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Medulla oblongata and NCCs are
central defenders against
Streptococcus agalactiae
infection of the tilapia brain
Xitan Hou1*† and Qi Li2*†

1Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China,
2College of Fishery, Guangdong Ocean University, Zhanjiang, China
Various types of professional immune cells first emerge in fish and likely

represent the primordial form and functions. Recent advancements revealed

the direct connection between the central nervous system and the immune

system in the mammalian brain. However, the specifics of brain-immune

networks in the fish and the underlying mechanisms of teleost’s brain against

pathogen infection have not been fully elucidated. In this study, we investigated

the distribution of markers representing cerebral cells associated with

protection and professional lymphocytes in the seven major components of

the Nile tilapia brain through RNA-Seq assay and observed the most dominant

abundance in the medulla oblongata. The subsequent challenge test revealed

the non-specific cytotoxic cells (NCCs) exhibited the strongest response

against streptococcal infection of the brain. The presence of NCCs in the

brain was then confirmed using immunofluorescence and the cytotoxic effects

usually induced by NCCs under infection were determined as well. Collectively,

these findings contribute significantly to comprehending the mechanism of fish

neuroimmune interaction and enhancing our understanding of its

evolutionary development.
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1 Introduction

Since the early 19th century, the brain has been considered a site with limited immune

activity and is maintained by the blood-brain barrier (BBB) (1–4). Additionally, various

cerebral cells contribute to brain homeostasis and protection (3, 5). For example, microglia

function as resident myeloid cells (6), while astrocytes are involved in neuroinflammation

and neurodegeneration (7, 8), serving as antigen-presenting cells and participating in

inflammatory responses (3, 8). However, recent advancements have expanded our

understanding of brain immunity (3, 9–11). This includes the discovery of lymphatic
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vessels in the brain, the identification of immunological niches, and

the recognition of complex brain-immune networks. Additionally,

multiple immunological niches have been found in different brain

regions (3, 10, 12), such as the choroid plexus (CP), meninges, and

cerebrospinal fluid (CSF). These areas contain various types of

professional or peripheral immune cells (3, 13), including

monocytes (Mo), natural killer cells (NKs), T cells, B cells, and

dendritic cells (DCs).

In comparison to the understanding of the evolution of the

nervous system in the fish brain, which shows many shared

ancestral neural traits among all vertebrates (14), there has been a

growing recognition of the critical role of fish immunity due to their

position at the intersection of the innate and adaptive immune

systems (15–17). The adaptive immune system in fish is notably

simpler (16, 18), lacking structures such as bone marrow, lymph

nodes, and germinal centers, as well as confirmed class switching of

immunoglobulins and memory ability. Despite extensive research on

the structure and neurobiological functions of fish brains (14, 19), as

well as recent studies on the interactions between the nervous and

immune systems in fish (20), the confirmed existence, distribution

characteristics, and response patterns of professional immune cells in

fish brains against stimulation remain unclear.

Therefore, in this study, we aimed to assess the distribution of

immune-related cells in the tilapia brain and identify the cerebral

and professional defenders involved in bacterial infection induced

by Streptococcus agalactiae, which was well-recorded in the fish

neuro-immune study since this bacterial infection usually leads to

typical meningitis that was hallmarked by the clinical phenotype

such as exophthalmia (21–24). Our findings revealed that cerebral

cells associated with protection, as well as professional lymphocytes,

were predominantly located in the medulla oblongata of the fish

brain. Subsequent evaluation under challenge testing demonstrated

that the NCC population exhibited the strongest response, as

confirmed by the presence of NCCRP1-positive cells and

assessments of cytotoxicity. Collectively, these results indicate that

the central antibacterial immunity of fish brains occurs in the

medulla oblongata and is mediated by NCCs.
2 Materials and methods

2.1 Fish and brain sample collection

Tilapia specimens weighing approximately 100 ± 10 grams were

obtained from Zhanjiang City, China. These specimens were

acclimated in recirculating aquaculture systems with appropriate
Abbreviations: BBB, Blood-brain barrier; CLP, Common lymphoid progenitor;

CP, Choroid plexus; CTL, Cytotoxic T-cell; CSF, Cerebrospinal fluid; DC,

Dendritic cell; DEG, Differentially expressed gene; FPKM, Fragments per

kilobase of transcript per million mapped reads; HKL, Head kidney leukocyte;

HSC, Hematopoietic stem cell; H&E, Hematoxylin and eosin; IF,

Immunofluorescence; Mo, Monocyte; Mj, Macrophage; NCC, Nonspecific

cytotoxic cell; NCCRP, Nonspecific cytotoxic cell receptor protein 1; NK,

Natural killer cell; PBS, Phosphate-buffered saline; qRT−PCR, Quantitative

real-time PCR.
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ventilation for 60 days, maintaining a constant temperature of 28°C

throughout the acclimation process. Tilapia were fed with

commercial feed daily from Guangdong Yuehai Feeds Group Co.,

Ltd. (Product code 1718). Three fish were collected post the

acclimation period (at 61st day), anesthetized using tricaine

methanesulfonate (MS-222; Sigma, Darmstadt, Germany), and

then euthanized. The entire brain was carefully dissected, and

several distinct brain components (25), including the olfactory

bulb, cerebrum, optic lobe, cerebellum, hypothalamus, and

medulla oblongata, were sampled for RNA extraction.

Additionally, the thin medulla oblongata was divided into two

segments along the anterior-posterior axis, referred to as the

anterior medulla oblongata and posterior medulla oblongata

(Supplementary Figure S1).
2.2 RNA extraction, RNA-Seq, and
bioinformatics analysis

Total RNA was extracted from each sample using RNAiso Plus

from TaKaRa (Dalian, China), and subsequently treated with

RNase-free DNase I from TaKaRa (Dalian, China) to eliminate

any residual DNA. The quality of the total RNA was confirmed by

electrophoresis using 1.2% agarose gels and quantified with

NanoDrop 2000 from Thermo Fisher Scientific (Waltham, USA).

The mRNA molecules were enriched using oligo(dT) beads

(Qiagen, Hilden, Germany), fragmented into short fragments, and

subsequently reverse-transcribed into cDNA. The resulting cDNAs

were collected, subjected to end repair, ligated with Illumina

sequencing adapters, amplified through PCR, and subsequently

sequenced using the Illumina NovaSeq 6000 platform (Gene

Denovo Biotechnology Co., Guangzhou, China). The raw reads

were filtered to obtain high-quality clean reads using fastp (version

0.18.0). Paired-end clean reads were mapped to the reference

genome (http:// f tp .ensembl .org/pub/re lease-110/fasta/

oreochromis_niloticus/) using HISAT2 (version 2.4.0).

Gene expression abundances were calculated and normalized to

fragments per kilobase of transcript per million mapped reads

(FPKM). Differentially expressed genes (DEGs) were identified

using DESeq2 (version 1.26.0) with the following criteria: |log2

(foldchange)| ≥ 1, P value < 0.05, and false discovery rate (FDR, Q

value) ≤ 0.05. Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses were conducted through the KEGG

Automatic Annotation Server (KAAS).

In addition, based on our previous study on the characterization

of tilapia head kidney leukocytes (HKLs) through RNA-Seq in 2022

(25), the geometric mean of three universal housekeeping genes—b-
actin, ef1a, and gapdh (26–28)—were used to normalize the

expression abundance of both the HKL and brain cDNA libraries.
2.3 Bacteria and challenge

The preserved S. agalactiae strain ZQ0910 (29) of serotype III

was reactivated by incubation in brain-heart infusion broth at 28°C

overnight. The bacterial culture was then harvested through
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centrifugation at 4000 × g for 5 minutes. The bacterial cells were

subjected to three successive washes with phosphate-buffered

saline (PBS) and were ultimately resuspended in PBS for

subsequent experiments.

A total of 20 fish were intraperitoneally injected with 100 mL of

S. agalactiae (5 × 107 CFU/mL). Afterward, three parallel

individuals were collected and sacrificed at 0, 12, and 24 hours

postinfection (hpi), and brain samples were obtained using a

previously described protocol for RNA extraction and

cDNA synthesis.
2.4 cDNA synthesis and quantitative real-
time PCR

cDNAs were synthesized using the PrimeScript™ RT reagent

kit with gDNA Eraser from TaKaRa (Dalian, China). Quantitative

real-time PCR (qRT−PCR) was performed with TB Green® Premix

Ex Taq™ II (Tli RNaseH Plus) from TaKaRa (Dalian, China) and

the QuantStudio 6 Flex Real-Time PCR System from Thermo

Fisher Scientific (Waltham, USA). Reference genes, including

b-actin, ef1a, and gapdh, were utilized for normalization (26–28).
2.5 Polyclonal antibody preparation for
On-NCCRP1

The complete sequence of nonspecific cytotoxic cell receptor

protein 1 in Nile tilapia Oreochromis niloticus (On-NCCRP1) was

previously reported in our 2020 study (30). Subsequently, the ORF

sequence of On-NCCRP1 was amplified using PCR with specific

primers that incorporated the BamH I and Xho I restriction sites

(Supplementary Table S1). The purified DNA fragments were then

ligated into the predigested pGEX-6P-1 plasmid (BT Lab, Wuhan,

China) and introduced into BL21 (DE3) chemically competent cells

(TransGen, Beijing, China). Positive clones were verified by DNA

sequencing and cultured in Luria–Bertani broth supplemented with

ampicillin sodium (Amp+) at a concentration of 100 µg/mL at 28°C

until the OD600 reached 0.6. Isopropyl b-d-thiogalactopyranoside
was added to the bacterial culture mixture at a final concentration of

1 mM, and the culture was continued for 8 hours before being

harvested by centrifugation. The recombinant protein was then

purified using a GST-tag protein purification kit from Beyotime

(Shanghai, China), dissolved in sterilized PBS, and confirmed by

Coomassie blue staining (Supplementary Figure S2).

A rabbit anti-On-NCCRP1 polyclonal antibody was generated

using our established protocol beginning in 2023 (31). In summary,

two healthy New Zealand White rabbits (~2 kg) were immunized

on day 0 with a mixture of On-NCCRP1 protein (400 mg in 750 mL
of PBS) and Freund’s complete adjuvant (750 mL) using

emulsification. Subsequently, on days 21, 35, and 49, the rabbits

were immunized with On-NCCRP1 protein (300 mg in 750 mL of

PBS) and Freund’s incomplete adjuvant (750 mL) again. On day 57,

the sera of the rabbits were collected, and the antibodies were

purified through an affinity chromatography assay using protein A/

G agarose beads.
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2.6 Head kidney leukocyte preparation

HKL preparation was carried out following previous research

from 2020 to 2023 (25, 31, 32). In brief, healthy fish were collected and

sacrificed. The head kidney was carefully separated, and the

neurochords were removed. The head kidney tissue was then cut

and passed through a 40-mm cell strainer (Greiner Bio-One GmbH,

Frickenhausen, Germany). The resulting cell suspension was placed in

Leibovitz’s L-15 medium (Thermo Fisher Scientific, Waltham, USA).

The cells were layered onto a 34%/51% Percoll gradient (Solarbio,

Beijing, China) and centrifuged using a swing rotor (400 × g, 40

minutes, 4°C). Subsequently, the cells located at the surface of the 51%

Percoll layer were gently aspirated, collected via centrifugation,

washed, and resuspended in PBS for use in subsequent experiments.
2.7 Protein extraction and Western blot

Total protein from HKLs and brain components was extracted

with a protein extraction kit (BC3710, Solarbio, Beijing, China).

Subsequently, 10 mg of protein sample was loaded onto a 12%

SDS−PAGE gel and transferred to a PVDF membrane (Merck,

Darmstadt, Germany). The membrane was then blocked with a

quick blocking buffer (Beyotime, Shanghai, China) for 10 minutes at

room temperature, followed by incubation with a primary antibody,

rabbit anti-On-NCCRP1, at a dilution ratio of 1:2000 for 1 hour.

After the membranes were washed three times with Tris-buffered

saline containing 0.1% Tween-20 (TBST), they were incubated with

a secondary antibody, HRP-labeled goat anti-rabbit IgG (H+L)

(A0208, Beyotime, Shanghai, China), at a dilution ratio of 1:1000 for

30 minutes. After another round of three washes, the antigen

−antibody complexes were detected using the DAB Horseradish

Peroxidase Color Development Kit (P0203, Beyotime, Shanghai,

China). In addition, a rabbit anti-b-actin monoclonal antibody

(dilution ratio of 1:20000) (AC026, ABclonal, Wuhan, China) was

used to determine the abundance of the reference protein, b-actin,
which was used as a loading control. Moreover, the positive bands

obtained from the western blot analysis were transformed into gray

values by ImageJ (version 1.54g).
2.8 Hematoxylin and eosin staining
and immunofluorescence

For the hematoxylin and eosin (H&E) staining and

immunofluorescence (IF) assay, the procedures described in our

previous work (25, 33) were followed. Briefly, the whole brains of

healthy fish were isolated and fixed in Dietrich’s fixative for 24

hours. The brain was then dehydrated in a series of graded alcohol

solutions, cleared in xylene, and embedded in paraffin wax. Serial

sections (8 mm thick) were rehydrated, stained with an H&E

staining kit (C0105S, Beyotime, Shanghai, China), and observed

under a microscope.

Selective sections representing typical structures (25) were

rehydrated, followed by heat-induced antigen retrieval using a

matched solution (P0085, Beyotime, Shanghai, China). The samples
frontiersin.org
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were then blocked and incubated with the primary antibody rabbit

anti-On-NCCRP1 (dilution ratio of 1:200) for 1.5 hours. After five

washes with PBS, the samples were incubated with the secondary

antibody Cy3 goat anti-rabbit IgG (H+L) (dilution ratio of 1:500)

(AS007, ABclonal, Wuhan, China) for one hour. Finally, the samples

were observed and photographed after staining the cell nucleus with 2-

(4-amidinophenyl)-6-indolecarbamidine dihydrochloride (DAPI).
2.9 Statistical analysis

All the data are presented as the means ± standard deviations

(SDs). Tukey’s HSD test was utilized to analyze significant

differences through Prism software (version 8.0), and significant

differences (p < 0.05) are indicated by different letters.
2.10 Drawings

TB tools (version 1.108) were used to construct heatmaps. Adobe

Photoshop CC (San Jose, CA, USA) and Adobe Illustrator (San Jose,

CA, USA) were used to construct and design the final panel.
3 Results

3.1 Overview of the mRNA expression
profile of tilapia brain

A study was conducted to examine the mRNA expression

profiles of seven brain components in tilapia. An RNA-Seq assay

was utilized, resulting in the generation of 21 transcriptome

libraries. These libraries generated a total of 1240.4 megabases of

clean reads, with an average Q30 score of 95.1% and an average

mapping ratio of 95.5% to the tilapia genome. Next, a thorough

analysis of the KEGG annotations was performed. The top five

significantly enriched items in each component were found to be

highly similar, with processes mainly related to RNA processing and

endocytosis. However, the olfactory bulb was primarily associated

with tRNA synthesis and synapse development (Figure 1A). A

comprehensive analysis of 21 pairwise comparisons resulted in

the identification of more than 70000 DEGs. The most substantial

differences were observed between the cerebellum and posterior

medulla oblongata, with a total of 7256 DEGs. Conversely, the

fewest differences were detected between the two segments of the

medulla oblongata, with a total of 887 DEGs (Figure 1B).
3.2 Many immune-related markers are
located in the medulla oblongata

To further examine the presence and distribution of

lymphocytes marked by specific markers, the abundances of

numerous common immune-related markers were gathered and

clustered within the brain and tilapia HKL. The analysis revealed

that while HKL exhibited a substantial presence of 79 markers, with
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a mean FPKM value of approximately 64.4, the brain displayed a

lower average level of expression, approximately 75% lower, with a

mean FPKM value of approximately 16.1 (Figure 2). However, in

contrast to other brain components, the medulla oblongata

exhibited a greater expression level, with a mean FPKM value of

approximately 39.6. Furthermore, the medulla oblongata was

clearly distinguished and clustered separately from the other

brain components. Notably, a total of 27 immune-related markers

were more abundant in the medulla oblongata than in the HKL.

Among these markers were several typical T-cell markers, such as

CD2, CD6, ZAP70, and LCK (Figure 2).

The distribution of markers associated with professional

lymphocytes in tilapia (25, 32, 34) was initially analyzed. This

analysis included hematopoietic stem cells (HSCs) or common

lymphoid progenitors (CLPs), B cells, T cells, nonspecific

cytotoxic cells (NCCs) or cytotoxic T cells (CTLs), macrophages

(Mj) or granulocytes, and dendritic cells (DCs). The findings

indicated that these molecules were predominantly present in the

medulla oblongata, with the exception of markers for macrophages

or granulocytes, which are also widely distributed in the optic lobe

(Figure 3). Additionally, the expression of crucial markers involved

in brain surveillance and protection (3, 8, 35, 36), such as GFAP for

astrocytes and TEME119 for microglia, was examined, revealing

their prominent presence in the medulla oblongata (Figure 3).
3.3 Inflammation and immune responses
in the brain are induced by S.
agalactiae infection

To characterize the immune responses of the tilapia brain, a

challenge test was performed through S. agalactiae injection

(Figure 4). This bacterium is known to be capable of penetrating the

blood−brain barrier and causing severe meningitis (21, 37).

Subsequently, the levels of inflammatory factors and key genes

involved in various immune pathways were evaluated using qRT

−PCR. Notably, robust activation of inflammation was observed, as

evidenced by the significant upregulation of the proinflammatory

factors IL-1b and TNF-a. Importantly, the medulla oblongata

exhibited the most pronounced increase in proinflammatory factors

during bacterial infection, with levels reaching several hundred times

the baseline. However, in contrast to those of proinflammatory factors,

the responses of the anti-inflammatory factors IL-10 and TGF-b were

relatively subdued, limited to certain brain components, and less

intensive. Next, the expression patterns of six genes involved in the

corresponding immune pathways were evaluated, but only limited

activation was detected, primarily in the candidate genes STAT3,

MyD88, and NOD1 (Figure 4).
3.4 Nonspecific cytotoxic cell markers in
the tilapia brain were strongly activated
under S. agalactiae infection

Given the expression patterns of defense markers previously

identified in the tilapia brain, a subsequent investigation was
frontiersin.org
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conducted to determine the specific types of cells involved in bacterial

infection (Figure 5). The trends of 10 universal markers belonging to

five types of tilapia professional lymphocytes were analyzed, revealing

widespread promotion following S. agalactiae injection. Notably,

NCCRP1, the highest marker in the fish NCC subpopulation,

displayed a significant and sharp increase under bacterial infection.

A similar phenomenon was observed with CLEC12B, a potential

marker of tilapia NCCs (32, 38). However, the candidates commonly

used for adaptive immune cell characterization, such as CD79a and

IgM for B cells and CD3 and CD4 for T cells, were minimally

influenced by bacterial infection. Additionally, little change in the

expression of astrocyte andmicroglial markers was observed, except for

a marker of microglia (TMEM119).
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3.5 NCCs (NCCRP1-positive cells) are
widespread in the tilapia brain

Although previous studies demonstrated the presence of

NCCRP1 transcripts in the tilapia brain, with induction evident

during bacterial infection (30), the distribution of NCCs (NCCRP1-

positive cells) in the tilapia brain remains unclear. Therefore, a

prokaryotically expressed recombinant protein, tilapia NCCRP1,

was prepared (Supplementary Figure S2), and a corresponding

rabbit anti-NCCRP1 polyclonal antibody was obtained. The

NCCRP1 protein in the tilapia brain and HKLs was assessed

using a Western blot analysis, and the results are shown in

Figure 6B. The details of the NCCRP1 transcripts in the tilapia
B

A

FIGURE 1

Heterogeneity of seven components of the tilapia brain. (A) Top five KEGG annotations of seven components of the tilapia brain. A diagram of the
tilapia brain was generated in our previous study (25). (B) The number of DEGs among seven components of the tilapia brain was obtained through
21 pairwise comparisons. A total of 75579 DEGs were screened, including the most DEGs that existed between the cerebellum and posterior
medulla oblongata, and the fewest DEGs were detected between the anterior and posterior medulla oblongata.
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FIGURE 2

Expression profiles of immune-related genes in HKL and seven components of the tilapia brain detected through RNA-Seq. The RNA-Seq data for
tilapia HKL were reported in our previous study (25), and the adjusted FPKM values for HKL and the brain were clustered and presented through a
heatmap. The outermost branched sample (HKL) and the remainder (brain) were distinguished by a red line.
Frontiers in Immunology frontiersin.org06
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brain and HKLs, as evaluated through RNA-Seq, are displayed in

histograms (Figure 6A). Both the quantification of NCCRP1 at the

RNA and protein levels indicated that NCCRP1 was highly

abundant in tilapia HKL and widely distributed throughout the

brain. Subsequently, discernible positive signals for the NCCRP1

protein were observed in the olfactory bulb, cerebellum, and

medulla oblongata (Figure 6C). These positive signals were

predominantly located on the surface of these tissues, with scarce

signals observed in other brain components.
3.6 Cytotoxicity in the brain was induced
under S. agalactiae infection

Since the discovery of increasing cytotoxic effects mediated by

NCCs or NCCRP1 protein in 2021 and 2022 (39, 40), it has become

necessary to examine the cytotoxic effects and cell death levels

during S. agalactiae infection. The findings showed that six

common cytotoxicity effectors were activated to varying degrees,

with the perforin and interferon genes being particularly prominent

(Figure 7). However, the activation of apoptosis executors

(Caspase3 and Caspase9) and pyroptosis executors (Caspase1 and

GsdmE) was minor, while the most significant activation was

observed in the cerebellum and medulla oblongata.
Frontiers in Immunology 07
4 Discussion

Our current study sheds light on the distribution of defenders in

the brain and response strategies against S. agalactiae infection. To

achieve this goal, we first utilized the classical RNA-Seq assay to

assess heterogeneity in the tilapia brain. Although there were few

differences in the seven brain components identified through KEGG

annotation, which could be attributed to the limited resolution of

bulk RNA-seq technology and the dominance of neurons in the

brain (41–43), the noticeable discrepancy in the number of DEGs

emphasized the significant heterogeneity present.

Consequently, a comparison was made between the

abundance of professional or peripheral lymphocyte markers

present in both the brain and HKL. Astonishingly, the results

revealed exceptionally high expression levels of immune-related

markers in the medulla oblongata, surpassing even those in the

HKL. This is particularly noteworthy considering that the head

kidney of teleosts has traditionally been regarded as the primary

hematopoietic tissue and central immune organ (16, 17), and

tilapia HKLs were found to be almost exclusively composed of

professional immune cells (25, 32, 34). The presence of such a

large number of professional lymphocytes in the medulla

oblongata strongly suggests frequent migration under steady-

state conditions, similar to the situation in mammals (3).
FIGURE 3

Expression profiles of immune-related markers in seven components of the tilapia brain. Heatmaps showing the clustering of acknowledged marker
genes for tilapia lymphocyte subpopulation identification and cerebral defender characteristics, including hematopoietic stem cells (HSCs) or
common lymphoid progenitors (CLPs), B cells, T cells, nonspecific cytotoxic cells (NCCs) or cytotoxic T cells (CTLs), macrophages (Mj) or
granulocytes, dendritic cells (DCs), astrocytes, and microglia.
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However, there are some differences to note, as the main

immunological niches in the mammalian brain are located in

the CP, meninges, and CSF (3). Although CP has been reported in

the zebrafish myelencephalon, the obvious positive signal was

limited to the saccus dorsalis zone of adult brains rather than the

medulla oblongata (44). In contrast, bony fish have been found to
Frontiers in Immunology 08
have a high flow of CSF around the medulla oblongata (45), which

likely performs the principal transport function and may

represent the primordial form. Additionally, in the tilapia

medulla oblongata, the majority of cerebral defender microglia

and astrocytes were detected. However, conflicting results have

been recorded in zebrafish, as more microglia were found in the
FIGURE 4

Expression patterns of inflammatory factors and immune pathways associated with seven components of the tilapia brain after S. agalactiae
infection. The relative expression of four inflammatory factors and six key genes involved in different immune pathways was detected via qRT−PCR.
For each given gene, the expression level of the seven components of the tilapia brain at 0 h with the most abundant transcripts was set as 100 to
calculate the relative expression of the remaining samples. Different letters indicate significant differences (p < 0.05).
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optic lobe (46, 47). Nevertheless, similar to tilapia, dense

astrocytes have also been observed in the medulla oblongata of

zebrafish, and these astrocytes are associated with synapses and

interact with each other (48). These findings collectively

underscore the immunological significance of the medulla

oblongata in the tilapia brain.

Furthermore, challenge tests were conducted and evaluated,

revealing evident inflammation in the brain occurring no later

than 12 hours after injection, which aligns with previous findings

(27, 33, 49). Moreover, relatively moderate activation of the

immune pathway was also observed, similar to prior reports that

the intense response of these candidates mainly occurs in the head

kidney and spleen of tilapia (49). This may be associated with the

immune tolerance of the brain, which serves to prevent excessive

cell death (2, 50).
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Notably, the most significant response in the tilapia brain under

S. agalactiae infection was observed in the NCCs, followed by Mj,
as indicated by the universal marker genes. In particular, the

expression levels of NCC markers during infection were

significantly greater than those under normal physiological

conditions. NCCs, which are considered potential evolutionary

precursors of natural killer (NK) cells, possess spontaneous

recognition and binding capabilities against pathogenic molecules

and xenogeneic tissues, resulting in the elimination of specific target

cells (30). However, the morphology and molecular markers of

NCCs in fish differ from those of mammalian NK cells. For

instance, the CD56 molecule, which is a core marker of human

NK cells (51), is absent in almost all fish species. NCCRP1 was

identified as the first recognized marker of NCCs (52).

Furthermore, our previous studies reported several potential
FIGURE 5

Expression patterns of immune-related markers in seven components of the tilapia brain after S. agalactiae infection. The relative expression of ten
markers belonging to five types of lymphocytes and astrocyte and microglial markers was detected via qRT−PCR. For each given gene, the
expression level of the seven components of the tilapia brain at 0 h with the most abundant transcripts was set as 100 to calculate the relative
expression of the remaining samples. Different letters indicate significant differences (p < 0.05).
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markers for tilapia NCCs, including CLEC12B, which showed

complete overlap with NCCRP1 (25, 32). Similarly, the

distribution and response patterns of CLEC12B were found to be

similar to those of NCCRP1 (38). In this study, highly consistent
Frontiers in Immunology 10
profiles of CLEC12B were also observed, highlighting the

involvement of NCCs in the defense of the tilapia brain against

bacterial infections. Additionally, in mammals, proinflammatory

factors are secreted by macrophages, dendritic cells, and CD4+ T
B

C

A

FIGURE 6

Expression pattern of NCCRP1 in the tilapia brain. (A) Relative expression of NCCRP1 in HKL and seven components of the tilapia brain, as detected
through RNA-Seq. (B) The statistical analysis of the corresponding gray values was measured by ImageJ software from three parallel tests
(Supplementary Table S2) and the Western blot analysis of NCCRP1 in HKL and seven components of the tilapia brain; b-actin was used as a
reference protein. (C) Location of NCCRP1 in the tilapia brain. The left column shows a diagram of sections with typical brain components (25). The
corresponding H&E staining results and the presence of NCCRP1 (red) and nuclei (blue) in each section detected by IF are displayed on the right.
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cells (53, 54), and similar colocalization phenomena have been

reported in tilapia (25, 34), suggesting the activation of

inflammation due to the stimulation of macrophages in the brain.

Therefore, an antibody against tilapia NCCRP1 was prepared,

and the NCCs (NCCRP1+ cells) in tilapia were examined. These

results indicated that NCCRP1 is widely distributed in the tilapia

brain, although its abundance remains lower than that in the HKL.
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However, RNA-Seq data revealed that the rank of NCCRP1

transcripts more than 60% of all genes in the tilapia brain. The

visually poor content may be attributed to the extreme abundance

of NCCRP1 in HKLs, where it exhibited a positive rate of greater

than 25% (25). Furthermore, the mean FPKM of NCCRP1 in HKLs

(approximately 3000) was comparable to that of common reference

genes such as GAPDH and EF1a. Subsequently, abundant
FIGURE 7

Expression pattern of cytotoxic factors and markers of apoptosis and pyroptosis in seven components of the tilapia brain subjected to S. agalactiae
infection. The relative expression of six cytotoxic factors and four markers of the apoptosis/pyroptosis process was detected via qRT−PCR. For each
given gene, the expression level of the seven components of the tilapia brain at 0 h with the most abundant transcripts was set as 100 to calculate
the relative expression of the remaining samples. Different letters indicate significant differences (p < 0.05).
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NCCRP1+ cells were detected in the tilapia brain, particularly on the

surfaces of the olfactory bulb, cerebellum, and medulla oblongata,

suggesting that the meninges in fish might have similar

immunological functions to those in mammalian brains, acting as

neuroimmune interface (3, 13). Finally, cytotoxicity and cell death

were assessed and confirmed, and the results indicated that these

effects were likely induced by NCCs (39, 40), further supporting the

involvement of NCCs in dominant antibacterial immunity in the

tilapia brain.

In summary, our study provides insight into the distribution of

professional and autochthonous defenders in the tilapia brain and

identifies the primary immune cells involved in combating

streptococcal infection. These findings suggest that the complex

neuroimmune connection observed in mammals was already

emerging in the tilapia brain, with NCCs playing a central role.

This research significantly contributes to our understanding of the

evolutionary development of neuroimmune mechanisms from fish

to humans.
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