 5) 5 (5, 5) 0.085

IL-1B (pg/mL), median (IQR) 5 (5, 9.76) 5 (5, 9.93) 5 (5, 9.72) 0.874

IL-2R (U/mL), median (IQR) 573.5 (409, 880.5) 569 (397, 851) 582 (412, 899) 0.218

IL-6 (pg/mL), median (IQR) 6.97 (3.09, 19.2) 6.83 (2.91, 18.4) 7.18 (3.18, 19.4) 0.553

IL-8 (pg/mL), median (IQR) 26.3 (14.67, 62.12) 28.2 (14.8, 66.35) 25.6 (14.4, 61) 0.628

TNF-a (pg/mL), median (IQR) 14.65 (8.97, 28.52) 14.9 (9.14, 29.6) 14.6 (8.91, 28.4) 0.441

IgG4 (g/L), median (IQR) 0.5 (0.26, 0.9) 0.48 (0.25, 0.86) 0.5 (0.27, 0.93) 0.541

Electrolytes

P (mmol/L), median (IQR) 1.08 (0.93, 1.22) 1.08 (0.95, 1.21) 1.07 (0.92, 1.22) 0.394

Cl (mmol/L), median (IQR) 105 (102, 107) 105 (102, 107) 105 (102, 107) 0.554

Mg (mmol/L), median (IQR) 0.92 (0.85, 0.97) 0.92 (0.85, 0.97) 0.92 (0.85, 0.98) 0.356

Potassium (mmol/L), median (IQR) 3.96 (3.69, 4.21) 3.95 (3.69, 4.19) 3.96 (3.68, 4.22) 0.748

Ca (mmol/L), median (IQR) 2.08 (1.99, 2.16) 2.09 (1.99, 2.15) 2.08 (1.99, 2.16) 0.969

Sodium (mmol/L), median (IQR) 139 (136, 141) 139 (136, 141) 139 (136, 141) 0.277

Inflammation Measurements

CRP (mg/L), median (IQR) 24 (4, 76) 21 (3, 68.5) 25 (4, 78) 0.261

PCT(ng/mL), median (IQR) 0.05 (0.04, 0.15) 0.05 (0.04, 0.14) 0.05 (0.04, 0.15) 0.149

ESR (mm/h), median (IQR) 41.5 (21, 70) 42 (21, 70) 41 (21, 69) 0.875

Myocardial Enzyme

CK-MB (U/L), median (IQR) 5 (3, 7) 5 (3.1, 8) 5 (3, 7) 0.983

cTnI (ng/ml), median (IQR) 0.01 (0, 0.01) 0.01 (0, 0.01) 0.01 (0, 0.01) 0.291

CK (U/L), median (IQR) 63 (41, 99.25) 58 (41, 88) 65 (41, 103) 0.123

a-HBDH (U/L), median (IQR) 142 (113.75, 173) 141 (114.5, 173) 142 (113, 173) 0.711

LDH (U/L), median (IQR) 212 (176, 264) 214 (176, 262) 211 (176, 264) 0.702

Cell immunity

CD3T (%), median (IQR) 70.5 (62.97, 77.29) 69.95 (61.91, 77.15) 70.67 (63.58, 77.37) 0.282

CD4T (%), median (IQR) 41.8 (34.47, 48.45) 41.01 (33.45, 48.59) 41.99 (35.02, 48.31) 0.431

CD8T (%), median (IQR) 24.13 (18.48, 30.66) 24.07 (18.59, 30.9) 24.22 (18.43, 30.56) 0.915

CD3T (Cells/uL), median (IQR) 932.35 (567.65, 1285.11) 932.52 (557.31, 1291.49) 932.18 (578.03, 1284.19) 0.827

CD4T (Cells/uL), median (IQR) 532.42 (320.8, 785.7) 515.96 (305.94, 800.39) 537.39 (332.43, 776.03) 0.742

CD64 infection index 0.84 (0.43, 2.06) 0.89 (0.43, 2.06) 0.84 (0.42, 2.06) 0.892

CD8T (Cells/uL), median (IQR) 314.12 (185.76, 461.07) 316.69 (185.76, 461.9) 313.71 (185.79, 459.57) 0.805

Humoral Immunity

Ig A (g/L), median (IQR) 2.5 (1.86, 3.31) 2.49 (1.85, 3.29) 2.5 (1.86, 3.33) 0.792

Ig E (IU/mL), median (IQR) 59.45 (21.7, 197.25) 62.3 (22.15, 184.5) 57.9 (21.2, 211) 0.921

Ig G (g/L), median (IQR) 12.3 (10.5, 14.5) 12 (10.4, 14.2) 12.4 (10.6, 14.6) 0.122
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Humoral Immunity

Ig M (g/L), median (IQR) 0.86 (0.62, 1.21) 0.89 (0.58, 1.22) 0.86 (0.62, 1.2) 0.949

Liver Function

GGT (U/L), median (IQR) 29 (18, 53) 28 (19, 49) 29 (18, 55) 0.583

Alb (g/L), median (IQR) 35.8 (32.1, 39) 35.9 (32.3, 38.8) 35.8 (32, 39.1) 0.977

AST (U/L), median (IQR) 20 (13, 34) 22 (13, 34) 20 (12, 34) 0.356

ALT (U/L), median (IQR) 21 (16, 31) 20 (16, 29.5) 21 (16, 31) 0.147

ALP (U/L), median (IQR) 75 (61, 95) 76 (60.5, 95) 75 (61, 94) 0.79

PA (mg/L), median (IQR) 158 (111, 206) 156 (116, 206) 159 (109, 207) 0.597

TB (umol/L), median (IQR) 8.7 (6.4, 11.4) 8.6 (6.2, 10.9) 8.7 (6.5, 11.5) 0.311

TP (g/L), median (IQR) 63.9 (59.5, 67.8) 63.5 (59.2, 67.8) 64 (59.8, 67.8) 0.471

FIB (g/L), median (IQR) 4.05 (3.24, 4.94) 3.9 (3.24, 4.95) 4.06 (3.24, 4.92) 0.903

Complement system

C3 (g/L), median (IQR) 1.17 (1, 1.35) 1.17 (1.01, 1.34) 1.17 (1, 1.36) 0.976

C4 (g/L), median (IQR) 0.29 (0.23, 0.37) 0.29 (0.23, 0.37) 0.29 (0.23, 0.37) 0.898

CH50 (U/mL), Mean ± SD 49.59 _ 15.19 49.31 _ 15.27 49.71 _ 15.16 0.685

Respiratory support

HFNC, n (%) 0.668

No 1110 (96) 335 (97) 775 (96)

Yes 46 (4) 12 (3) 34 (4)

NIMV, n (%) 0.941

No 1060 (92) 319 (92) 741 (92)

Yes 96 (8) 28 (8) 68 (8)

IMV, n (%) 1

No 1148 (99) 345 (99) 803 (99)

Yes 8 (1) 2 (1) 6 (1)

Clinical Outcomes

ICU duration (days), median (IQR) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.444

Ventilation duration (days), median (IQR) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0.44

Length of stay, median (IQR) 9 (7, 14) 10 (7, 14) 9 (7, 14) 0.372

Inpatient Outcome, n (%) 0.46

Alive 1103 (95) 334 (96) 769 (95)

Dead 53 (5) 13 (4) 40 (5)

ICU free days (days), median (IQR) 8 (4, 11) 8 (5, 12) 7 (4, 10) 0.12

Outcome at 28 days, n (%) 0.433

Alive 1117 (97) 338 (97) 779 (96)

Dead 39 (3) 9 (3) 30 (4)

Days from symptom onset (days),
median (IQR)

10 (6, 14) 10 (5, 14) 10 (6, 14) 0.811
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TABLE 1 Continued

Variables Total (n = 1156) test (n = 347) train (n = 809) P Value

Clinical Outcomes

ICU admission, n (%) 0.502

No 917 (79) 280 (81) 637 (79)

Yes 239 (21) 67 (19) 172 (21)
F
rontiers in Immunology
 12
COPD, Chronic obstructive pulmonary disease; OSAHS, Obstructive sleep apnea hypopnea syndrome; MCV, Mean corpuscular volume; MCH, Mean corpuscular hemoglobin; MCHC, Mean
corpuscular hemoglobin concentration; WBC,White bold cell; MPV, Mean platelet volume; RDW, Red blood cell distribution width; HCO3, Carbonic acid hydrogen radical; HCO3std, Standard
bicarbonate; pCO2, Partial pressure of carbon dioxide; Ph, Potential of hydrogen; pO2, Partial pressure of oxygen; TCO2, Total carbon dioxide; Glu, Glucose; Cr,Creatinine; BUN, Blood urea
nitrogen; GFR, Glomerular Filtration Rate; UA, Urine Acid; ACE, Angiotensin-Converting Enzyme; LDL-C, Low-Density Lipoprotein Cholesterol; TG, Triglyceride; ApoE, Apolipoprotein E;
TT, Thrombin time; APTT, Activated partial thromboplastin time; INR, International normalized ratio; PTT, Partial thromboplastin time; ATA, Antithrombin Activity; IL-10, Lnterleukin-10;
IL-1B, Lnterleukin-1B; IL-2R, Lnterleukin-2 Receptor; IL-6, Lnterleukin-6; IL-8, Lnterleukin-8; TNF-a, Tumor necrosis factor-alpha; IgG4, Immunoglobulin G4; CK-MB, Creatine kinase MB;
cTnI, Cardiac troponin I; CK, Creatine kinase; a-HBDH, Alpha-hydroxybutyric dehydroge; LDH, Lactate dehydrogenase; Ig A, Immunoglobulin A; Ig E, Immunoglobulin E; Ig G,
Immunoglobulin G; Ig M, Immunoglobulin M; GGT, g-Glutamyl transferase GGT; Alb, Albumin; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; ALP, Alkaline phosphatase;
PA, Prealbumin; TB, Total bilirubin; TP, Total Protein; FIB, Fibrinogen; C3, Complement C3; C4, Complement C4; CH50, 50% Hemolytic unit of Complement; HFNC, High Flow Nasal
Cannula; NIMV, Noninvasive Mechanical Ventilation; IMV, Invasive Mechanical Ventilation.
TABLE 2 Characteristics and outcomes of community acquired pneumonia patients divided by immune phe Notypes in training cohort.

Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Demographics

Sex, n (%) 0

Female 173 (54%) 134 (38%) 34 (25%) 341 (42%)

Male 149 (46%) 217 (62%) 102 (75%) 468 (58%)

Age (years), median (IQR) 60 [39; 67] 68 [60; 76] 72 [64; 79] 65 [53; 73] 0

Height (cm), median (IQR) 165 [160; 171] 166 [160; 172] 170 [163; 175] 166 [160; 172] 0.008

Weight (kg), median (IQR) 64 [56; 73] 65 [55; 73] 63 [55; 74] 64 [55; 73] 0.977

Mentation, n (%) 0.46

1 322(39.80%) 344(42.52%) 132(16.32%) 798(98.64%)

2 0(0%) 2(0.25%) 1(0.12%) 3(0.37%)

3 0(0%) 2(0.25%) 1(0.12%) 3(0.37%)

4 0(0%) 1(0.12%) 1(0.12%) 2(0.25%)

5 0(0%) 1(0.12%) 0(0%) 1(0.12%)

6 0(0%) 0(0%) 0(0%) 0(0%)

7 0(0%) 1(0.12%) 1(0.12%) 2(0.25%)

8 0(0%) 0(0%) 0(0%) 0(0%)

Vital signs

Fever peak, median (IQR) 38 [37; 39] 38 [37; 39] 38 [38; 39] 38 [37; 39] 0.002

Temperature admission, median (IQR) 37 [36; 37] 37 [37; 38] 37 [37; 38] 37 [37; 38] 0.001

Tmax during the course, median (IQR) 37 [37; 38] 37 [37; 38] 38 [37; 39] 37 [37; 38] 0

Heart rate, median (IQR) 92 [83; 100] 92 [83; 101] 91 [84; 103] 92 [83; 101] 0.824

Respiration Rate, median (IQR) 20 [18; 20] 20 [19; 20] 20 [18; 21] 20 [18; 20] 0.043

Systolic blood pressure, median (IQR) 132 [120; 145] 134 [122; 150] 133 [118; 151] 133 [120; 149] 0.228

Diastolic blood pressure, median (IQR) 80 [71; 89] 78 [70; 87] 77 [70; 85] 78 [70; 88] 0.062
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Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

CURB-65 score, n (%)

0 183 (57%) 113 (32%) 26 (19%) 322 (40%)

1 116 (36%) 136 (39%) 55 (40%) 307 (38%)

2 20 (6%) 88 (25%) 44 (32%) 152 (19%)

3 3 (1%) 14 (4%) 10 (7%) 27 (3%)

4 0 (0.0%) 0 (0.0%) 1 (1%) 1 (0%)

5 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

PSI score, median (IQR) 55 [38; 69] 74 [60; 94] 93 [75; 112] 69 [52; 90] 0

Chief Complaint

Cough, n (%) 0.009

No 63 (20%) 93 (26%) 44 (32%) 200 (25%)

Yes 259 (80%) 258 (74%) 92 (68%) 609 (75%)

Sputum, n (%) 0.117

No 144 (45%) 183 (52%) 71 (52%) 398 (49%)

Yes 178 (55%) 168 (48%) 65 (48%) 411 (51%)

Chest Pain, n (%) 0.225

No 296 (92%) 328 (93%) 131 (96%) 755 (93%)

Yes 26 (8%) 23 (7%) 5 (4%) 54 (7%)

Dyspnea, n (%) 0

No 271 (84%) 259 (74%) 87 (64%) 617 (76%)

Yes 51 (16%) 92 (26%) 49 (36%) 192 (24%)

Chest Tightness, n (%) 0.233

No 288 (89%) 310 (88%) 114 (84%) 712 (88%)

Yes 34 (11%) 41 (12%) 22 (16%) 97 (12%)

Fever, n (%) 0.215

No 158 (49%) 149 (42%) 60 (44%) 367 (45%)

Yes 164 (51%) 202 (58%) 76 (56%) 442 (55%)

Fatigue, n (%) 0.024

No 314 (98%) 336 (96%) 125 (92%) 775 (96%)

Yes 8 (2%) 15 (4%) 11 (8%) 34 (4%)

Consciousness Disorder, n (%) 0.299

No 322 (100%) 348 (99%) 136 (100%) 806 (100%)

Yes 0 (0.0%) 3 (1%) 0 (0.0%) 3 (0%)

Difficulty Breathing, n (%) 0.001

No 319 (99%) 343 (98%) 126 (93%) 788 (97%)

Yes 3 (1%) 8 (2%) 10 (7%) 21 (3%)

Hemoptysis, n (%) 0.6

No 306 (95%) 339 (97%) 130 (96%) 775 (96%)

(Continued)
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TABLE 2 Continued

Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Chief Complaint

Yes 16 (5%) 12 (3%) 6 (4%) 34 (4%)

Comorbidity

Respiratory system

COPD, n (%) 0.04

No 291 (90%) 296 (84%) 114 (84%) 701 (87%)

Yes 31 (10%) 55 (16%) 22 (16%) 108 (13%)

Bronchiectasis, n (%) 0.546

No 302 (94%) 332 (95%) 125 (92%) 759 (94%)

Yes 20 (6%) 19 (5%) 11 (8%) 50 (6%)

Emphysema bullae, n (%) 0.223

No 312 (97%) 334 (95%) 127 (93%) 773 (96%)

Yes 10 (3%) 17 (5%) 9 (7%) 36 (4%)

Pulmonary hypertension, n (%) 0.122

No 318 (99%) 338 (96%) 133 (98%) 789 (98%)

Yes 4 (1%) 13 (4%) 3 (2%) 20 (2%)

Lung cancer, n (%) 0.003

No 315 (98%) 332 (95%) 123 (90%) 770 (95%)

Yes 7 (2%) 19 (5%) 13 (10%) 39 (5%)

PE, n (%) 0.261

No 314 (98%) 334 (95%) 130 (96%) 778 (96%)

Yes 8 (2%) 17 (5%) 6 (4%) 31 (4%)

Asthma, n (%) 1

No 311 (97%) 338 (96%) 131 (96%) 780 (96%)

Yes 11 (3%) 13 (4%) 5 (4%) 29 (4%)

OSAHS, n (%) 0.203

No 311 (97%) 342 (97%) 128 (94%) 781 (97%)

Yes 11 (3%) 9 (3%) 8 (6%) 28 (3%)

Bronchitis, n (%) 0.316

No 319 (99%) 343 (98%) 133 (98%) 795 (98%)

Yes 3 (1%) 8 (2%) 3 (2%) 14 (2%)

Cardiovascular system

Hypertension, n (%) 0

No 223 (69%) 204 (58%) 68 (50%) 495 (61%)

Yes 99 (31%) 147 (42%) 68 (50%) 314 (39%)

Atrial fibrillation, n (%) 0.001

No 312 (97%) 322 (92%) 119 (88%) 753 (93%)

Yes 10 (3%) 29 (8%) 17 (12%) 56 (7%)
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Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Cardiovascular system

Coronary heart disease, n (%) 0.01

No 299 (93%) 303 (86%) 116 (85%) 718 (89%)

Yes 23 (7%) 48 (14%) 20 (15%) 91 (11%)

Arrhythmia, n (%) 0.003

No 290 (90%) 293 (83%) 107 (79%) 690 (85%)

Yes 32 (10%) 58 (17%) 29 (21%) 119 (15%)

Heart failure, n (%) 0

No 305 (95%) 296 (84%) 92 (68%) 693 (86%)

Yes 17 (5%) 55 (16%) 44 (32%) 116 (14%)

Digestive system

Liver dysfunction, n (%) 0.013

No 290 (90%) 294 (84%) 110 (81%) 694 (86%)

Yes 32 (10%) 57 (16%) 26 (19%) 115 (14%)

Gastric cancer, n (%) 0.129

No 321 (100%) 348 (99%) 133 (98%) 802 (99%)

Yes 1 (0%) 3 (1%) 3 (2%) 7 (1%)

Colorectal cancer, n (%) 0.093

No 318 (99%) 345 (98%) 130 (96%) 793 (98%)

Yes 4 (1%) 6 (2%) 6 (4%) 16 (2%)

Esophageal cancer, n (%) 0.152

No 322 (100%) 347 (99%) 135 (99%) 804 (99%)

Yes 0 (0.0%) 4 (1%) 1 (1%) 5 (1%)

Hepatitis, n (%) 0.654

No 322 (100%) 349 (99%) 136 (100%) 807 (100%)

Yes 0 (0.0%) 2 (1%) 0 (0.0%) 2 (0%)

Urinary system

Renal Insufficiency, n (%) 0

No 315 (98%) 315 (90%) 117 (86%) 747 (92%)

Yes 7 (2%) 36 (10%) 19 (14%) 62 (8%)

Urological tumors, n (%) 0.006

No 321 (100%) 346 (99%) 130 (96%) 797 (99%)

Yes 1 (0%) 5 (1%) 6 (4%) 12 (1%)

Kidney Stones, n (%) 0.578

No 311 (97%) 343 (98%) 131 (96%) 785 (97%)

Yes 11 (3%) 8 (2%) 5 (4%) 24 (3%)

Endocrine system

Diabetes, n (%) 0
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Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Endocrine system

No 277 (86%) 271 (77%) 97 (71%) 645 (80%)

Yes 45 (14%) 80 (23%) 39 (29%) 164 (20%)

Nervous system

Senile dementia, n (%) 0.122

No 322 (100%) 348 (99%) 134 (99%) 804 (99%)

Yes 0 (0.0%) 3 (1%) 2 (1%) 5 (1%)

Cerebral infarction, n (%) 0

No 306 (95%) 319 (91%) 114 (84%) 739 (91%)

Yes 16 (5%) 32 (9%) 22 (16%) 70 (9%)

PD, n (%) 0.023

No 322 (100%) 344 (98%) 134 (99%) 800 (99%)

Yes 0 (0.0%) 7 (2%) 2 (1%) 9 (1%)

History of mlignancy, n (%) 0

No 307 (95%) 312 (89%) 114 (84%) 733 (91%)

Yes 15 (4%) 39 (11%) 22 (16%) 76 (9%)

Full Blood Count

Hemoglobin (g/L), Mean ± SD 128 ± 15 123 ± 18 115 ± 21 124 ± 18 0

Neutrophil percent (%), median (IQR) 60 [52; 67] 75 [65; 83] 81 [70; 88] 69 [59; 81] 0

Neutrophil count (*10^9/L), median (IQR) 4 [3; 5] 5 [3; 7] 7 [4; 10] 4 [3; 7] 0

MCV (fl), median (IQR) 90 [87; 94] 91 [89; 94] 91 [89; 95] 91 [88; 94] 0.002

MCH (pg), median (IQR) 30 [29; 31] 30 [29; 32] 31 [29; 32] 30 [29; 31] 0.022

MCHC (g/L), median (IQR) 332 [326; 339] 331 [325; 341] 333 [325; 341] 332 [325; 340] 0.786

MPV (fl), median (IQR) 9 [9; 10] 9 [9; 10] 9 [8; 10] 9 [9; 10] 0.189

WBC Count (*10^9/L), median (IQR) 6 [5; 8] 6 [5; 9] 8 [6; 12] 7 [5; 9] 0

Lymphocyte percent (%), median (IQR) 30 [22; 37] 16 [10; 23] 10 [6; 17] 20 [11; 30] 0

Lymphocyte count (*10^9/L), median (IQR) 2 [2; 2] 1 [1; 1] 1 [1; 1] 1 [1; 2] 0

Eosinophil percent (%), median (IQR) 2 [1; 4] 1 [0; 2] 1 [0; 2] 2 [0; 3] 0

Monocyte percent (%), median (IQR) 7 [6; 8] 7 [5; 9] 6 [4; 9] 7 [5; 8] 0.141

Monocyte count (*10^9/L), median (IQR) 0 [0; 1] 0 [0; 1] 0 [0; 1] 0 [0; 1] 0.194

RDW (%), median (IQR) 13 [12; 13] 13 [12; 14] 14 [13; 14] 13 [12; 14] 0

Arterial Blood Gas

HCO3 (mmol/L), median (IQR) 25 [24; 27] 25 [23; 28] 25 [21; 27] 25 [23; 27] 0.03

HCO3std (mmol/L), median (IQR) 25 [24; 26] 26 [24; 27] 25 [22; 27] 25 [24; 27] 0.223

pCO2 (kPa), median (IQR) 5 [5; 6] 5 [5; 6] 5 [4; 5] 5 [5; 6] 0

pH, median (IQR) 7 [7; 7] 7 [7; 7] 7 [7; 7] 7 [7; 7] 0

pO2 (kPa), median (IQR) 12 [11; 14] 12 [11; 15] 12 [9; 15] 12 [10; 15] 0.234

TCO2 (mmol/L), median (IQR) 50 [46; 54] 50 [45; 55] 48 [41; 55] 50 [45; 54] 0.134
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TABLE 2 Continued

Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Arterial Blood Gas

Glu 5 [4; 6] 6 [5; 7] 6 [5; 8] 5 [5; 7] 0

Renal Function

Cr (umol/L), median (IQR) 57 [49; 69] 61 [52; 74] 65 [56; 88] 60 [51; 74] 0

BUN (mmol/L), median (IQR) 5 [4; 6] 5 [4; 7] 7 [5; 10] 5 [4; 7] 0

GFR (mL/min per1.75m^2), median (IQR) 108 [93; 127] 103 [81; 122] 96 [74; 121] 104 [84; 124] 0

UA (umol/L), median (IQR) 280 [226; 354] 262 [200; 329] 270 [184; 350] 269 [210; 345] 0.007

ACE (U/L), median (IQR) 24 [18; 31] 22 [17; 30] 24 [17; 30] 24 [18; 30] 0.237

Blood lipids

LDL-C (mmol/L), median (IQR) 3 [2; 3] 2 [2; 3] 2 [1; 2] 2 [2; 3] 0

TG (mmol/L), median (IQR) 1 [1; 2] 1 [1; 1] 1 [1; 1] 1 [1; 1] 0.018

ApoE (mg/dL), median (IQR) 4 [3; 5] 3 [3; 5] 4 [3; 5] 4 [3; 5] 0.436

Coagulation

D-Dimer (mg/L), median (IQR) 0 [0; 1] 1 [0; 1] 1 [1; 2] 1 [0; 1] 0

TT (s), median (IQR) 14 [13; 15] 14 [13; 15] 14 [13; 15] 14 [13; 15] 0.014

APTT (s), median (IQR) 12 [11; 12] 12 [11; 13] 13 [12; 14] 12 [11; 13] 0

INR, median (IQR) 1 [1; 1] 1 [1; 1] 1 [1; 1] 1 [1; 1] 0

PTT (s), median (IQR) 31 [29; 34] 31 [28; 33] 31 [28; 34] 31 [29; 34] 0.102

ATA (%), median (IQR) 89 [79; 97] 81 [71; 90] 73 [62; 85] 83 [72; 93] 0

Inflammatory Cytokine

IL-10 (pg/mL), median (IQR) 5 [5; 5] 5 [5; 5] 5 [5; 7] 5 [5; 5] 0

IL-1B (pg/mL), median (IQR) 5 [5; 7] 5 [5; 10] 7 [5; 14] 5 [5; 10] 0

IL-2R (U/mL), median (IQR) 440 [327; 583] 606 [465; 808] 1468 [1290;1964] 582 [412; 899] 0

IL-6 (pg/mL), median (IQR) 5 [3; 10] 9 [4; 22] 20 [8; 51] 7 [3; 19] 0

IL-8 (pg/mL), median (IQR) 23 [12; 67] 25 [15; 53] 39 [21; 77] 26 [14; 61] 0

TNF-a (pg/mL), median (IQR) 12 [8; 28] 14 [9; 28] 19 [12; 30] 15 [9; 28] 0.001

IgG4 (g/L), median (IQR) 1 [0; 1] 0 [0; 1] 1 [0; 1] 0 [0; 1] 0.188

Electrolytes

P (mmol/L), median (IQR) 1 [1; 1] 1 [1; 1] 1 [1; 1] 1 [1; 1] 0

Cl (mmol/L), median (IQR) 105 [104; 107] 104 [102; 107] 103 [100; 106] 105 [102; 107] 0

Mg (mmol/L), median (IQR) 1 [1; 1] 1 [1; 1] 1 [1; 1] 1 [1; 1] 0.014

Potassium (mmol/L), median (IQR) 4 [4; 4] 4 [4; 4] 4 [4; 4] 4 [4; 4] 0.184

Ca (mmol/L), median (IQR) 2 [2; 2] 2 [2; 2] 2 [2; 2] 2 [2; 2] 0

Sodium (mmol/L), median (IQR) 140 [138; 142] 139 [136; 141] 136 [131; 140] 139 [136; 141] 0

Inflammation Measurements

CRP (mg/L), median (IQR) 8 [2; 30] 34 [7; 80] 107 [37; 160] 25 [4; 78] 0

PCT(ng/mL), median (IQR) 0 [0; 0] 0 [0; 0] 0 [0; 1] 0 [0; 0] 0

ESR (mm/h), median (IQR) 32 [16; 53] 45 [24; 71] 64 [35; 90] 41 [21; 69] 0
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TABLE 2 Continued

Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Myocardial Enzyme

CK-MB (U/L), median (IQR) 4 [3; 6] 5 [4; 8] 6 [4; 9] 5 [3; 7] 0

cTnI (ng/ml), median (IQR) 0 [0; 0] 0 [0; 0] 0 [0; 0] 0 [0; 0] 0

CK (U/L), median (IQR) 63 [42; 94] 67 [41; 114] 60 [34; 122] 65 [41; 103] 0.329

a-HBDH (U/L), median (IQR) 124 [104; 153] 150 [120; 182] 166 [128; 233] 142 [113; 173] 0

LDH (U/L), median (IQR) 190 [160; 220] 220 [188; 266] 268 [203; 336] 211 [176; 264] 0

Cell immunity

CD3T (%), median (IQR) 75 [69; 80] 67 [59; 74] 69 [59; 76] 71 [64; 77] 0

CD4T (%), median (IQR) 45 [40; 50] 40 [33; 46] 40 [31; 47] 42 [35; 48] 0

CD8T (%), median (IQR) 25 [20; 31] 23 [17; 30] 24 [17; 32] 24 [18; 31] 0.023

CD3T (Cells/uL), median (IQR) 1360 [1157;1630] 687 [482; 902] 494 [343; 826] 932 [578;1284] 0

CD4T (Cells/uL), median (IQR) 827 [687;1013] 414 [267; 519] 293 [205; 480] 537 [332; 776] 0

CD64 infection index 1 [0; 1] 1 [0; 2] 2 [1; 5] 1 [0; 2] 0

CD8T (Cells/uL), median (IQR) 462 [369; 604] 226 [152; 324] 183 [100; 301] 314 [186; 460] 0

Humoral Immunity

Ig A (g/L), median (IQR) 2 [2; 3] 3 [2; 3] 2 [2; 4] 2 [2; 3] 0.869

Ig E (IU/mL), median (IQR) 49 [18; 186] 57 [21; 162] 137 [29; 791] 58 [21; 211] 0

Ig G (g/L), median (IQR) 12 [11; 14] 12 [10; 15] 12 [10; 15] 12 [11; 15] 0.275

Ig M (g/L), median (IQR) 1 [1; 1] 1 [1; 1] 1 [0; 1] 1 [1; 1] 0

Liver Function

GGT (U/L), median (IQR) 26 [16; 46] 30 [18; 58] 37 [24; 68] 29 [18; 55] 0

Alb (g/L), Mean ± SD 38 ± 4 35 ± 5 30 ± 5 35 ± 5 0

AST (U/L), median (IQR) 18 [12; 31] 21 [13; 34] 24 [15; 40] 20 [12; 34] 0.003

ALT (U/L), median (IQR) 18 [15; 26] 22 [17; 32] 27 [20; 46] 21 [16; 31] 0

ALP (U/L), median (IQR) 73 [59; 90] 74 [62; 92] 88 [68; 124] 75 [61; 94] 0

PA (mg/L), median (IQR) 192 [148; 230] 142 [103; 193] 98 [70; 142] 159 [109; 207] 0

TB (umol/L), median (IQR) 8 [6; 11] 9 [7; 11] 9 [7; 14] 9 [6; 12] 0.047

TP (g/L), median (IQR) 66 [63; 70] 62 [58; 67] 61 [55; 65] 64 [60; 68] 0

FIB (g/L), median (IQR) 4 [3; 5] 4 [3; 5] 5 [4; 5] 4 [3; 5] 0

Complement system

C3 (g/L), median (IQR) 1 [1; 1] 1 [1; 1] 1 [1; 1] 1 [1; 1] 0.032

C4 (g/L), median (IQR) 0 [0; 0] 0 [0; 0] 0 [0; 0] 0 [0; 0] 0.622

CH50 (U/mL), Mean ± SD 51 ± 14 49 ± 15 48 ± 17 50 ± 15 0.11

Respiratory support

HFNC, n (%) 0

No 319 (99%) 338 (96%) 118 (87%) 775 (96%)

Yes 3 (1%) 13 (4%) 18 (13%) 34 (4%)

NIMV, n (%) 0
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with prior research (23, 24), the most prevalent comorbidities

included hypertension (40%, n=467) and type 2 diabetes mellitus

(22%, n=252). To determine the latent immune phenotypes of CAP,

the “Consensus Cluster Plus” package was utilized for consensus

clustering across the training, validation, and meta cohorts. This

analysis identified three distinct immune phenotypes within each

cohort, as demonstrated in Figures 2A, B, Supplementary Figures

S3A, B, and S4A, B, indicating that a tripartite classification was

most suitable for the data. The “nbclust” package (15, 25) was

routinely utilized for unsupervised clustering to ascertain the

optimal number of clusters. In agreement with the majority rule,

three distinct clusters were deemed to be ideal for all cohorts, as

depicted in the Supplementary Materials (Supplementary Figures

S2A, S3C, and S4C). Grounded on these findings and informed by

prior knowledge, a tripartite classification of phenotypes was
Frontiers in Immunology 19
determined to be most appropriate. The results of clustering were

visualized by t-distributed stochastic neighbor embedding (t-SNE),

Principal Component Analysis (PCA) and Uniform Manifold

Approximation and Projection (UMAP) plot, as shown in

Figure 2C, Supplementary Figures S2B, C, S3D–F, and S4D–F.

The baseline characteristics of each cohort are presented in Table 2

and Supplementary Tables S1, S2. The three distinct immune

phenotypes varied in size, ranging from 16.8% to 43.4% of the

cohorts, and demonstrated differences in clinical presentations and

patterns of organ dysfunction. These variances are detailed in

Supplementary Tables S1, S2, and Figures 3A–D, Supplementary

Figures S7A–D, and S8A–D. Within the training cohort, patients

with CAP were grouped into three phenotypes based on distinct

laboratory features. Phenotype A patients exhibited elevated levels

of prealbumin. In contrast, phenotype B was characterized by
TABLE 2 Continued

Phenotype
Phenotype
A(n=322)

Phenotype
B(n=351)

Phenotype
C(n=136)

Total
(n=809)

P
value

Respiratory support

No 317 (98%) 311 (89%) 113 (83%) 741 (92%)

Yes 5 (2%) 40 (11%) 23 (17%) 68 (8%)

IMV, n (%) 0.485

No 321 (100%) 347 (99%) 135 (99%) 803 (99%)

Yes 1 (0%) 4 (1%) 1 (1%) 6 (1%)

Clinical Outcomes

ICU duration (days), median (IQR) 0 [0; 0] 0 [0; 6] 0 [0; 17] 0 [0; 0] 0

Ventilation duration (days), median (IQR) 0 [0; 0] 0 [0; 0] 0 [0; 4] 0 [0; 0] 0

Length of stay, median (IQR) 8 [7; 10] 10 [8; 15] 14 [9; 20] 9 [7; 14] 0

Inpatient Outcome, n (%) 0

Alive 322 (100%) 332 (95%) 115 (85%) 769 (95%)

Dead 0 (0.0%) 19 (5%) 21 (15%) 40 (5%)

ICU free days (days), median (IQR) 7 [6; 9] 8 [1; 11] 5 [0; 11] 7 [4; 10] 0.005

Outcome at 28 days, n (%) 0

Alive 322 (100%) 338 (96%) 119 (88%) 779 (96%)

Dead 0 (0.0%) 13 (4%) 17 (12%) 30 (4%)

Days from symptom onset (days),
median (IQR)

10 [7; 14] 9 [5; 14] 10 [6; 14] 10 [6; 14] 0.199

ICU admission, n (%) 0

No 300 (93%) 261 (74%) 76 (56%) 637 (79%)

Yes 22 (7%) 90 (26%) 60 (44%) 172 (21%)
fron
COPD, Chronic obstructive pulmonary disease; OSAHS, Obstructive sleep apnea hypopnea syndrome; MCV, Mean corpuscular volume; MCH, Mean corpuscular hemoglobin; MCHC, Mean
corpuscular hemoglobin concentration; WBC,White bold cell; MPV, Mean platelet volume; RDW, Red blood cell distribution width; HCO3, Carbonic acid hydrogen radical; HCO3std, Standard
bicarbonate; pCO2, Partial pressure of carbon dioxide; Ph, Potential of hydrogen; pO2, Partial pressure of oxygen; TCO2, Total carbon dioxide; Glu, Glucose; Cr, Creatinine; BUN, Blood urea
nitrogen; GFR, Glomerular Filtration Rate; UA, Urine Acid; ACE, Angiotensin-Converting Enzyme; LDL-C, Low-Density Lipoprotein Cholesterol; TG, Triglyceride; ApoE, Apolipoprotein E,
TT, Thrombin time; APTT, Activated partial thromboplastin time; INR, International normalized ratio; PTT, Partial thromboplastin time; ATA, Antithrombin Activity; IL-10, Lnterleukin-10;
IL-1B, Lnterleukin-1B; IL-2R, Lnterleukin-2 Receptor; IL-6, Lnterleukin-6; IL-8, Lnterleukin-8; TNF-a, Tumor necrosis factor-alpha; IgG4, Immunoglobulin G4; CK-MB, Creatine kinase MB;
cTnI, Cardiac troponin I; CK, Creatine kinase; a-HBDH, Alpha-hydroxybutyric dehydroge; LDH, Lactate dehydrogenase; Ig A, Immunoglobulin A; Ig E, Immunoglobulin E; Ig G,
Immunoglobulin G; Ig M, Immunoglobulin M; GGT, g-Glutamyl transferase GGT; Alb, Albumin; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; ALP, Alkaline phosphatase;
PA, Prealbumin; TB, Total bilirubin; TP, Total Protein; FIB, Fibrinogen; C3, Complement C3; C4, Complement C4; CH50, 50% Hemolytic unit of Complement; HFNC, High Flow Nasal
Cannula; NIMV, Noninvasive Mechanical Ventilation; IMV, Invasive Mechanical Ventilation.
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reduced IgG4, triglycerides, and uric acid levels. Patients classified

as phenotype C tended to be older males with a higher likelihood of

being admitted to the ICU. Variations in laboratory indicators were

apparent among the three immune phenotypes. According to the
Frontiers in Immunology 20
standardized mean difference between phenotypes (Figures 3E–G),

phenotype A patients showed fewer laboratory abnormalities and

less evidence of organ dysfunction. Conversely, phenotype B

patients had indicators suggestive of renal dysfunction, while
B

C

A

FIGURE 2

Consensus Clustering and visualization. (A) Identification of three immune phenotypes of community acquired pneumonia (CAP) patients by
consensus clustering. (B) Cumulative distribution function (CDF) curve illustrated consensus distribution for each phenotype. (C) T-distributed
stochastic neighbor embedding (t-SNE) method successfully divided CAP patients into three distinct immune phenotypes. The purple dot represent
patients belong to phenotype A. Patients with phenotype B are represented by a yellow dot, and those with phenotype C by a blue dot. CAP,
community acquired pneumonia; t-SNE, T-distributed stochastic neighbor embedding; CDF, Cumulative distribution function.
B C D

E F G

A

FIGURE 3

Association and variation between clinical immunological indicators and three phenotypes. Chord diagram (A–D) of the association between clinical
immunological variables and each phenotype in training cohort. Different phenotypes were shown in different colors: phenotype A is purple,
phenotype B is blue, and phenotype C is green. Rank plot (E–G) of variable mean among various phenotypes in training cohort. Variables were
normalized by mean and standard error.
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those in phenotype C were more likely to display increased

inflammatory markers (such as IL-2R, IL-8, IL-6), alongside

reduced immunologic parameters of inflammation (e.g., CD3,

CD4, CD8), lower albumin levels, and elevated body

temperatures. Patients classified as Phenotype B tend to

demonstrate moderate abnormalities in their laboratory tests.

Relative to Phenotype A, those with Phenotype B show elevated

levels of neutrophils, C-reactive protein (CRP), and erythrocyte

sedimentation rate (ESR). In addition, there is a concurrent

suppression of lymphocytes and their subsets. The levels of IgG4

do not vary significantly between these phenotypes. Patients

identified as Phenotype C also manifest a similar pattern, with

increased inflammatory markers (IL-2R, neutrophil count, and

ESR) and decreased immunological indicators (CD3+CD4+CD8+

lymphocytes); however, IgG, IgA, and TNF-a levels remain

statistically unchanged. When drawing comparisons between

Phenotypes B and C, a rise in IL-2R, CRP, ESR, and IgE is noted,

along with a reduction in lymphocyte-related indicators. These

differential markers underscore their importance in phenotype

classification and, indirectly, the robustness of this classification

scheme. Further corroboration of these findings is evident in the

validation and meta cohorts, as depicted in Supplementary Figures

S7E–G and S8E–G.
Relationship between distinct clinical
immune phenotypes and clinical outcomes

In current research, distinct immune phenotypes were

correlated with primary and secondary outcomes. Within the

training cohort, Phenotype C had the highest inpatient mortality

rate, with 21 deaths (15.4%, n=136), markedly higher than that

observed in Phenotype A (0 deaths, 0%, n=322) and Phenotype B

(19 deaths, 5.4%, n=351) (P<0.001). Furthermore, Phenotype C

experienced the highest 28-day mortality rate with 17 deaths

(12.5%, n=136) compared to Phenotypes A (0 deaths, 0%, n=322)

and B (13 deaths, 3.7%, n=351). Similar trends in survival outcomes

were observed in the meta and validation cohorts, as detailed in

Supplementary Tables S1 and S2. Across all three cohorts, patients

characterized as Phenotype C consistently exhibited a poorer

prognosis compared to those classified as Phenotypes A and B

(P<0.001; Figures 4A, B, Supplementary Figures S5A, B, and S6A,

B). Furthermore, the three clinically derived immune phenotypes

showed notable differences across all primary and secondary

outcomes (Figures 4C–H, Supplementary Figures S5C–H, and

S6C–H). Our investigation also explored the correspondence

between the immune phenotypes identified in this study and

traditional clinical categorizations such as CURB-65 and PSI. The

results indicate that our immune phenotyping operates

independently of these conventional classifications (Figure 6I,

Supplementary Figures S9A, B), firmly establishing the utility and

precision of our clustering approach. The presented evidence

highlights distinct clinical outcomes among the phenotypes and
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underscores the significance of adopting this new classification in

clinical practice, thereby demonstrating its practical relevance.
Construction and evaluation of integrated
machine learning signatures

Based on the immunological laboratory indicators available at

Xinhua Hospital, variables exhibiting a missing rate exceeding 20%

were excluded. Consequently, 31 clinical immunological laboratory

indicators were selected for model development. Contrary to

previous research (7, 26), our investigation not only concentrates

on the prognosis of patients with CAP but also considers the

likelihood of disease severity. In recent years, machine learning

has gained widespread application in medical research,

demonstrating robust predictive performance (27–29). Several

studies have also examined the application of machine learning in

forecasting CAP outcomes (7, 30, 31). However, these investigations

have predominantly utilized a narrow range of machine learning

algorithms and have focused primarily on predicting mortality.

Physicians should, however, consider strategies for the early

identification of potentially severe pneumonia patients. To

address the limitations of previous research, this study has

developed survival models for patients and predictive models for

assessing the severity of the risk. Nine machine learning algorithms

—namely, SuperPC, PlsRocx, Elastic Net, Ridge, Lasso, stepwise

Cox, Random Survival Forests (RSF), and Gradient Boosting

Machine (GBM)—were applied to both training and validation

cohorts to facilitate optimal model selection. The results indicated

that SuperPC exhibited strong predictive performance with a

training cohort C-index of 0.784 and a validation cohort C-index

of 0.935, averaging at 0.86 (Figure 5A). Consequently, it was chosen

as the superior prognostic model. The variables included in the

prognostic model were presented in Supplementary Table S3.

Additionally, in order to identify severe patients earlier, we

utilized 12 common machine learning algorithms (RF, GBM,

Stepglm, Lasso, Enet, Glmboost, LDA, Ridge, plsRglm, xgboost,

naivebayes, and SVM) to construct a predictive model for severe

pneumonia. The results indicate that the random forest algorithm

demonstrated the highest predictive performance in both the

training cohort and the validation cohort (training cohort C-

index: 0.998, validation cohort C-index: 0.794, average C-index:

0.896, Figure 5B). The variables encompassed in this model are also

detailed in Supplementary Table S3. In this study, we conducted a

rigorous evaluation of ourmodels' performance through a

comparative analysis with conventional evaluationmetrics by

examining their Receiver Operating Characteristic (ROC) curves

(see Figures 6C–H). Remarkably, the machine learning approaches

we employed demonstrated superior performance to traditional

evaluation criteria, not only within the training cohort but also in

the validation cohort and meta cohort (see Supplementary Figure

S10). This finding underscores the potential of machine learning

methodologies in enhancing predictive accuracy in this context.
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Furthermore, we leveraged a transcriptome database related to

CAP, GSE188309, which includes data from 198 patients (refer to

Supplementary Tables S4 and S5 for details) (20, 32). Using Single

Sample Gene Set Enrichment Analysis (ssGSEA), an algorithm

frequently utilized for assessing immune infiltration (33), we

analyzed the GSE188309 dataset and identified differences in

activated CD4+ T cell levels between survivors and nonsurvivors

(see Supplementary Figure S11). This underscores the significance

of CD4+ T cells as a crucial variable in our models. Surprisingly,

CD4+ T cells were incorporated into both the prognostic and

predictive models, highlighting their critical role in forecasting the

severity and clinical outcomes for patients with CAP. Additionally,

to validate the performance of our models, we compared their
Frontiers in Immunology 22
Receiver Operating Characteristic (ROC) curves with those derived

from conventional evaluation criteria. Collectively, our results

bolster the credibility of using machine learning to predict

patient prognosis.
Discussion

In this investigation, we identified and substantiated three

distinct immune phenotypes through dual clustering techniques,

analyzing data from 1,165 hospitalized patients with CAP.

Phenotype C emerged as indicative of a poorer prognosis,

lengthier hospitalization, and an increased need for assisted
B

C D

E F

G H

A

FIGURE 4

Primary and secondary outcomes among three distinct immune phenotypes in training cohort. (A) Survival curves for various phenotype patients
during their hospitalization. (B) Survival curves for various phenotype patients over 28 days. Blue line represents Phenotype A patients, red for
Phenotype B patients, and green for Phenotype C patients. CAP patients in Phenotype A had a better prognosis than those in Phenotype A and C
(P<0.05).Phenotype C CAP patients experience extended hospital stays (C) and ICU stays (F), prolonged ventilation days (D), and fewer ICU-free days
(E) in comparison to patients with the other two phenotypes. Green represents Phenotype A patients, light blue for Phenotype B patients, and dark
blue for Phenotype C patients. Patients with phenotype C comprise a greater proportion of patients requiring assisted ventilation (G) and those with
severe pneumonia (H). Differences are observed in patient composition with respect to ventilation and the presence of severe pneumonia. P<0.001.
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ventilation. Moreover, the study employed over 20 machine-

learning algorithms to forecast both the prognosis and severity

of CAP.

Current literature includes descriptions of phenotypes in patients

with ARDS and sepsis. In their work, Calfee et al. identified two

distinct ARDS phenotypes through latent class analysis (LCA),

employing biomarkers and clinical data in a retrospective

examination of two randomized controlled trials (RCTs) (34).

Similarly, Christopher W. Seymour and colleagues (11) delineated

four sepsis phenotypes, establishing correlations between host-

response patterns and clinical outcomes via retrospective analysis.

The secretion of inflammatory cytokines and the modulation of

immune cell activity are critical in the pathogenesis of SCAP.

Consequently, assessment of the immune phenotype in individuals

with CAP can enable clinicians to more accurately distinguish

patients at risk of progressing to SCAP. In a study conducted by

Raul M. Mackenzie (35), a cohort of 217 hospitalized CAP patients

underwent evaluation of lymphocyte subsets, inflammatory

mediators, and immunoglobulin subclasses, revealing a distinctive

lymphopenicCAP profile. This profile, characterized by diminished

CD4+ lymphocytes, elevated inflammatory responses, and reduced

IgG2 concentrations, was associated with increased disease severity

upon admission and a poorer overall prognosis. Notwithstanding

these findings, the study was limited by a relatively small sample size

and predominantly included immunocompetent patients. By

contrast, our research encompasses a broader demographic and a

significantly larger sample size, thus providing a more comprehensive

understanding of the immunological landscape in CAP. This study

aimed to delineate immune phenotypes that correlate with the

prognosis of patients with CAP. Analysis of 31 immunological and

inflammatory parameters was conducted through unsupervised

clustering, employing the “Consensus clustering” algorithm. We

identified three distinct CAP immune phenotypes: Phenotype A

emerged as the least severe, characterized by the lowest deviations

in laboratory markers and organ function. In stark contrast,

Phenotype C represented the most critical illness phenotype,

marked by an increased frequency of ICU admissions and

prevalence among elderly patients. Phenotype B represented an

intermediate level of severity. The early detection of Phenotype C is

thus crucial for improving outcomes in SCAP patients. Intriguingly,

these immunophenotypes could not be completely accounted for by

traditional severity scores such as the PSI and CURB-65. Most
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patients with low PSI and CURB-65 scores were classified under

Phenotypes A and B; however, a minority presented with the high-

risk Phenotype C. Therefore, incorporating immunophenotyping

into the assessment offers a valuable tool for the early recognition

of high-risk patients, who score low on CURB-65 and PSI indices,

significantly contributing to the enhancement of their

clinical prognosis.

Although immune phenotypes offer valuable insights, they do not

achieve the prognostic precision of predictive models. To assess the

reliability of immune phenotypes in real-world clinical contexts, we

examined the association between immune phenotype classification

and clinical outcomes. Our findings indicated that the three deduced

immune phenotypes exhibited significant disparities across all

primary and secondary outcomes measured. Notably, patients

categorized within Phenotype C experienced poorer prognostic

outcomes compared to those with Phenotypes A and B. These

observations underscore the utility of immune phenotype

classification for prognostic evaluation in patients with CAP.

Multiple studies have demonstrated the efficacy of ML in

enhancing mortality predictions for patients with CAP. Cilloniz

et al. reported that an adapted SeF model employing ML exhibited

promise in augmenting the accuracy of mortality predictions for

CAP patients within the context of a derivation-validation

retrospective study (6). Despite such advancements, research on

prognostic models for CAP that incorporate immunological

markers remains scarce. In our investigation, we performed an

analysis of data derived from the immunological laboratory

indicators of CAP patients. Our findings indicate that the

prognostic model established via the SuperPC algorithm

demonstrates a robust predictive capability. When juxtaposed

with existing models, such as CURB-65 and PSI, our model

achieves a comparable mean C-index, suggesting its utility as an

adjunctive tool for the clinical assessment of CAP patients. Our

research not only corroborates the existing literature regarding CAP

patient prognosis but also extends the analysis to encompass the

likelihood of the severity of the disease. In evaluating 12 different

ML algorithms, we ascertained that the Random Forest algorithm

delivers a superior mean C-index, which signifies a more potent

predictive performance specifically for patients with SCAP.

Lymphocytopenia has been acknowledged as an independent risk

factor for adverse outcomes in patients with CAP (36). The cause of

lymphocytopenia is unknown, although several causes have been
BA

FIGURE 5

Heatmap dipicted C-index of various machine learning method in training and validation cohort for patients’ outcome (A) and pneumonia
severity (B).
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proposed, such as increased apoptosis, limitations in the host

immune system’s mobilization of these cells, or compartmentation

at the site of infection ADDIN EN.CITE (35). Variations in

lymphocyte subsets, particularly in CD4 T cells, have been

implicated in the immunopathogenesis of CAP. Indeed, alterations
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in CD4 T cells have been associated with increased disease severity,

particularly in the elderly and frail patient populations (37, 38). Our

study corroborates these findings by demonstrating the prognostic

and predictive significance of CD4 T cell changes. Furthermore, an

analysis of the GSE188309 dataset reinforced the observation of a
B

C D

E F

G H

I

A

FIGURE 6

Robust performance of machine learning algorithm. (A) Time dependent bar and line graph of 9 machine learning methods at 7 days, 14days, and 21
days in training cohort. (B) Time dependent bar and line graph of 9 machine learning methods at 7 days, 14days, and 21 days in validation cohort. (C)
The performance of SuperPC method and conventional PSI and CURB-65 evaluation criteria in training cohort. (D) Time dependent ROC curve of
SuperPC method at 7 days, 14 days, 21 days in training cohort. (E) The performance of SuperPC method and conventional PSI and CURB-65
evaluation criteria in validation cohort. (F) Time dependent ROC curve of SuperPC method at 7 days, 14 days, 21 days in validation cohort. The
performance of Random forest method and conventional PSI and CURB-65 evaluation criteria in training (G) and validation (H) cohort for predicting
severe pneumonia. (I) Sankey plot illustrated the relationship between immune phenotypes and conventional pneumonia severity index (PSI) and
CURB-65 evaluation criteria in Training cohort.
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discernible difference in the activation levels of CD4 T cells between

survivors and non-survivors of CAP. These results underscore the

pivotal role of CD4 T cells in forecasting clinical outcomes and

determining disease severity in CAP patients. At present, the

mechanism of CD4 T cells participating in CAP is complex and

not completely clear. More studies are focused on the mechanism of

CD4+T cells in pneumonia caused by viral infection, especially

pneumonia caused by SARS-CoV-2. CD4+T cells can differentiate

into a range of helper and effector cell types, thereby exerting antiviral

capabilities. Virus-specific CD4+ T cells differentiate into Th1 cells

and T follicular help-er cells (Tfh). Th1 cells have antiviral activity by

producing IFNg and related cytokines. Specific circulating Tfh cells

(cTfh) are produced during acute SARS-CoV-2 infection (39). A

study by Liu et al. analyzed the lymphocyte subsets of COVID-19-

associated pneumonia and CAP and showed that CD16+CD56+%,

CD4+/CD8+ ratio, CD19+, and CD3+CD4+ independently

predicted differentiation of COVID-19 and CAP. CD3+CD4+ and

CD3+CD8+ counts were independent predictors of disease

severity (40).

For pneumonia caused by other pathogens, regulatory CD4

+CD25+ T cells were found to suppress respiratory inflammation

by promoting IL-17 and IFN-g responses in a mouse model of

mycoplasma pneumonia (41). However, the exact mechanisms

under ly ing these observat ions in our study warrant

comprehensive investigation through basic experimental research.
Conclusion

Our study’s principal finding demonstrates that evaluating

immunological parameters upon hospital admission assists in

stratifying CAP patients into three distinct immune phenotypes.

Moreover, these immune phenotypes show a strong correlation

with patient prognoses. We also discerned significant predictive

capabilities within the SuperPC algorithm, suggesting its utility as

an ancillary tool for assessing CAP. Notably, our investigation

constitutes the most extensive analysis of CAP clinical phenotypes

to date. An additional strength of this study is its breadth; rather

than focusing on CAP related to specific pathogens, it encompasses

a comprehensive evaluation of the immunophenotypes across the

spectrum of CAP. This approach allows for patient classification

and tailored intervention prior to the confirmation of precise

etiologic agents, offering crucial guidance, especially for cases

where pathogen identification proves challenging. Moreover, the

rigorous application of inclusion and exclusion criteria enhances

the applicability of our findings, rendering the results of significant

relevance to the broader patient population.
Limitation

Our study possesses several limitations. Firstly, its scope is

confined to a single center, which may not be representative of

broader populations, in contrast to multi-center studies. Secondly,

the retrospective nature of our research necessitates the

implementation of a prospective study to corroborate our
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findings and inform future clinical practice. Looking ahead, the

inclusion of a wider range of variables beyond immunological

indicators will enable a more comprehensive assessment of multi-

organ involvement in patients with CAP. And finally, other

experiment methods for example flow mass spectrometry can be

applied in figuring out the potential mechanism of CD4 T cells

in CAP.
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SUPPLEMENTARY FIGURE 1

Graphic flowchart of this research.

SUPPLEMENTARY FIGURE 2

Visualization of clustering and dimensionality reduction results of training

cohort. (A) Nbclust method illustrated the optimal groups of training cohort
was three. (B) Principal Component Analysis (PCA) method successfully

divided CAP patients into three distinct immune phenotypes. (C) Uniform
Manifold Approximation and Projection (UMAP) method successfully divided

CAP patients into three distinct immune phenotypes. Patients with phenotype

B are represented by a yellow dot, the blue dots represent patients belong to
phenotype and those with phenotype C by a purple dot.

SUPPLEMENTARY FIGURE 3

Consensus Clustering and dimensionality reduction visualization in validation
cohort. (A) Identification of three immune phenotypes of community

acquired pneumonia (CAP) patients by consensus clustering. (B) Cumulative

distribution function (CDF) curve illustrated consensus distribution for each
phenotype. (C) Visualization of Nbclust method in determining optimal

clusters of CAP patients. (D) T-distributed stochastic neighbor embedding
(t-SNE) method successfully divided CAP patients into three distinct immune

phenotypes. (E) Uniform Manifold Approximation and Projection (UMAP)
method successfully divided CAP patients into three distinct immune

phenotypes. (F) Principal Component Analysis (PCA) method successfully

divided CAP patients into three distinct immune phenotypes.

SUPPLEMENTARY FIGURE 4

Consensus Clustering and dimensionality reduction visualization in meta

cohort. (A) Identification of three immune phenotypes of community
acquired pneumonia(CAP) patients by consensus clustering. (B) Cumulative

distribution function(CDF) curve illustrated consensus distribution for each

phenotype. (C) Visualization of Nbclust method in determining optimal
clusters of CAP patients. (D) T-distributed stochastic neighbor embedding

(t-SNE) method successfully divided CAP patients into three distinct immune
phenotypes. (E) Uniform Manifold Approximation and Projection(UMAP)
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method successfully divided CAP patients into three distinct immune
phenotypes. (F) Principal Component Analysis (PCA) method successfully

divided CAP patients into three distinct immune phenotypes.

SUPPLEMENTARY FIGURE 5

Primary and secondary outcomes among three distinct immune phenotypes
in validation cohort. (A) Survival curves for various phenotype patients during

their hospitalization. (B) Survival curves for various phenotype patients over
28 days. Blue line represents Phenotype A patients, red for Phenotype B

patients, and green for Phenotype C patients. Phenotype A had a better

prognosis than those in Phenotype A and C (P<0.05).Phenotype C CAP
patients experience extended hospital stays (C), prolonged ventilation days

(D), ICU stays (F) and fewer ICU-free days (E) in comparison to patients with
the other two phenotypes. Green represents Phenotype A patients, light blue

for Phenotype B patients, and dark blue for Phenotype C patients. CAP
patients in Patients with phenotype C comprise a greater proportion of

patients requiring assisted ventilation (G) and those with severe pneumonia

(H). Differences are observed in patient composition with respect to
ventilation and the presence of severe pneumonia. P<0.001.

SUPPLEMENTARY FIGURE 6

Primary and secondary outcomes among three distinct immune phenotypes
in meta cohort. (A) Survival curves for various phenotype patients during their

hospitalization. (B) Survival curves for various phenotype patients over 28

days. Blue line represents Phenotype A patients, red for Phenotype B patients,
and green for Phenotype C patients. Phenotype A had a better prognosis than

those in Phenotype A and C (P<0.05).Phenotype C CAP patients experience
extended hospital stays (C), prolonged ventilation days (D), ICU stays (F) and
fewer ICU-free days (E) in comparison to patients with the other two
phenotypes. Green represents Phenotype A patients, light blue for

Phenotype B patients, and dark blue for Phenotype C patients. CAP patients

in Patients with phenotype C comprise a greater proportion of patients
requiring assisted ventilation (G) and those with severe pneumonia (H).
Differences are observed in patient composition with respect to ventilation
and the presence of severe pneumonia. P<0.001.

SUPPLEMENTARY FIGURE 7

Association and variation between clinical immunological indicators and

three phenotypes. Chord diagram (A-D) of the association between clinical
immunological variables and each phenotype in validation cohort. Different

phenotypes were shown in different colors: phenotype A is purple, phenotype
B is blue, and phenotype C is green. Rank plot (E-G) of variable mean among

various phenotypes in training cohort. Variables were normalized by mean
and standard error.

SUPPLEMENTARY FIGURE 8

Association and variation between clinical immunological indicators and

three phenotypes. Chord diagram (A-D) of the association between clinical
immunological variables and each phenotype in meta cohort. Different

phenotypes were shown in different colors: phenotype A is purple,

phenotype B is blue, and phenotype C is green. Rank plot (E-G) of variable
mean among various phenotypes in training cohort. Variables were

normalized by mean and standard error.

SUPPLEMENTARY FIGURE 9

Sankey plot illustrated the relationship between immune phenotypes and
conventional pneumonia severity index (PSI) and CURB-65 evaluation criteria

in validation (A) cohort and meta cohort (B).

SUPPLEMENTARY FIGURE 10

Robust performance of machine learning algorithm. (A) The performance of
riskscore and conventional PSI and CURB-65 evaluation criteria in meta

cohort. (B) Time dependent ROC curve of riskscore method at 7 days, 14

days, 21 days in meta cohort. (C) The performance of Random forest method
and conventional PSI and CURB-65 evaluation criteria in meta cohort.

SUPPLEMENTARY FIGURE 11

The immune infiltration landscape of patients with community acquired

pneumonia. (A) Box plot illustrated different types of immune cell between

alive and deceased CAP patients. (B)Cellular interaction of immune cell types.
Positive correlation is indicated in red and negative correlation in blue.
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Fernández-Gárate J, Medina-Gómez O, et al. Hypertension, diabetes and obesity,
major risk factors for death in patients with COVID-19 in Mexico. Arch Med Res.
(2021) 52:443–9. doi: 10.1016/j.arcmed.2020.12.002

25. Zhang H, Zang C, Xu Z, Zhang Y, Xu J, Bian J, et al. Data-driven identification of
post-acute SARS-CoV-2 infection subphenotypes. Nat Med. (2023) 29:226–35.
doi: 10.1038/s41591-022-02116-3

26. Wang B, Li Y, Tian Y, Ju C, Xu X, Pei S. Novel pneumonia score based on a
machine learning model for predicting mortality in pneumonia patients on admission
to the intensive care unit. Respir Med. (2023) 217:107363. doi: 10.1016/
j.rmed.2023.107363

27. Balch J, Chen U, Liesenfeld O, Starostik P, Loftus T, Efron P, et al. Defining
critical illness using immunological endotypes in patients with and without sepsis: a
cohort study. Crit Care. (2023) 27:292. doi: 10.1186/s13054-023-04571-x

28. Guan C, Ma F, Chang S, Zhang J. Interpretable machine learning models for
predicting venous thromboembolism in the intensive care unit: an analysis based on
data from 207 centers. Crit Care. (2023) 27:406. doi: 10.1186/s13054-023-04683-4

29. Evrard B, Woillard J, Legras A, Bouaoud M, Gourraud M, Humeau A, et al.
Diagnostic, prognostic and clinical value of left ventricular radial strain to identify
paradoxical septal motion in ventilated patients with the acute respiratory distress
syndrome: an observational prospective multicenter study. Crit Care. (2023) 27:424.
doi: 10.1186/s13054-023-04716-y

30. Zhao Y, Zhang R, Zhong Y, Wang J, Weng Z, Luo H, et al. Statistical analysis and
machine learning prediction of disease outcomes for COVID-19 and pneumonia patients.
Front Cell infection Microbiol. (2022) 12:838749. doi: 10.3389/fcimb.2022.838749

31. Chen S, Zhou Z, Wang Y, Chen S, Jiang J. Machine learning-based identification
of cuproptosis-related markers and immune infiltration in severe community-acquired
pneumonia. Clin Respir J. (2023) 17:618–28. doi: 10.1111/crj.13633

32. Li W, Liu P, Liu H, Zhang F, Fu Y. Integrative analysis of genes reveals
endoplasmic reticulum stress-related immune responses involved in dilated
cardiomyopathy with fibrosis. Apoptosis. (2023) 28:1406–21. doi: 10.1007/s10495-
023-01871-z

33. Mo S, Jin B, Tseng Y, Lin L, Lin L, Shen X, et al. A precise molecular subtyping of
ulcerative colitis reveals the immune heterogeneity and predicts clinical drug responses.
J Trans Med. (2023) 21:466. doi: 10.1186/s12967-023-04326-w

34. Calfee C, Delucchi K, Parsons P, Thompson B, Ware L, Matthay M.
Subphenotypes in acute respiratory distress syndrome: latent class analysis of data
from two randomised controlled trials. Lancet Respir Med. (2014) 2:611–20.
doi: 10.1016/S2213-2600(14)70097-9

35. Méndez R, Menéndez R, Amara-Elori I, Feced L, Piró A, Ramıŕez P, et al.
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