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Elucidating the multifaceted role
of MGAT1 in hepatocellular
carcinoma: integrative single-cell
and spatial transcriptomics
reveal novel therapeutic insights
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Department, Shanxi Provincial People Hospital, Taiyuan, China
Background: Glycosyltransferase-associated genes play a crucial role in

hepatocellular carcinoma (HCC) pathogenesis. This study investigates their

impact on the tumor microenvironment and molecular mechanisms, offering

insights into innovative immunotherapeutic strategies for HCC.

Methods: We utilized cutting-edge single-cell and spatial transcriptomics to

examine HCC heterogeneity. Four single-cell scoring techniques were employed

to evaluate glycosyltransferase genes. Spatial transcriptomic findings were

validated, and bulk RNA-seq analysis was conducted to identify prognostic

glycosyltransferase-related genes and potential immunotherapeutic targets.

MGAT1’s role was further explored through various functional assays.

Results: Our analysis revealed diverse cell subpopulations in HCC with distinct

glycosyltransferase gene activities, particularly in macrophages. Key

glycosyltransferase genes specific to macrophages were identified. Temporal

analysis illustrated macrophage evolution during tumor progression, while spatial

transcriptomics highlighted reduced expression of these genes in core tumor

macrophages. Integrating scRNA-seq, bulk RNA-seq, and spatial transcriptomics,

MGAT1 emerged as a promising therapeutic target, showing significant potential

in HCC immunotherapy.
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Conclusion: This comprehensive study delves into glycosyltransferase-

associated genes in HCC, elucidating their critical roles in cellular dynamics

and immune cell interactions. Our findings open new avenues for

immunotherapeutic interventions and personalized HCC management,

pushing the boundaries of HCC immunotherapy.
KEYWORDS

spatial transcriptomics, single-cell RNA sequencing, hepatocellular carcinoma,
pathogenesis, multi-omics data, tumor heterogeneity, tumor microenvironment,
novel biomarkers
1 Introduction

Hepatocellular carcinoma (HCC) is recognized as a predominant

and formidable type of liver cancer (1, 2). It constitutes approximately

80% of all primary liver cancer cases worldwide, which equates to a

staggering increase of over 5 million new patients each year (3–5).

Notably, HCC is ranked fifth in terms of global incidence among all

cancers yet occupies a troubling second position in cancer-related

mortality, highlighting its bleak survival rates (6–9). This malignancy

stands out among the top five most common cancers due to its

concurrent rise in both occurrence and death rates (10). Exploration

into the complex causes of HCC unveils a diverse array of factors

including viral infections, genetic predispositions, environmental

influences, and epigenetic modifications. A series of key biomarkers

such as alpha-fetoprotein (AFP), GP73, FARSB, and serummiR-483-

5p have been identified through the years, signifying significant

advances in the detection, prognosis, and management of this

tumor (11–15). Despite the availability of an extensive range of

treatment options like surgery, radiation therapy, chemotherapy,

and targeted interventions, the inherently aggressive and variable

nature of HCCmakes managing and predicting its course particularly

challenging (16–18). This complexity persists despite advances in

therapeutic strategies, underscoring the formidable challenges in

treating HCC effectively (19).

Glycosyltransferases, comprising a broad spectrum of enzymes,

facilitate glycosylation processes that are critical to the

pathophysiological outcomes of various diseases (20).

Glycosylation, an intricate post-translational mechanism affecting

proteins and lipids, controls a range of cellular functions from

cancerous growth and invasion to angiogenesis and the

development of severe disorders (21, 22). Within the realm of

cancer, abnormal glycosylation is recognized as a distinctive

disruption, significantly affecting metastatic capabilities and the

ability of cells to evade immune detection (23). Recent research

highlights the complex relationships between aberrant glycosylation

of proteins and alterations in malignant cellular behaviors (24).

Furthermore, glycosyltransferases are pivotal in modulating how

the immune system recognizes cellular exteriors and, together with

cytokines from the immune microenvironment, regulate immune
02
responses by influencing glycosyltransferase activities within cells

and shaping the glycosylation patterns of IgG (25, 26). As the

therapeutic significance of glycosyltransferases gains attention,

exploring their regulatory complexities and features is becoming a

cutting-edge area of focus, promising to revolutionize and enhance

oncological treatment strategies (27, 28).

Macrophages, pivotal components of the immune system, excel

in conducting phagocytosis of pathogens, compromised cells, and

cancerous formations, thus maintaining immune balance and

eliminating abnormal cellular elements (29, 30). In the cancerous

environment, these guardians exhibit anti-tumor capabilities by

efficiently recognizing and engulfing cancer cells (31). These

macrophages are categorized into M1 and M2 phenotypes, with

M1 macrophages actively resisting tumor growth and M2

macrophages, paradoxically, promoting it (32, 33). Within the

chaotic realm of the tumor microenvironment, M2 macrophages

play a significant role, secreting cytokines such as interleukin-10

(IL-10) and transforming growth factor-b (TGF-b). These

substances suppress immune responses, weaken host defenses

against cancer (34), and facilitate tumor evasion from immune

surveillance (35). The prevalence and activity of macrophages carry

significant prognostic implications for cancer outcomes (36).

Therefore, detailed examination of macrophage roles in

hepatocellular carcinoma is crucial, potentially revealing new

paths to enhance and refine immunotherapeutic strategies.

Within the complex landscape of hepatocellular carcinoma

(HCC), immune guardians continuously identify and engage

aberrant cells, including cancerous ones (37). An intriguing tactic

employed by certain cancers, particularly those of the liver, involves

hijacking the PD-1/PD-L1 pathway to surreptitiously evade

immune surveillance (38, 39). Central to this advancement are the

anti-PD-1/PD-L1 agents, which adeptly modulate immune defenses

against HCC. These agents disrupt the interaction between PD-1

and PD-L1, thereby reinforcing the immune defense against liver

cancer (40). Specifically, these therapeutic agents enhance immune

function by lifting the inhibitory effects on T-cells imposed by

the PD-1 or PD-L1 proteins (41). Specifically, these therapeutic

agents enhance immune function by lifting the inhibitory effects on

T-cells imposed by the PD-1 or PD-L1 proteins (42–44).
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Furthermore, this category of drugs has demonstrated a remarkable

capacity to boost overall immune strength, halting the aggressive

spread of cancer cells and thus acting as guardians against disease

progression (45). However, the variability in therapeutic outcomes

highlights the diverse responses among patients. Consequently, the

critical challenge now lies in identifying which HCC patients are

likely to benefit most from immunotherapy, a key step towards

improving prognostic accuracy.

While recent technological advancements have significantly

enhanced our exploration of glycosyltransferases using

sophisticated molecular biology techniques such as transcriptome

and single-cell sequencing, the complex mechanisms through which

they influence tumorigenesis remain largely mysterious. The complex

cellular and immune environments within tumor landscapes (46)

highlight the intricate interactions between macrophages and

glycosyltransferases in cancer development. In our research, we

sought to unravel the genomic patterns associated with

macrophage- and glycosyltransferase-related genes in hepatocellular

carcinoma (HCC). Despite the capabilities of advanced tools like

single-cell sequencing, obtaining a spatially integrated understanding

of the disease has been challenging. Our research thus combined

single-cell with spatial transcriptome sequencing to deeply

understand the interplay of glycosyltransferase-related genes within

the immune context of HCC. Furthermore, we integrated insights

from bulk transcriptomics to develop a robust prognostic framework,

thereby enhancing the precision of therapeutic strategies in clinical

settings for HCC. Through comprehensive sequencing, we have

identified MGAT1 as a pivotal target for immunotherapy in HCC.

This discovery is substantiated by a robust combination of

bioinformatics analysis, cellular assays, and experimental validation.

Our findings elucidate the regulatory roles of glycosyltransferases in

HCC, offering a foundation for innovative immunotherapeutic and

molecular strategies aimed at these enzymes in HCC management.
2 Materials and methods

2.1 Source of raw data

For our HCC single-cell sequencing investigation, we

meticulously selected data from seven primary, untreated HCC

samples located in GSE112271 of the GEO database. Concurrently,

we obtained three corresponding normal tissue samples from

GSE182159, each representing a different case. Insights into the

anti-PD-1/PD-L1 immune response were garnered from the cohort

detailed by Cho et al. in GSE126044. The spatial transcriptomic

foundations, achieved via stRNA-seq for HCC on the 10x Visium

platform, were sourced from GSE224411. A pivotal study titled “An

integrative pan-cancer analysis of the molecular and biological

features of glycosyltransferases” provided a collection of 185

glycosyltransferase-related genes crucial to our research (47).

Moreover, we integrated bulk RNA-seq data of HCC from the

TCGA cohort, consisting of 424 samples, available through the

Xena portal (https://xena.ucsc.edu/). Additionally, disease-free

survival data associated with TCGA were extracted from the

cBioPortal repository (https://www.cbioportal.org).
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2.2 Single-cell sequencing data processing

In our single-cell RNA sequencing (scRNA-seq) evaluation, we

employed the R package “Seurat” for a meticulous cell-level analysis

(48, 49). We filtered out cells exhibiting over 5%mitochondrial gene

content or expressing between 200 and 2,500 genes to maintain data

integrity. To address batch discrepancies between tumor and

normal samples, we used the “harmony” R package. Following

normalization with Seurat’s “NormalizeData” function, the data

was transformed into Seurat objects. We identified the top 2000

variable genes using “FindVariableFeatures,” and then reduced

dimensionality through Principal Component Analysis (PCA)

using “RunPCA”. Significant principal components (PCs) were

determined via JackStraw analysis, with selection based on

variance ratios for subsequent cell clustering. Utilizing

“FindNeighbors” and “FindClusters”, we clustered the data and

visualized cell populations through the uniform manifold

approximation and projection (UMAP) technique (50). For

delineating cluster-specific genes, we applied a Wilcoxon rank-

sum test with “FindAllMarkers” and “FindMarkers” from the

“scran” R package (51), and annotated cell types using the

CellMarker database (http://xteam.xbio.top/CellMarker/index.jsp).

Intercellular communication dynamics, particularly regarding

HCC’s immune profile, were elucidated using the “CellChat” R

package, which simulated communication probabilities based on

gene expression and known ligand, receptor, and cofactor

interactions (52). We analyzed the repertoire of 185 glycosyltransferase-

associated genes across five scoring algorithms (AddModuleScore,

AUCell, UCell, singscore), employing “SingleR’s” “AddModuleScore”

for genome scoring based on mean gene expressions. The

methodologies of “AUCell”, “UCell”, and “singscore” focused on

gene enrichment ranking, unsupervised cell-type annotation, and

functional activity quantification within single cells or samples. This

multiplexed scoring approach enriched our analysis with robustness

and depth.

For macrophage-related analyses, we used the “limma”

R package to perform differential gene analysis, overlaying

the results with the glycosyltransferase gene set to identify

key macrophage-associated glycosyltransferase genes (53, 54).

Pseudotime trajectory mapping, elucidating cellular evolution

patterns pertinent to tumorigenesis, was achieved using the

“Monocle” package. Additionally, “CellCall” revealed integrated

intercellular communication networks, combining ligand-receptor

dialogue and intracellular transcription factor dynamics to

construct the L-R-TF axis, while integrating pathway activity

assessments to identify cellular pathway alterations driven by

intercellular communication.
2.3 Spatial transcriptome sequencing
data processing

We processed and analyzed spatial transcriptomic data using

the “Seurat” R package. The normalization and scaling of UMI

counts were performed, with key features identified through the
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“SCTransform” procedure. Dimensionality reduction was

conducted using the “RunPCA” method. Distinct subgroups and

their respective genes were visualized using the “SpatialFeaturePlot”

function. To explore cellular metabolic characteristics, we utilized

the “scMetabolism” R package, employing the VISION algorithm to

score each cell and determine metabolic pathway activity. This

detailed metabolic analysis revealed the complex functionalities and

variations within cells, providing a spatial and functional

understanding of the tumor.

The “Monocle” R package enabled the temporal analysis of

spatial transcriptomic data, uncovering the developmental and

differentiation trajectories of spatially distinct cell clusters.

Additionally, we employed the Python-based “Scanpy” suite,

which integrates preprocessing, visualization, clustering, time-

series extrapolation, and differential expression assessment,

thereby enhancing the depth of single-cell analysis.

To add another layer of analysis, we used the “stlearn” tool from

the University of Queensland’s Institute of Molecular Biosciences.

This tool combines gene expression data, tissue morphology, and

spatial coordinates, allowing for robust cell type identification,

tissue-centric cellular reconstructions, evolutionary pathway

inference, and identification of regions with significant

intercellular interactions. The integration through “stlearn”

provided profound insights into cellular interactions, enriched by

ligand pair data, gene expression profiles, spatial topology, and

nuances in spatial cellular distribution.
2.4 Spatial transcriptome data combined
with single-cell sequencing data for
deconvolution analysis

Deconvolution analysis, a technique for discerning cellular

proportions within heterogeneous samples, attains enhanced

precision by integrating single-cell and spatial transcriptomic

datasets. Single-cell sequencing elucidates the cellular diversity

within tissues, while spatial transcriptomics pinpoints the precise

locations of these cells, capturing spatial complexities. By leveraging

advanced deconvolution methods such as robust cell type

decomposition (RCTD) available in the “spacerxr” R package, we

gain unparalleled insights into the spatial intricacies and

heterogeneity of tumors. Implementation begins with establishing

a well-annotated single-cell transcriptomic dataset. Spatial

transcriptomic data are then converted into SpatialRNA

constructs within the RCTD framework, facilitating the

extrapolation of gene expression landscapes and cellular

proportions in spatial contexts using the least squares method.

The outputs of the RCTD deconvolution analysis lay the

groundwork for investigating spatial cellular dynamics through

the “mistyR” R package. This toolset explores the spatial

relationships of cellular assemblies within tissues, hypothesizing

potential cell-to-cell interactions based on established gene

expression patterns and the spatial distribution of various

cellular entities.
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2.5 HCC macrophage glycosyltransferase
key genes combined with bulk data for
prognostic and immunotherapy analysis

We examined the potential prognostic significance of the

glycosyltransferase gene MGAT1 using data from TCGA. The

“survival” R package was employed to construct a survival

function, with Kaplan-Meier curves visualized via the “Survival”

R package (55). To evaluate MGAT1’s impact on immunotherapy

efficacy, we utilized the TIDE platform—a computational tool that

leverages TCGA data to assess immune evasion mechanisms. TIDE

identifies two primary modes of immune evasion: immune

dysfunction and immune rejection, providing prognostic insights

into patient responses to immune checkpoint inhibitors targeting

PD-1, PD-L1, and CTLA-4. This analysis enhanced our

comprehension of the relationship between MGAT1 expression

and the effectiveness of immunotherapeutic treatments.
2.6 Differential analysis and prognosis of
MGAT1 gene between tumor and
normal tissues

To elucidate the differential expression and prognostic value of

the glycosyltransferase-associated gene MGAT1 in cancerous versus

healthy tissues, we conducted comprehensive analyses using TCGA

data. The “Limma” R package was utilized to determine the

differential expression of MGAT1 between normal and tumor

cohorts (56). Survival outcomes were visualized with Kaplan-

Meier curves, generated using the “Survival” R package. We

developed a nomogram that integrates MGAT1 expression with

clinical metadata, using the “dplyr” R package, to offer a detailed

perspective on patient prognosis. To evaluate the utility of the

nomogram, we performed decision curve analyses (DCA) for 1, 3,

and 5-year survival intervals using the “DCA” R package.

Additionally, the predictive performance of MGAT1 was assessed

through ROC curve analyses, plotted with the “pROC” R package.

For visual confirmation, immunohistochemical images contrasting

hepatocellular carcinoma with normal tissues were obtained from

The Human Protein Atlas (https://www.proteinatlas.org/).
2.7 Cell culture and transient transfection

Human hepatocellular carcinoma cell lines HepG2 and Huh7,

along with the non-transformed epithelial cell line HL7702, were

cultured in Dulbecco’s modified Eagle’s medium (DMEM, GIBCO)

supplemented with 10% fetal bovine serum (FBS; Hyclone) and 100

U/L penicillin and 100 mg/L streptomycin (Thermo Fisher). The

cells were maintained at 37°C in a 5% CO2 environment. For

transient transfection studies, Lipofectamine 3000 (Invitrogen,

Carlsbad, CA, USA) was used following the manufacturer’s

protocol to introduce Negative Control (NC) and MGAT1 siRNA

constructs (RiboBio, Guangzhou, China) into the HCC cells.
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2.8 qRT-PCR

RNA was extracted from samples using the RNA Eazy Fast

Tissue/Cell Kit (TIANGEN Biotech Co., Beijing), adhering to

the supplier’s guidelines. cDNA synthesis was performed using

the FastKing RT Kit (TIANGEN Biotech Co., Beijing) as per the

provided instructions (57). Quantitative PCR assays were

conducted using the SuperReal PreMix Plus (TIANGEN Biotech

Co., Beijing) on the StepOnePlus Real-Time PCR System. The

amplification protocol included an initial denaturation at 95°C for

15 minutes, followed by 40 cycles of 95°C for 10 seconds, 72°C for

20 seconds, and 60°C for 20 seconds.
2.9 CCK-8 assay

Cell viability was assessed using the Cell Counting Kit-8 (CCK-

8) assay (58). Cells were seeded at a density of 1500 cells per well in

200 µl of complete growth medium in 96-well plates and incubated

at 37°C. After specific experimental treatments, 20 µl of CCK-8

solution (Beyotime, Shanghai, China) was added to each well.

Following a 2-hour incubation, optical density at 450nm

(OD450nm) was measured using a microplate spectrophotometer.
2.10 Transwell assay

To evaluate cellular invasion and migration, 1×10^5 cells were

seeded into transwell inserts, with Matrigel-coating (BD

Biosciences, San Jose, CA) used for the invasion assay and

uncoated inserts for the migration assay. The upper chamber

contained serum-free medium, while the lower chamber was filled

with complete DMEM. After a 24-hour incubation, cells that had

migrated through the membrane were fixed with 4%

paraformaldehyde and stained with 0.1% crystal violet (59). Cells

that had traversed the membrane were counted under a light

microscope (Thermo Fisher, Waltham, MA, USA).
2.11 Statistical analysis

Statistical analyses were conducted using R (version 4.3.0) with

pertinent libraries, complemented by Python’s PyCharm integrated

development environment. Continuous variables between paired

groups were compared using the nonparametric Wilcoxon rank

sum test. Spearman’s correlation coefficients were employed to

assess correlations. A significance threshold of P<0.05 was applied

across all analyses. Data from the CCK-8 assay were analyzed

utilizing GraphPad Prism Software (version 8.3.0). Results were

presented as means ± standard deviation (SD) from three

independent experiments and analyzed using the Student’s t-test,

with p-values <0.05 considered statistically significant.
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3 Results

3.1 Analysis of HCC single-cell
sequencing results

Figure 1 outlines the structured workflow of our study. We

utilized single-cell data from seven HCC samples (GSE224411 and

GSE182159 repositories) and compared them with three normal

tissue samples. This foundational dataset facilitated the exploration

of the differences between tumorigenic and non-tumorigenic cells,

offering insights into the complex heterogeneity of HCC. Following

rigorous quality control to exclude underperforming cells, we

normalized the data and addressed batch effects, ultimately

curating the top 2000 variably expressed genes for detailed

analysis. Using Principal Component Analysis (PCA), we

identified the ten most significant principal components based on

P-value thresholds (Figure 2A). Employing the UMAP technique,

we revealed 28 unique cellular clusters from a total of 62,511 cells

(Figure 2B). These clusters were manually annotated, resulting in

the identification of six distinct cellular phenotypes, visualized

through tSNE dimensional reduction (Figure 2C). The integration

of manual annotations with dimensional clustering allowed for

precise cell type delineation and spatial representation (Figure 2D).

Our analysis highlighted a shift in cellular composition, with a

noticeable decrease in T cells and an increase in macrophages and

monocytes in tumor samples compared to normal ones (Figure 2E).

Gene ontology enrichment analysis of annotated cell types revealed

key functional enrichments: macrophages were associated with

immunoglobulin-mediated immune responses, T cells showed

heightened viral reactivity, and both T cells and B cells exhibited

robust immune activation signatures (Figure 2F). This

comprehensive framework provides an extensive view of cellular

dynamics and interactions within the HCC environment.
3.2 Single-cell sequencing combined with
glycosyltransferase gene set screening for
HCC-related feature genes

We utilized four prominent algorithms—AUCell, UCell,

singscore, and AddModuleScore—to score the single-cell dataset

based on a curated panel of 185 glycosyltransferase-associated

genes. Integrating insights from these algorithms, we identified

intriguing patterns, particularly in macrophages, which showed a

significant reduction in glycosyltransferase gene transcriptional

activity within HCC (Figure 3A). This integration illuminated

distinct expression landscapes, depicted through violin plots that

captured varying transcriptional footprints between HCC and

normal samples. Notably, macrophages, T cells, and monocytes

displayed significant transcriptional differences between HCC and

normal samples, with a pervasive reduction in transcriptional

activity across HCC subsets compared to normal counterparts

(Figure 3B). Focusing on macrophages, we identified key

glycosyltransferase-related genes, with seven genes prominently
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expressed in normal macrophages. Among these, MGAT1 emerged

as the most significantly modulated gene (Figure 3C). Based on

these findings, subsequent investigations will prioritize MGAT1,

which showed a marked decrease in expression in HCC-

associated macrophages.
3.3 CellChat dissects cellular
communication in the tumor
immune microenvironment

Utilizing UMAP analysis, we quantified the expression of

glycosyltransferase-associated signature genes, confirming that

none were notably overexpressed in macrophages, consistent with

our initial observations (Figure 4A). Further, we mapped the

cellular communication landscape, visualizing interaction

magnitudes and affiliations among cellular clusters (Figure 4B).

This analysis highlighted the central role of macrophages in

interactions with various cellular counterparts (Figure 4C). To

gain insights into intercellular communication and ligand-

receptor dynamics, we refined our single-cell data analysis. A key

observation was the prominent association of MHC-I with cellular

clusters (Figure 4D). Additionally, MHC-I’s influence on signaling

pathways was underscored by the HLA-B-CD8A interaction,

shaping our future research direction (Figure 4E). The relational

matrix of HLA-B-CD8A among cellular clusters revealed a unique

affinity between T cells and this ligand-receptor pair within the

macrophage context (Figure 4F). Evaluating the ingress and egress

interaction intensities for HLA-B-CD8A across cellular groups, T

cells exhibited the highest combined association (Figure 4G).

Heatmaps depicting signaling directionality further revealed

intricate interactions among cellular groups, with a notable link

consistently observed between T cells and MHC-I (Figure 4H). Our

forthcoming research will focus on deciphering the interactions

between macrophage-derived HLA-B ligands and CD8A receptors

on T cells in the progression of HCC.
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3.4 Pseudotime analysis and intercellular
communication analysis

To delineate cellular differentiation and evolutionary

trajectories at the single-cell level, we utilized pseudotime and cell

trajectory analyses, constructing developmental pathways for cells.

Heatmaps were employed to depict glycosyltransferase-associated

gene expression across developmental stages, revealing elevated

MGAT1 expression in early tumorigenic phases (Figure 5A).

Analysis of macrophage gene expression in HCC versus normal

samples highlighted significant disparities in glycosyltransferase-

linked genes (Figure 5B). Using the “monocle” R package, we traced

the spatial-temporal evolution of macrophages, observing a

systematic increase in the pseudotime continuum from initial to

terminal phases (Figure 5C). Integrating this with Figure 5A, we

identified seven cellular subgroups, each representing unique

transitional states in macrophage maturation. Notably, clusters 1,

3, and 5, corresponding to early, intermediate, and advanced

cellular phases, exhibited distinct evolutionary paths with

increasing pseudotime (Figure 5D). Further examination revealed

a transition: clusters dominant in normal samples (clusters 5 and 9)

shifted to those prevalent in HCC (clusters 0 and 2) as pseudotime

advanced (Figure 5E). These findings underscore a systematic

progression from normal to tumorigenic clusters, as reflected

by glycosyltransferase-centric genes in pseudotime and

trajectory analyses.

Exploring macrophage interactions with various cell types, we

categorized them based on glycosyltransferase gene expression into

high (GThigh) and low (GTlow) subsets. Pathway enrichment

analys is in GThighMacrophages and epithel ia l ce l l s

predominantly highlighted the oncogenesis-associated PI3K-Akt

signaling pathway (Figure 5F). Circle plots illustrated the ligand-

receptor interactions and their magnitudes across cellular

phenotypes (Figure 5G). Comparing ligand-receptor interaction

heatmaps between GTlowMacrophages and other cells with

GThighMacrophages and their counterparts revealed a distinct

IGF1-INSR interaction specifically in GThighMacrophages versus
FIGURE 1

Flow chart of this study.
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FIGURE 2

Integration of Single-Cell Sequencing and Glycosyltransferase Gene Set Filtering for Identification of HCC-Related Feature Genes. (A) Gene filtering
of the single-cell expression matrix is depicted in the left panel, accompanied by linear dimensionality reduction through PCA clustering of the
samples. The distribution of the top 20 ranked principal components (PCs) is illustrated in the right panel. (B) Non-linear dimensionality reduction
utilizing UMAP yields a clustering of all single-cell data into 28 distinct cell clusters. (C) Moving forward, we meticulously conducted manual
annotation of these 28 cell clusters, initially through dimensionality reduction clustering employing tSNE, resulting in the categorization of these
subpopulations into six distinct cell types, elegantly portrayed within a 3D spatial context. (D) This manual annotation process was further extended
through dimensionality reduction clustering employing UMAP, culminating in the categorization of these 28 cell subpopulations into the same six
cell types. (E) In parallel, we scrutinized the distribution of cell proportions across the six identified cell types in diverse samples. (F) Subsequently, we
subjected the six cell types obtained from annotation to enrichment analysis, where the leftmost line graphs delineate the transition from
macrophages to B_cells in a top-to-bottom arrangement. Simultaneously, the accompanying heatmaps provided insights into gene expression
patterns relative to each cell type, while the rightmost section illuminated the functional pathways enriched in each cell type, inclusive of their
corresponding highly expressed genes.
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epithelial cells (Figure 5H). Building on this, we constructed Sankey

diagrams to encapsulate ligand-receptor-transcription factor

networks, highlighting the crosstalk between GThighMacrophages

and epithelial cells (Figure 5I).
3.5 Spatial transcriptome sequencing
unites macrophage glycosyltransferase
feature genes

We obtained spatial transcriptome sequencing data specific to

an HCC patient from the GSE224411 dataset within the GEO

database. Ensuring data integrity, rigorous quality control

measures were applied to this spatial transcriptome dataset. This

scrutiny provided spatial insights into both cellular distribution

(Figure 6A) and mitochondrial gene dispersion (Figure 6B). Post-
Frontiers in Immunology 08
quality control, the data underwent cleansing to exclude

mitochondrial and ribosomal genes, followed by normalization

and depth correction via the SCTransform methodology. This led

to the identification of seven spatially distinct cell clusters,

visualized through UMAP projections (Figures 6C, D).

Integrating HCC macrophage-centric glycosyltransferase feature

genes from single-cell analysis with these spatial clusters

culminated in a clear bubble map representation (Figure 6E). To

investigate metabolic dynamics across cell clusters, we used the

“scMetabolism” R package (Figure 6F), focusing on glycan

degradation due to its pivotal role in tumor progression, immune

evasion, and cellular signaling. This analysis resulted in a spatial

representation of glycan degradation activity (Figure 6G). Given the

low expression of glycosyltransferase-associated genes in HCC and

the prominent glycan degradation functionality in cell cluster 5, we

inferred that cell cluster 5 likely represents normal tissue.
B

C

A

FIGURE 3

(A) Correlation analysis is visually represented through bubble plots. These plots exhibit the correlations, both positive and negative, between the
four single-cell scoring methods and overall scores with different cell types. Bubble size corresponds to the strength of correlation, transitioning
from blue (negative) to red (positive). (B) Glycosyltransferase-related genes are introduced, showcasing their expression disparities across different
cell types within the HCC and normal groups. The HCC group is denoted in blue, while the normal group is depicted in yellow. (C) Violin plot of
glycosyltransferase-related genes highlights their significant expression differences in macrophages between the HCC and normal groups. *p < 0.05,
****p < 0.0001. ns, no significance.
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3.6 RCTD deconvolution analysis and
spatial cell development analysis

To bridge the resolution gap between spatial transcriptome

technologies and single-cell sequencing, we employed the RCTD

deconvolution technique alongside single-cell data to deduce cell type

fractions within heterogeneous samples. The meticulous RCTD

deconvolution identified two macrophage classifications,
Frontiers in Immunology 09
GThighMacrophages and GTlowMacrophages, based on

glycosyltransferase gene expression. Utilizing the “Stlearn” and

“Scanpy” Python packages, the spatial transcriptome data underwent

clustering and normalization, revealing eight distinct cell clusters

(Figure 7A). On a broader scale, GTlowMacrophages were

predominantly found in cell cluster 0, while GThighMacrophages

were mainly in cell cluster 7 (Figure 7B). Tracing the cell

developmental trajectory spatially, a clear shift from cell cluster 0 to
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FIGURE 4

HCC cellchat cell communication analysis. (A) Visualization of significantly differentially expressed glycosyltransferase-related genes in macrophages
in UMAP nonlinear downward clustering, with darker colors representing higher expression of the gene within the region. (B) Cell-cell interactions.
The thickness of the interconnecting lines and the numbers on them represent the number of interactions between cells. (C) Hierarchical diagram
showing the hierarchical relationship of the six cell types in cellular communication. (D) Dot plot showing ligand-receptor pairs that are prominent in
cellular communication; ligand-receptor pairs are categorized according to ligand-receptor family pairs. (E) Histogram of the contribution of each
ligand-receptor pair. (F) Chord diagrams of HLA-B-CD8A intercellular communication in six cell types. (G) Dot plots of input and output intensities in
intercellular interactions in six cell types. (H) Heatmap showing the overall outward and inward signaling patterns of the six cell types.
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cell cluster 7 within tumor regions was evident (Figure 7C). Delving

deeper into spatial cellular delineations, Leiden clustering was used,

resulting in 11 intricate cell clusters (Figure 7D). The intercellular

network topology illustrated the complex web of cellular interactions
Frontiers in Immunology 10
(Figure 7E). Notably, an intercellular correlation intensity heatmap

revealed an inverse relationship between GTlowMacrophages and T

cells, suggesting reduced T cell expression in HCC samples, potentially

influencing HCC progression (Figure 7F). Utilizing the “mistyR” R
B
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FIGURE 5

Pseudotime analysis and cell-to-cell communication analysis. (A) Developmental heatmap of macrophage glycosyltransferase-related genes, from
left to right indicates time progression, while the color from blue to red indicates low to high expression. (B) Comparative Figure of UMAP nonlinear
descending clustering of macrophages between HCC and normal groups. (C) Figure of macrophage pseudotime, and the color from black to blue
indicates the progression of time. (D) Developmental Figure of cell trajectories of tumor macrophages, which in combination with A and C can
observe the developmental trajectories of different macrophage populations in tumors. (E) Developmental Figure of macrophage trajectories in
normal and tumor groups, combined with B and C to observe the developmental trajectories of different macrophage populations in normal and
tumor groups. (F) Bubble plots of the correlation of 30 metabolic pathways between different cell types and macrophages with high/low expression
of glycosyltransferase-related genes; the size of the bubbles represents the size of the correlation, whereas the color from blue to red indicates
from negative to positive correlation. (G) Correlation circle plots between different cell types. (H) Heatmap of cell-cell ligand-receptor correlation.
(I) Ligand-receptor-transcription factor Sankey Figure between macrophages and epithelial cells with high expression of glycosyltransferase-
related genes.
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toolkit, we explored spatial cell-cell interactions, scrutinizing

enhancement metrics across diverse cell types (Figure 7G). Further

insights into contributions, interactions, and cell-type correlations were

obtained through the intra, juxta_5, and para_15 functionalities within

“mistyR” (Figure 7H). Contribution histograms vividly articulated

correlation magnitudes and interdependencies across cell types,

highlighting the significance of intra and para_15 (Figures 7I–L).
3.7 SPOTlight deconvolution analysis with
spatial pseudotime analysis

To map the spatial expression trajectories of various cellular

entities, we applied the SPOTlight deconvolution technique,
Frontiers in Immunology 11
correlating annotated single-cell data with spatial datasets. This

analysis illuminated the expression dynamics across different cell

types, including B-cells, epithelial cells, monocytes, smooth muscle

cells, T-cells, MGAT1-Macrophages, and MGAT1+Macrophages

(Figures 8A–G). Through dimensionality reduction clustering, we

identified seven distinct spatial cell conglomerates (Figure 8H).

Insights from Figures 8A–H revealed that MGAT1-Macrophages

exhibited significantly elevated expression within the tumor

environment, corroborating our earlier single-cell analysis

highlighting MGAT1’s role in HCC macrophages.

Proceeding to cell trajectory analysis using the discriminant

downscaling tree (Figure 8I), we observed that clusters with high

MGAT1-Macrophage expression (Clusters 1, 3, and 6) underwent a

transformative journey in pseudotime. As pseudotime progressed,
B
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FIGURE 6

Spatial transcriptome sequencing associates Macrophages-related glycosyltransferase genes. (A) The left Figure shows a violin plot of cell number in
spatial transcriptome data after QC, and the right Figure visualizes cell number on tissue sections of spatial transcriptome after QC, with blue to red
indicating a gradual increase in cell number. (B) The left Figure shows a violin plot of mitochondrial genes in the spatial transcriptome data, and the
right Figure visualizes the expression of mitochondrial genes on spatial transcriptome tissue sections, with blue to red indicating low to high gene
expression. (C) The spatial transcriptome data were classified into seven cell clusters after UMAP nonlinear dimensionality reduction clustering.
(D) Projections of the seven cell clusters after dimensionality reduction clustering on spatial transcriptome tissue sections. (E) Bubble plots of
correlation of macrophage glycosyltransferase-related gene expression in the 7 cell populations, the size of the bubbles represents the correlation
size, while the color from blue to red indicates the correlation from negative to positive correlation. (F) Correlation bubble plots between 7 cell
populations and 30 metabolic pathways. (G) Visual expression Figure of glycan_degradation metabolic pathways selected from F in spatial
transcriptome tissue sections.
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cluster 1 bifurcated into clusters 3 and 6 at node 1 (Figures 8J, K).

Notably, examining the pseudotime dynamics of the MGAT1 gene

alone revealed a marked decrease in MGAT1 expression as cluster 1

transitioned into cluster 6, and further diminished expression from

cluster 6 to cluster 3 (Figure 8L). These findings suggest that cluster

1 represents the primary tumor state, which evolves into clusters 3

and 6 over time, potentially driving tumor progression.
3.8 Spatial cell-talk analysis

Using the RCTD deconvolution strategy, we integrated single-

cell datasets with spatial transcriptomic data, achieving precise

deconvolution of MGAT1+Macrophages, MGAT1-Macrophages,

and other annotated cellular entities (Figure 9A). Investigating

ligand-receptor interactions, we utilized the “Stlearn” toolkit in

Python, revealing the top 50 ligand-receptor pairs, each highlighted

with a spatial score (Figure 9B). The SERPINA1_LRP1 pair

emerged as the most significant interaction within the spatial
Frontiers in Immunology 12
context, prompting a detailed exploration of spatial cellular

dialogues. Spatial enrichment analyses focused on the

SERPINA1_LRP1 pair revealed a strong concentration within the

tumor area (Figure 9C). Focusing on the reduced MGAT1

expression in tumor regions, we analyzed the interaction between

MGAT1-Macrophages and monocytes, mediated by the

SERPINA1_LRP1 ligand-receptor pair (Figures 9D, E). This

detailed analysis unravels the complex spatial cellular interactions

within the tumor microenvironment, highlighting the potential role

of MGAT1-Macrophages and monocytes in the context of HCC.
3.9 MGAT1+Macrophages combined with
bulk data for prognostic and
immunotherapeutic target analysis

To assess the prognostic significance of MGAT1+Macrophages

in HCC, we stratified patients into high and low expression cohorts
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FIGURE 7

RCTD deconvolution analysis with spatial cell development analysis. (A) Louvain clustering divides the spatial transcriptome data into 8 cell clusters.
(B) Spatial transcriptome tissue sections presenting cell types in single cell data deconvoluted to cell types in spatial transcriptome data by RCTD
deconvolution method. (C) Development and transfer of cluster 0 to cluster 7 in spatial transcriptome tissue sections. (D) Leiden clustering divides
the spatial transcriptome data into 11 cell clusters. (E) Correlation network diagram between different cell types. (F) Heatmap of correlation between
different cell types. (G) The custom R package “mistyR” analyzes the improvement stats of different cell types and displays their correlation sizes. (H)
Histogram of the contribution of the three customized functions intra, juxta_5 and para_15 to the cellular importance measure. (I) Heatmap of
correlations between different cell types computed by intra. (J) Correlations between different cell types calculated by intra. (K) Heatmap of
correlations between different cell types calculated by para_15. (L) Correlations between different types of cells calculated by para_15.
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based on an optimal threshold (P<0.05). Kaplan-Meier curves

indicated that the low MGAT1+Macrophage expression cohort

had poorer survival outcomes compared to the high-expression

cohort (Figure 10A). This finding aligns with our previous

observations, suggesting that low MGAT1 expression in HCC

correlates with poor prognosis. Interestingly, a notable difference

in TIDE scores was observed between the low and high MGAT1

+Macrophage expression groups, indicating that lower levels of

MGAT1+Macrophages might predict better responses to

immunotherapy (Figure 10B). Correlation matrices showed

positive associations between MGAT1+Macrophages and markers

such as CD8, CD274, CAF, IFNG, Merck18, and Dysfunction

(Figures 10C–H). Conversely, negative associations were found
Frontiers in Immunology 13
with markers such as TAM.M2, MSI.Expr.Sig, Exclusion, and

MDSC (Figures 10I–L). These results underscore the critical role

of MGAT1+Macrophages in the tumor microenvironment,

elucidating their potential impact on HCC prognosis and their

role in modulating immunotherapeutic responses.
3.10 Differences in MGAT1 expression
between tumor samples and
normal samples

To delve deeper into the disparities in MGAT1 gene expression

between tumor and normal tissues, we analyzed TCGA bulk datasets
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FIGURE 8

SPOTlight deconvolution analysis with spatial pseudotime analysis. (A–G) Expression of different cell types in single-cell data visualized by SPOTlight
deconvolution on spatial transcriptome tissue sections. (H) louvain clustering of seven cell populations on spatial transcriptome tissue sections for
presentation. (I) Cell trajectory analysis of macrophage monocytes shows different cell clusters with distinct cell lineages. (J) Cell development
trajectories of three populations of cells highly expressing MGAT1-negative macrophages. (K) Pseudotime course of three populations of cells with
high expression of MGAT1 macrophages, with gradual progression in time indicated from black to blue. (L) Changes in MGAT1 gene expression in
cluster 1, cluster 3, and cluster 6 as the pseudotime progresses.
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for enhanced visualization. This analysis revealed a significant increase

in MGAT1 expression in tumor samples compared to normal tissues

(Figure 11A). A similar pattern was observed in paired sample

comparisons, where tumor specimens consistently exhibited higher

MGAT1 expression than their normal counterparts (Figure 11B).

Kaplan-Meier plots indicated that lower MGAT1 expression was

associated with better survival outcomes, contrasting sharply with

those exhibiting higher expression (Figure 11C). By integrating

MGAT1 expression profiles with various clinical metrics, we

developed a precision-guided nomogram (Figure 11D), whose
Frontiers in Immunology 14
predictive accuracy was validated by well-calibrated decision curves

at 1, 3, and 5-year intervals (Figure 11E). The diagnostic capability of

MGAT1 was further corroborated by a receiver operating characteristic

(ROC) curve, which demonstrated an impressive AUC of 0.819

(Figure 11F). Immunohistochemical assays comparing healthy liver

sections with hepatocarcinoma tissues highlighted the elevated

presence of MGAT1 in tumor matrices (Figures 11G, H). These

findings collectively underscore the pivotal role of MGAT1 in

hepatocarcinoma, emphasizing its importance as a diagnostic and

prognostic marker.
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FIGURE 9

Spatial cell-talk analysis. (A) Macrophages fused with the MGAT1 gene and other cell types were visualized by deconvolution from single-cell data
integrated into spatial transcriptome data. (B) Top 50 ligand-receptor pairs among MGAT1 macrophages. (C) Expression of the top-ranked
ligandreceptor pair SERPINA1_LRP1 in spatial transcriptome tissue sections in (B). (D) Network Figure of cell-cell ligand-receptor interactions.
(E) Circle diagram of cell-cell interactions.
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3.11 Analysis of MGAT1 immune infiltration
and immunotherapy

To understand the immune landscape influenced by MGAT1

within the tumor environment and its implications for

immunotherapeutic outcomes, we conducted an integrative

analysis combining TCGA bulk data with supplementary datasets.

Our assessment revealed a strong correlation between MGAT1

expression and macrophage infiltration within tumor samples

(Figure 12A). Further investigation of MGAT1’s relationship with

the immunotherapeutic target PD-1, using the GEO dataset

GSE126044, revealed a significant association. Patients in the Cho

et al. dataset with high MGAT1 expression showed increased

responsiveness to Anti-PD-1/PD-L1 treatments (Figure 12B).

Supporting MGAT1’s potential as a predictive biomarker, a ROC

curve indicated a high AUC of 0.891, demonstrating its efficacy in

predicting responsiveness to Anti-PD-1/PD-L1 therapies

(Figure 12C). Additionally, a Progression-Free Survival (PFS)

analysis within the Cho et al. cohort highlighted that individuals
Frontiers in Immunology 15
with elevated MGAT1 expression had better PFS outcomes

following Anti-PD-1/PD-L1 therapy, compared to those with

lower MGAT1 expression (Figure 12D). These findings

collectively emphasize the crucial role of MGAT1 in shaping

tumor-immune interactions and its influence on the effectiveness

of immunotherapy.
3.12 Experimental verification that MGAT1
promotes proliferation and migration of
hepatocellular carcinoma cells

qPCR validation revealed a significant upregulation of MGAT1

expression in hepatocellular carcinoma cell lines HepG2 and Huh7

compared to normal hepatocytes, with statistical significance

supporting this observation (Figure 13A). This finding is

consistent with our bioinformatic analyses. To investigate the role

of MGAT1 in hepatocellular carcinoma pathophysiology, we

conducted a series of in vitro assays.
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FIGURE 10

MGAT1-based prognosis with immunotherapy target analysis. (A) K-M curves showing the change in survival likelihood over time progression
between high/low expressing MGAT1 positive macrophages. (B) Box line plots of immunotherapy for the determination of therapeutic efficacy for
MGAT1-positive macrophages with different levels of expression. (C–L) Scatter plots of correlations between MGAT1-positive macrophages and
corresponding immune targets, functions, or drugs.
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The CCK-8 assay demonstrated a significant reduction in

cellular proliferation over time following MGAT1 knockdown in

both HepG2 and Huh7 cell lines (Figures 13B, C). Additionally,

transwell assays showed a marked decrease in the migratory and

invasive capabilities of MGAT1-depleted hepatocellular carcinoma

cells (Figures 13D, E). These results collectively highlight the

oncogenic role of MGAT1, emphasizing its importance in

promoting the proliferation, invasiveness, and motility of

hepatocellular carcinoma cells.
Frontiers in Immunology 16
4 Discussion

Glycosyltransferases execute essential cellular modifications,

adjusting the glycosylation processes of proteins, lipids, and

nucleic acids, thereby influencing their functional integrity and

stability (60–62). These enzymes are involved in a wide range of

biological activities, including cell signaling, cellular interactions,

adhesion, tissue development, and cancerous transformations (63–

66). Given the crucial role of oligosaccharide structures—products
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FIGURE 11

MGAT1 Gene Expression in Tumor and Normal Samples. (A) Differential MGAT1 Gene Expression: A box line plot is presented, elucidating the
variance in MGAT1 gene expression between samples derived from normal and HCC tissues. (B) Differential expression of MGAT1 gene in paired
tumor samples and normal samples. (C) Survival Analysis: Kaplan-Meier curves elegantly portray the dynamic shift in survival probabilities among
HCC patients based on their MGAT1 expression levels. The curves discernibly contrast the outcomes for patients exhibiting high versus low MGAT1
expression as time progresses. (D) The nomogram constructed by combining MGAT1 gene and multiple clinical information. (E) Decision calibration
curves at 1, 3 and 5 years. (F) Diagnostic ROC curves for the MGAT1 gene. (G) Immunohistochemical Profiling - Normal Liver Tissues:
Immunohistochemical results thoughtfully illustrate the presence and localization of the MGAT1 gene product in tissues from healthy liver
specimens. (H) Immunohistochemical Profiling – Liver Cancer Tissues: Immunohistochemical findings provide insights into the distribution and
intensity of the MGAT1 gene product within tissues afflicted by liver cancer. ***p < 0.001.
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of glycosylation—in facilitating cellular communication and

immune regulation, glycosyltransferases have become central to

mechanistic disease studies and therapeutic design (67–69).

Notably, reduced glycosyltransferase activity has been linked to

decreased expression of intercellular adhesion molecules, leading to

increased motility and invasiveness of cancer cells (70, 71). These

enzymes also govern the glycosylation patterns of tumor antigens,

affecting the complex interactions of tumor immune surveillance

and evasion (72, 73). In tandem, these enzymes exert regulatory

control over the glycosylation finesse of tumor epitopes, influencing

the intricate dance of tumor immunosurveillance and evasion (74).

Furthermore, the abnormal expression of glycosyltransferases can

trigger a series of oncogenic signals, promoting cancer spread

through epithelial-mesenchymal transition processes (24).

However, the detailed functions of glycosyltransferases in the

development of hepatocellular carcinoma (HCC) remain largely

unexplored. Therefore, comprehensive studies focusing on their
Frontiers in Immunology 17
relationship with HCC are essential to uncover deeper insights into

HCC pathobiology and to propose novel therapeutic strategies.

Conventional genomic and transcriptomic approaches, despite

their transformative impact, have frequently struggled to accurately

depict cellular diversity. These methodologies often produce

ensemble reads from large cell groups, resulting in averaged

transcriptional profiles that obscure individual cellular

characteristics (75). The emergence of single-cell sequencing has

revolutionized this field, enabling detailed analysis of cellular

heterogeneity, discovery of previously unidentified cell types,

tracking of cellular development, and identification of aberrant

cell populations in diseases (76). Nevertheless, a significant

limitation of single-cell sequencing is its lack of spatial context,

leaving the spatial organization of complex HCC tissue

architectures unexplored. Addressing this gap, spatial

transcriptomics has been introduced, combining RNA sequencing

precision with spatial resolution to create detailed transcriptional
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FIGURE 12

Analysis of MGAT1 immune infiltration and immunotherapy. (A) It begins by portraying immune infiltration patterns driven by the MGAT1 gene
through a lollipop figure. (B) Subsequently, the introduction of an external cohort to investigate the Anti-PD-1/PD-L1 immune response associated
with MGAT1 is presented via a box-and-line plot. (C) Further, the figure delves into the evaluation of MGAT1’s predictive capacity as a biomarker for
discerning Anti-PD-1/PD-L1 responsiveness across diverse external cohorts, effectively utilizing ROC curves. (D) Lastly, the analysis extends to
explore Progression-Free Survival (PFS) in the context of Anti-PD-1/PD-L1 therapy, unveiling the influence of MGAT1 gene expression on patient
outcomes within an external cohort. Collectively, these integrated visualizations underscore MGAT1’s multifaceted role in shaping immune responses
and its consequential relevance within the domain of immunotherapeutic interventions. *p < 0.05, **p < 0.01. ns, no significance.
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and spatial maps of tissue sections (77). By integrating the fine

resolution of single-cell sequencing with the spatial insight of

transcriptomic mapping, a comprehensive framework for HCC

research is formed. This integrative approach allows for precise

identification of cells, their spatial localization within tissues, the

elucidation of intercellular interactions, and the interpretation of

the spatial and temporal organization of cell populations. This

holistic perspective promises to reveal cellular development,

physiological coordination, disease mechanisms, and personalized

therapeutic targets, paving the way for customized treatment

strategies in the future.

In this investigation, we integrated single-cell sequencing and

spatial transcriptomics to intricately examine the transcriptional

landscape of glycosyltransferase-related loci within HCC. This

multifaceted approach provided profound insights into the

potential roles of these loci in tumorigenesis and immunotherapy.

The data unveiled significant heterogeneity in the transcriptional

profiles of glycosyltransferase-associated genes across various HCC

contexts , with notable variat ions observed in tumor

microenvironments and specific cellular niches as identified

through spatial transcriptomic analysis. Importantly, single-cell

profiles indicated a reduced expression of these genes within

HCC-associated macrophages compared to normal macrophages,

suggesting a tumor-induced disruption in glycosyltransferase

activity specific to macrophages (78). This decreased expression
Frontiers in Immunology 18
could lead to reduced glycosylation of macrophage surface

molecules, potentially altering their immunomodulatory

properties and impacting their immune surveillance capabilities

(79). Given the pivotal role of macrophages in shaping the tumor

microenvironment (80), the altered glycosyltransferase landscape

and subsequent functional reprogramming may significantly

influence the initiation and progression of the HCC tumor

microenvironment. It is crucial to recognize that macrophages

play a key role in driving inflammatory and fibrogenic processes

within HCC, thereby affecting tumor dynamics (81). Moreover,

since glycosyltransferases are crucial regulators of cellular adhesion

and invasion (82), and considering the inherent connection

between macrophage invasiveness and their adhesive properties, a

decline in glycosyltransferase expression might alter macrophage

adhesion, thus impacting their tissue infiltration behavior and

potentially mitigating tumor spread and metastasis.

In our comprehensive deconvolution analysis, spatial

transcriptomics revealed significantly reduced expression of

glycosyltransferase signature genes within the core of HCC tumor

landscapes, indicating a potential decline in glycosylation fidelity.

This finding led to the hypothesis that the hypoxic environment in

the tumor microenvironment, resulting from unchecked

proliferative rates and irregular vascular supply, may induce a

phenotypic shift in macrophages from the tumoricidal M1

phenotype to the tumor-promoting M2 phenotype (83). Notably,
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FIGURE 13

MGAT1 was shown to enhance the proliferation, invasion and migration of hepatocellular carcinoma cells. This was assessed by various assays:
(A) qPCR assay to visualize MGAT1 expression in normal hepatocytes, HepG2 cell line and Huh7 cell line. (B) CCK-8 assay with untreated HepG2 cell
lines and HepG2 cell lines with knockdown of MGAT1. (C) CCK-8 assay with untreated Huh7 cell line ands Huh7 cell line with knockdown of MGAT1.
(D) Transwell assay, experiments were performed on untreated HepG2 cell line and HepG2 cell line knocked down MGAT1 to verify the migration
and invasion power. (E) Transwell assay with untreated Huh7 cell line and Huh7 cell line with knockdown of MGAT1 to verify the migration and
invasiveness. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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these M2-skewed macrophages, characterized by their

immunosuppressive properties and ability to promote tumor

angiogenesis, may act to alleviate the hypoxic stress that

contributed to their formation (84). Additionally, our analyses

revealed an inverse relationship between TAM.M2 and MGAT1+

Macrophages. This hypoxic condition, known to alter both

metabolic and signaling pathways in cancer cells (85), could

modify the expression environment of glycosylation regulators,

thus impact ing the format ion and funct iona l i ty o f

glycosyltransferases. This hypothesis aligns with existing

literature, which highlights the sensitivity of glycosyltransferase

synthesis, structure, and function to the hypoxic conditions of the

tumor microenvironment (86–88).

Employing spatial transcriptomic techniques, we probed the

intricate spatial heterogeneity of glycosyltransferases within the

HCC environment, integrating glycosyltransferase-focused gene

expression with cellular identities and spatial architectures. Our

spatial metabolic analysis of HCC samples disclosed a marked

increase in glycan catabolism within tumoral regions,

corroborating our previous findings of disrupted glycosylation in

these areas. Notably, we observed a strong correlation between

macrophages with elevated glycosyltransferase gene expression and

epithelial cells, further linked to the aberrantly activated PI3K-Akt

signaling pathway—a common anomaly in various cancers,

including HCC (89). This upregulated PI3K-Akt activity in cancer

contexts promotes cellular proliferation, inhibits apoptosis, and

enhances invasive behaviors, contributing to tumor growth and

spread (90). This signaling complexity is intertwined with

dysregulated glycosyltransferase expression, reflecting altered

glycosylation processes (91). Interestingly, this molecular cascade

significantly impacts macrophage biology (92). Its abnormal

activation can drive macrophages toward an M2-skewed

phenotype, known for its immunosuppressive characteristics,

thereby fostering an environment that supports tumor evasion

and growth (93–95). Considering the epithelial origin of HCC

(96), our study highlighted the crucial role of the PI3K-Akt

pathway in orchestrating the oncogenic interactions between

glycosyltransferase-rich macrophages and epithelial cells. In this

context, we identified an IGF1-INSR-FOXO3 ligand-receptor-

transcription factor axis, a pathway known for enhancing

oncogenic resilience and proliferation by inhibiting the

transcriptional activity of FOXO3, a key regulator of apoptosis

(97–100). Thus, the interplay between glycosyltransferase-enriched

macrophages and epithelial cells may drive neoplastic

transformation, with the augmented PI3K-Akt pathway

potentially supporting the development of M2 macrophages.

Utilizing CellChat, we uncovered a nuanced interaction

between macrophage-expressed HLA-B and T-cell-harbored

CD8A within the tumor microenvironment, which may be crucial

for shaping immunotherapeutic strategies and enhancing

immunosurveillance mechanisms. The Major Histocompatibility

Complex Class I (MHC-I), including isoforms such as HLA-B, is

fundamental in presenting peptide epitopes on the surface of cancer

cells, facilitating their recognition by CD8 T cells, and mobilizing

their cytotoxic response against malignancies (101–104). Enhanced

expression of HLA-B by macrophages could potentially boost the
Frontiers in Immunology 19
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cells, thereby limiting tumor growth and promoting tumor

containment. A notable adaptation in the progression of HCC

invo lves tumor ce l l s evad ing immune detec t ion by

downregulating MHC-I expression (105). However, the increased

interaction between HLA-B and CD8Amay counteract this evasion,

maintaining the immune system’s ability to detect and eliminate

cancerous cells. Moreover, the elevated levels of HLA-B and CD8A

expression could enhance the antigen presentation process, creating

opportunities for refined immunotherapeutic approaches (106). T-

cell-based immunotherapies and checkpoint blockade strategies are

well-positioned to exploit these molecular interactions, enhancing

the effectiveness of immune cells against HCC, promoting tumor

control, and stimulating T-cell activation. Additionally, this can

catalyze antibody-dependent cellular cytotoxicity (ADCC) within

tumors, further contributing to the immune response against HCC.

Utilizing single-cell sequencing stratification, MGAT1 emerged

as a pivotal glycosyltransferase-associated hallmark in HCC. Within

the glycosyltransferase family, MGAT1 orchestrates secondary N-

acetylglucosaminylation, a crucial process in glycoprotein

biogenesis (107). A diminished MGAT1 signature in moderately

differentiated HCC correlates with tumor dedifferentiation,

intrahepatic migration, and a poor clinical prognosis (108).This

observation aligns with our spatial-temporal analysis, which

showed a decrease in MGAT1 expression from cluster 1 to cluster

6, followed by a resurgence as the transition progressed from cluster

1 to cluster 6 and subsequently to cluster 3. Spatial transcriptomics

further supported the hypothesis that macrophages, influenced by

HCC and exhibiting low MGAT1 expression, may facilitate HCC

dissemination. Murine models lacking MGAT1 revealed increased

diacylglycerol (DAG) levels within hepatocytes (109). This lipid

second messenger, DAG, activates protein kinase C (PKC),

directing it to the cell membrane to regulate key cellular processes

such as proliferation and migration (110, 111). MGAT1’s role in

forming N-glycosyl moieties also affects the interaction between

antibody Fc domains and their receptors, enhancing antibody-

dependent cellular cytotoxicity (ADCC) (112–115). Although the

current understanding of MGAT1 in HCC is still developing, its

detailed investigation is crucial. Our study revealed an increased

MGAT1 transcriptional signature in HCC compared to healthy

tissues, with this elevation closely linked to a poor HCC prognosis.

Our rigorous differential analyses and molecular silencing

experiments firmly established MGAT1’s involvement in HCC

development, invasion, and metastasis. Therefore, MGAT1’s

transcriptional profile in HCC or associated macrophages serves

as a promising biomarker, potentially improving diagnostic

accuracy and prognostic predictions for HCC patients.

To elucidate MGAT1’s role in HCC immunotherapy, we

incorporated an external cohort for an in-depth analysis of Anti-

PD-1/PD-L1 checkpoint inhibitors in HCC contexts. These key

therapeutic agents, now integral to oncology (116, 117), enhance the

immune response against hepatocellular carcinoma by disrupting

the PD-1 and PD-L1 interaction (118, 119). This disruption

effectively activates T cells, increasing their ability to detect and

combat HCC cells (120, 121). Once activated, T cells identify and

target HCC cells, leading to their programmed cell death (122, 123).
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Additionally, Anti-PD-1/PD-L1 agents suppress the unchecked

growth and migration of HCC cells, thereby mitigating disease

progression (124). Strengthening the immune response, Anti-PD-1/

PD-L1 agents effectively inhibit the unrestrained proliferation and

migration of HCC cells, thereby altering the course of the

disease (125–129). However, evidence suggests that in HCC,

PD-L1 phosphorylation at Y112, driven by the IL-6/JAK1

pathway, may create an immune-protected niche. Furthermore,

glycosyltransferases in the endoplasmic reticulum play a crucial role

in maintaining PD-L1 stability through precise glycosylation. As a

result, increased glycosyltransferase activity in HCC might

contribute to immune evasion. Interestingly, HCC patients with

elevated glycosyltransferase expression may respond better to Anti-

PD-1/PD-L1 therapies (74). Thus, the potential of predicting

responses to Anti-PD-1/PD-L1 therapy in HCC, influenced by

MGAT1 expression, becomes increasingly evident.

In this research, we conducted an extensive examination of

glycosyltransferase-associated hallmark genes using both single-cell

sequencing and spatial transcriptomics. Single-cell sequencing

unveiled subtle expression patterns of glycosyltransferase-linked

genes across diverse cellular populations. Concurrently, the

innovative spatial transcriptomic technique illuminated the spatial

distribution and organization of these genes within the tumor

microenvironment. Notably, our study identified a novel HCC-

associated glycosyltransferase marker, thereby expanding the toolkit

for HCC diagnostics and treatment strategies. This work not only

underscores the prognostic significance of glycosyltransferase-

signature genes but also advocates for a shift towards personalized

therapeutic approaches for high-risk HCC patients.

While our investigation utilizing single-cell and spatial

transcriptomic sequencing provides critical insights, several inherent

limitations must be acknowledged. Firstly, the amplification and

sequencing processes in single-cell protocols may introduce

stochastic variations and technical biases, complicating the detection

of genes with low expression levels. Differences in sequencing depth

and cell capture efficiency further add to interpretative challenges.

Secondly, the early development stage of spatial transcriptomic

methodologies hinders the decoding of complex tissue architectures.

Currently, the spatial resolution of these platforms may not achieve

single-cell precision, limiting the ability to obtain cell-specific

information in regions with high cellular density. Enhanced data

processing and analytical frameworks are required to fully exploit

their potential. Furthermore, our analyses were based on publicly

available datasets, underscoring the need for prospective studies and

extensive in vivo and in vitro validations. In particular, the

glycosyltransferase-associated gene identified in this study warrants

thorough investigation in larger, more representative cohorts.
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