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Background: Metagenomic next-generation sequencing (mNGS), which

provides untargeted and unbiased pathogens detection, has been extensively

applied to improve diagnosis of pulmonary infection. This study aimed to

compare the clinical performance between mNGS and targeted NGS (tNGS)

for microbial detection and identification in bronchoalveolar lavage fluid (BALF)

from kidney transplantation recipients (KTRs).

Methods: BALF samples with microbiological results from mNGS and

conventional microbiological test (CMT) were included. For tNGS, samples

were extracted, amplified by polymerase chain reaction with pathogen-specific

primers, and sequenced on an Illumina Nextseq.

Results: A total of 99 BALF from 99 KTRs, among which 93 were diagnosed as

pulmonary infection, were analyzed. Compared with CMT, both mNGS and tNGS

showed higher positive rate and sensitivity (p<0.001) for overall, bacterial and

fungal detection. Although the positive rate for mNGS and tNGS was

comparable, mNGS significantly outperformed tNGS in sensitivity (100% vs.

93.55%, p<0.05), particularly for bacteria and virus (p<0.001). Moreover, the

true positive rate for detected microbes of mNGS was superior over that of

tNGS (73.97% vs. 63.15%, p<0.05), and the difference was also significant when

specific for bacteria (94.59% vs. 64.81%, p<0.001) and fungi (93.85% vs. 72.58%,

p<0.01). Additionally, we found that, unlike most microbes such as SARS-CoV-2,

Aspergillus, and EBV, which were predominantly detected from recipients who

underwent surgery over 3 years, Torque teno virus (TTV) were principally

detected from recipients within 1-year post-transplant, and as post-

transplantation time increased, the percentage of TTV positivity declined.
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Conclusion: Although tNGS was inferior to mNGS owing to lower sensitivity and

true positive rate in identifying respiratory pathogens among KTRs, both

considerably outperformed CMT.
KEYWORDS

kidney transplantation, pulmonary infection, metagenomics Next-Generation
Sequencing (mNGS), targeted next-generation sequencing (tNGS), respiratory
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1 Introduction

Renal transplantation has emerged as a crucial therapeutic

intervention for individuals with end-stage chronic kidney

disease. However, common postoperative complications include

secondary infection, acute rejection, chronic rejection, and

delayed graft function, and other similar issues may occur.

Among them, the pathogens and symptoms of secondary

infection vary greatly, which can result in the loss of graft

function and even the death of the recipient, thus has garnered

significant attention (1). It was reported that the overall hospital

admission rates of renal transplants due to infections were

approximately 35% (2–4). The postoperative infection among

kidney transp lanta t ion rec ip ients (KTRs) fo l lowing

transplantation frequently affects the respiratory system, with the

majority of cases being characterized by mixed infections. If the

appropriate intervention measures are not implemented promptly

after the onset of pulmonary infection, it frequently advances swiftly

to acute respiratory distress syndrome (ARDS), which can bring

about a life-threatening risk to severely affected individuals (5).

Identifying the specific causative microorganisms, administering

antibiotics with precision, and modifying the usage of

immunosuppressive medications comprise the main approaches

to treating pulmonary infection among KTRs (1).

Following transplantation, the diagnosis of infection is typically

made using a combination of clinical symptoms and laboratory

diagnostic techniques, such as histopathology, culture of various

bodily fluids and tissues, serology detection, microscopic cell

detection, and nucleic acid detection (5). Nevertheless, these

conventional microbiological tests (CMTs) are time consuming

and may result in false negative results (6). Conversely,

metagenomic next-generation sequencing (mNGS), as a culture-

independent method, enables the fast and precise sequence

detection of all microorganisms (such as bacteria, fungus, viruses,

and parasites) in a single clinical sample without bias (7, 8). mNGS

has been successfully used in organ transplantation, such as

hematopoiet ic stem cel l and l iver , lung, and kidney

transplantations (9–13). As for the application of mNGS in

diagnosing pulmonary infection among KTRs, studies mainly

focused on Pneumocystis jirovecii pneumonia (PJP) (14–17), and
02
no research has been performed to comprehensively evaluate the

performance of mNGS in identifying respiratory pathogens.

Targeted next-generation sequencing (tNGS) is a more affordable

method that covers overwhelming majority of respiratory pathogens

by enriching species-specific sequences. The panel of the tNGS was

ranged from dozens to hundreds of pathogens based on the designed

primes (18–20). Thus, tNGS only can detect the pathogens in the

panel. However, mNGS has the potential to detect all the pathogens

including rare and newly occurred pathogens. Whether these trade-

offs have a discernible effect on the outcomes is still unknown. Until

now, few studies were reported to compare the clinical performance

of mNGS and tNGS in the diagnosis of infectious disease. Herein, we

sought to evaluate the performance of the mNGS assay and a

complementary tNGS assay by taking clinical diagnosis of each

bronchoalveolar lavage fluid (BALF) sample as standard. In

addition, the correlations between detected microbes and clinical

parameters were investigated.
2 Materials and methods

2.1 Patients and samples

We retrospectively screened medical records of 155

bronchoalveolar lavage fluid (BALF) samples with suspected or

diagnosed pulmonary infections who were admitted to the Kidney

Transplantation Department of the First Affiliated Hospital of

Zhengzhou University in Zhengzhou, China, between January

2022 and September 2023. Samples those sent for both mNGS

and CMT (culture, smear, PCR, serum tests, G/GM) within 3 days

were reviewed, and were finally included for analysis if they met the

following criteria: (i) from patients aged more than 18 years; (ii)

from kidney transplantation recipients (KTRs); and (iii) from

patients exhibiting common symptoms of pulmonary infection

include fever, cough, phlegm, shortness of breath, chest tightness,

dyspnea, etc., and hospitalized for more than 24 h. Samples from

KTRs combined with other transplants, patients without sufficient

information in the electronic medical records, those who died

within 24 h after admission, or the finally diagnosed causative

pathogens were indefinite were excluded. Final clinical diagnoses
frontiersin.org
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for patients were retrospectively determined by an expert panel

made up of doctors from the departments of kidney

transplantation, respiratory medicine, and microbiologists based

on the patients’ characteristics and the composite diagnostic results.

This study was conducted in accordance with the Declaration of

Helsinki. Study protocols were reviewed and approved by the Ethics

Committee of the First Affiliated Hospital of Zhengzhou University

(approval number 2024-KY-0454-001).
2.2 mNGS

2.2.1 Host depletion, DNA extraction, library
construction, capture hybridization,
and sequencing

Briefly, pathogens and human cells were separated from 1-mL

samples by centrifuging it at 12,000 g for 5 min. The host nucleic acid

was then removed from the precipitate using 1 U Benzonase (Sigma)

and 0.5% Tween 20 (Sigma), which were incubated at 37°C for 5 min.

The nucleic acid was then extracted and eluted from 400 µL of

pretreatment samples using a QIAamp UCP Pathogen Mini Kit in 60

µL elution buffer (catalog number 50214, Qiagen, Hilden, Germany).

Using a Qubit dsDNA HS Assay Kit (catalog number Q32854,

Invitrogen, Carlsbad, CA, USA), the isolated DNA was quantified

(21, 22). Total RNA was extracted using QIAamp UCP pathogen

minikit (Qiagen, Valencia, CA, USA) before being subjected to

human rRNA depletion (Vazyme, Nanjing, China). For the

creation of cDNA, 10 µl of purified RNA was employed. The

KAPA low throughput library construction kit (KAPA Biosystems,

Boston, MA, USA) was used to create a DNA/cDNA library in

accordance with the manufacturer’s instructions2. An aliquot of 750-

ng library from each sample was used for hybrid capture-based

enrichment of microbial probe one rounds of hybridization (SeqCap

EZ Library, Roche, Pleasanton, CA, USA). Probes were designed

using CATCH pipeline (23). A Qubit dsDNA HS assay kit was used

to measure the library concentration. Library quality was assessed

with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,

CA, USA) using a high-sensitivity DNA kit. The library was prepared

by pooling a 1.5-pM concentration of each purified sample equally

for sequencing on an Illumina NextSeq 550 sequencer using a 75-

cycle single-end sequencing strategy.

2.2.2 Bioinformatic analysis
Trimmomatic was used to eliminate low-quality reads,

duplicate reads, adapter contamination, and those shorter than 70

bp (24). Low-complexity reads were removed by Kcomplexity’s

default settings. By utilizing SNAP v1.0beta.18 to match the human

sequence data to the hg38 reference genome, the human sequence

data were located and eliminated (25). The Kraken 2 criteria for

choosing representative assemblies for microorganisms (bacteria,

viruses, fungi, protozoa, and other multicellular eukaryotic

pathogens) from the NCBI Assembly and Genome databases

(https://benlangmead.github.io/aws-indexes/k2) were used to
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select pathogens and their genomes or assemblies for the creation

of the microbial genome database. Microbial reads were aligned to

the database using Burrows–Wheeler Aligner software (26). The

reads with 90% identity of reference were defined as mapped reads.

In addition, reads with multiple locus alignments within the same

genus were excluded from the secondary analysis. Only reads

mapped to the genome within the same species were considered.

To remove the mistakes brought on by different sequencing

depths between samples, we normalized the sequencing reads using

RPTM. Samples spiked with microorganisms were classified as

positive samples, and NC was defined as the negative sample. The

parameter resulting in the highest area AUC was considered the

positive cutoff value for this species (27). For microorganisms

without culture isolates, the RPTM mean value and standard

deviation of this microorganism were calculated, and the RPTM

(mean + 2SD) was set as a positive cutoff value (28).

The clinical reportable range (CRR) for pathogens was

established according to the following three references indicated

in a previous study (28): I. Johns Hopkins ABX Guide, II. Manual of

Clinical Microbiology (29), and III. clinical case reports or research

articles published in peer-reviewed journals.
2.3 tNGS

tNGS-targeted microbial species in this study are listed in

Supplementary Table S1. DNA extraction was performed using a

whole DNA extraction kit (Guangdong Sui Equipment Preparation

no. 20191662) that was independently produced by Vision Medicals

Co., Ltd. (Guangzhou, China). Using an RNA extraction kit (no.

20201360), total RNA was extracted. Reverse transcription into

cDNA was then carried out using reverse transcriptase and dNTPs

(Thermo Fisher, USA). Multiple PCRwas used to amplify the extracted

DNA and cDNA using a pathogen-specific primer mix (30, 31), with a

reaction cycle as follows: pre-denaturation at 95°C for 3 min, denatured

at 95°C for 20 s, and annealed at 60°C for 4 min, a total of 25 cycles

were run, with the reaction terminating at 16°C after the cycle was

stopped and extended for 4 min at 72°C. Then, a barcode primer was

used for the second round of PCR amplification, which was conducted

using the first round’s product as a template (pre-denaturation at 95°C

for 3 min, denatured at 95°C for 15 s, annealed at 58°C for 15 s, and

extended at 72°C for 1 min). After seven cycles, the cycle was extended

for 10 min at 72°C, and the reaction was terminated at 10°C. The

concentration of the generated library was assessed using the Qubit 4.0

nucleic acid fluorometric assay and its corresponding Qubit dsDNA

HS Assay kit (Thermo Fisher, USA) upon purification. For 50 single-

ended sequencing cycles, the library was put onto the Illumina Nextseq

CN500 sequencer.

Trimmomatic software was used to eliminate low-quality

sequences, sequences shorter than 40 bps, and junction sequences

from the sequencing data to obtain high-quality data. The following

bioinformatic analysis and data interpretation processes were

consistent with mNGS.
frontiersin.org

https://benlangmead.github.io/aws-indexes/k2
https://doi.org/10.3389/fimmu.2024.1443057
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2024.1443057
2.4 Definition of sensitivity, specificity, true
positive, false positive, true negative, and
false negative

As reference to clinical diagnosis, true positive (TP) was defined as

positive detection in clinical diagnosis positive, false positive (FP) was

defined as positive detection in clinical diagnosis negative, true

negative (TN) referred to negative detection in clinical diagnosis

negative, and false negative (FN) referred to negative detection in

clinical diagnosis positive. The sensitivity (TP rate) was defined as [TP/

(TP+FN)], while specificity (TN rate) was defined as [TN/(TN+FP)].
2.5 Statistical analysis

Continuous variables were expressed as medians [first quartile

(Q1), third quartile (Q3)], and non-continuous variables were

presented as mean ± standard error (SD). Categorical variables

were in counts and percentages unless otherwise specified. The chi-

square test was used to compare differences in categorical variables,

and the Mann–Whitney U test was employed for continuous

variables. Data analysis was performed using GraphPad Prism 6.0

(GraphPad software). Statistical significance was considered to be

present when p<0.05.
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3 Results

3.1 Patients’ characteristics

A total of 99 BALF samples from 99 KTRs were finally

investigated in this study (Figure 1). The demographic and clinical

information of all cases were collected, including sex, age, underlying

diseases, dialysis form and durations, post-transplantation time,

application of immunosuppressant, and laboratory examinations.

As summarized in Table 1, there were 67 male and 32 female

KTRs with an average age of 39.6 ± 9.3. Before surgery, a majority

of patients received hemodialysis (n=80, 80.81%), followed by

peritoneal dialysis in 11 patients, and 48 cases (48.48%) underwent

dialysis for <1 year (Table 1). A total of 56 patients (56.57%) were

more than 3 years after kidney transplantation at the time point of

this admission, followed by 26 cases who were <1-year post-

transplantation, 10 were between 1 years and 2 years post-

transplantation, and the rest of the seven KTRs were in 2–3 years

post-transplantation. All cases received induction with

Glucocort icoid + Anti-human T Lymphocyte Rabbit

Immunoglobulin (ATG-F)/Rabbit Anti-human Thymocyte

Immunoglobulin (ATG) to prevent renal allograft rejection before

surgery. For body weight ≤65kg, intraoperative administration of 50

mg ATG-F/12.5mg ATG was given; for body weight >65 kg, 100 mg
FIGURE 1

Flowchart of the study.
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ATG-F/25 mg ATG was given. Postoperative treatment was given

with 50 mg/day in a total course of 5–6 days. Methylprednisolone 15

mg/kg was given intraoperatively, 7.5 mg/kg on the first day, 5 mg/kg

on the second day, 2.5 mg/kg on the third day, 1.25 mg/kg on the

fourth day, and 40 mg on the fifth day after surgery, followed by oral

prednisone of 20 mg or methylprednisolone 16 mg daily. After the

transplant, the maintenance therapy consisted of Tacrolimus or

Cyclosporin in combination with Mycophenolate mofetil and

Prednisone. The initial concentration for Tacrolimus was set

between 0.05 mg/kg.d and 0.25 mg/kg.d, and for Cyclosporin, it

was set between 6 mg/kg.d and 8mg/kg.d. The target concentration of

Tacrolimus was 10–15 ng/ml within 30 days after transplant, 8–15

ng/ml within 30–90 days, 5–12 ng/ml within 3–12 months, and 5–10

ng/ml over 1 year. The target concentration for Cyclosporin was 200–

350 ng/ml within 30 days, 150–300 ng/ml within 30–90 days, 100–

250 ng/ml within 3–12 months, and 50–150 ng/ml over 1

year (Table 2).
Frontiers in Immunology 05
3.2 Comparison of diagnostic performance
for pulmonary infection

The overall microbial positive rates of mNGS and tNGS were

96.97% (96/99) and 90.97% (90/99), respectively, both

significantly higher than that for CMT of 11.11% (11/99,

p<0.001). In terms of detection rate for bacteria and fungi, a

significantly higher positive rate was also observed for mNGS and

tNGS than CMT (49.49% for mNGS bacteria vs. 6.06% for CMT

bacteria; 38.38% for tNGS bacteria vs. 6.06% for CMT bacteria;

50.51% for mNGS fungi vs. 5.05% for CMT fungi; and 46.46% for

tNGS fungi vs. 5.05% for CMT fungi; p<0.001) (Figure 2A). CMT

did not detect virus, and mNGS detected a remarkably larger rate

of virus than tNGS (88.89% vs. 70.71%, p<0.001). In addition, no

significant difference in total positive rate and bacterial and fungal

detection rate between mNGS and tNGS was observed

(p>0.05) (Figure 2A).
TABLE 1 Characteristics of included patients.

Characteristics N=99

Sex

Male 67 (67.68)

Female 32 (32.32)

Age, years (mean ± SD) 39.6 ± 9.3

Body weight (kg)

≤65 63 (63.64)

>65 36 (36.36)

Underlying diseases

Hypertension 76 (76.77)

Diabetes 4 (4.04)

Heart disease 3 (3.03)

Pre-transplant dialysis form

Hemodialysis 80 (80.81)

Peritoneal dialysis 11 (11.11)

Hemodialysis+peritoneal dialysis 6 (6.06)

Unknown 2 (2.02)

Pre-transplant dialysis durations

<1 year 48 (48.48)

1–2 years 17 (17.17)

>2 years 17 (17.17)

Unknown 17 (17.17)

Post-transplantation time

<1 year 26 (26.26)

1–2 years 10 (10.1)

2–3 years 7 (7.07)

>3 years 56 (56.57)
TABLE 2 Immunomodulator regimen.

Induction agent

Before surgery

Body weight (kg)≤65
Glucocorticoid+50 mgATG-F/
12.5 mgATG

Body weight (kg)>65
Glucocorticoid+100 mgATG-F/
25 mgATG

Intraoperatively 15mg/kg methylprednisolone

Postoperative treatment

ATG-F/ATG 50 mg/12.5 mg for 5–6 days

Methylprednisolone

the first day 7.5 mg/kg

the second day 5 mg/kg

the third day 2.5 mg/kg

the fourth day 1.25 mg/kg

the fifth day 40 mg

Maintenance therapy

Tacrolimus/Cyclosporin+ Mycophenolate mofetil+20
mg prednisone

The initial concentration of Tacrolimus

within 30 days 10–15 ng/ml

30–90 days 8–15 ng/ml

3–12 months 5–12 ng/ml

over l year 5–10 ng/ml

The initial concentration of Cyclosporin

within 30 days 200–350 ng/ml

30–90 days 150–300 ng/ml

3–12 months 100–250 ng/ml

over l year 50–150 ng/ml
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As for results consistency of the comparison between mNGS,

tNGS, and CMT (Figures 2B, C), mNGS and tNGS showed both

positive result in 89 of 99 samples (90%) and were both negative in 7

of 99 (7%) samples. Two samples were detected to be positive in

mNGS assay only, and one sample was positive in tNGS test only.

For 89 double-positive samples, the results of mNGS and tNGS

completely matched (positive pathogens were identical) in 19

(21.3%) samples, partly matched (shared at least one positive

pathogen) in 67 (75.3%) samples, but mismatched (positive

pathogens were completely inconsistent) on the pathogen

identification in 3 (3.4%) samples (Figure 2B). In comparison to

CMT results (Figure 2C), the majority of the samples (85/99, 86%)

were shown to be pathogen positive only in mNGS test. There were

11 samples that were double positive by two methods, with six

samples partly matched in pathogens while five samples of

pathogens mismatched.

Based on the clinical diagnosis of each sample, we next

compared the diagnostic performance of mNGS, tNGS, and

CMT. Among all 99 cases, 93 were clinically diagnosed as

pulmonary infection and pathogens positive in analyzed BALF.

Table 3 illustrates the performance characteristics of three

methods. Owing to no FN samples detected by mNGS, the

sensitivity was 100% for overall samples, the specificity was 50%

because of an equal number of FP and TN samples (n=3), with an

AUC of 0.75. The overall sensitivity for tNGS was 93.55%,

significantly less than that for mNGS (p<0.05), and specificity was

also 50%, with an AUC of 0.72. Although CMT achieved a 100%

specificity because of no FP samples, its overall sensitivity was only

11.83%, with a poor AUC of 0.56. Specific per organism type,

mNGS showed significantly better sensitivity for bacterial, fungal,

and viral diagnosis than tNGS (p<0.05) and achieved a superior

AUC of approximately 0.96 and 0.94 for bacteria and fungi,

respectively. Particularly, for the diagnosis of Pneumocystis
Frontiers in Immunology 06
jeroveci (P. jeroveci) infection, both mNGS and tNGS performed

well with AUC of 0.96 and 0.91, respectively.
3.3 Comparison of detected pathogens
and true positive rates

The top 15 microorganisms detected by mNGS and tNGS are

shown in Figures 3A, B. SARS-CoV-2 and P. jirovecii were the top

two microorganisms detected both by mNGS and tNGS, followed

by Torque teno virus (TTV) and Human betaherpesvirus 5 (CMV)

detected by mNGS besides the tNGS panel. The detected numbers

of Tropheryma whipplei, Enterococcus faecium, Aspergillus flavus,

Aspergillus fumigatus, Streptococcus pneumoniae, and Klebsiella

pneumoniae were located at the 5th/3th, 6th/8th, 8th/4th, 9th/5th,

10th/6th, and 12th/9th, positions in mNGS and tNGS test,

respectively. Human gammaherpesvirus 4 (EBV) and Human

betaherpesvirus 7 (HHV-7) were detected in 12 and 6 samples by

mNGS, but beyond the tNGS panel (Figures 3A, B).

Generally, a greater number of microbes was detected by mNGS

than tNGS (Figure 3). Although most microbes within the tNGS

panel could be co-detected by mNGS and tNGS in the same sample,

there were some pathogens that were only being detected by mNGS,

such as seven cases of E. faecium, three cases of Pseudomonas

aeruginosa, and four cases of P. jirovecii and A. fumigatus

(Figure 3C). Moreover, three numbers of S. pneumoniae and

Stenotrophomonas maltophilia, six numbers of Aspergillus niger,

and a few numbers of other microbes were only being detected by

tNGS (Figure 3C).

According to diagnosed causative pathogens of each sample, all

detected microbes by mNGS and tNGS were recognized as TP and

false positive (FP). The causative pathogens with case numbers not

less than five are shown in Figure 4A, indicating that the top 1
FIGURE 2

Comparison of positive rate and result accordance. (A) Positive rates comparison for total, bacteria, fungi, and virus between mNGS, tNGS, and CMT.
(B) Pie chart demonstrating the result consistency of mNGS and tNGS, and the double positive results were further categorized as match, mismatch,
and partly match. (C) Pie chart demonstrating the result consistency of mNGS and CMT, and the double positive results were further categorized as
mismatch, and partly match. mNGS, metagenomic next-generation sequencing; tNGS, targeted next-generation sequencing; CMT, conventional
microbiological tests. ***P<0.001.
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responsible pathogen was SARS-CoV-2 in 43 cases, followed by P.

jirovecii in 32 cases, CMV in 15 cases, T. whipplei and A. flavus in 13

cases, E. faecium and EBV of 12 cases, A. fumigatus of nine cases,

and K. pneumoniae of six cases. In addition, S. pneumoniae,

Candida albicans, and P. aeruginosa infections were diagnosed in

five samples. mNGS showed a total TP rate of 73.97% (216/292),

significantly higher than that for tNGS (65.15%, 129/198, p<0.05)

(Figure 4B). Specific for bacterial and fungal TP rates, mNGS also

considerably outperformed tNGS (94.59% vs. 64.81% for bacteria,

p<0.001; 93.85% vs. 72.58% for fungi, p<0.01). The TP rate between

mNGS and tNGS for virus were comparable (55.56% for mNGS vs.

59.76% for tNGS, p=0.54).

In terms of TP rate for specific microbial species, 100% T.

whipplei (13/13), E. faecium (12/12), K. pneumoniae (5/5), P.

aeruginosa (5/5), and A. flavus (11/11) detected by mNGS were

recognized as TP (Figure 4C). In addition, 11 of 12 (91.67%) EBV,

31 of 34 (91.18%) P. jirovecii, 8 of 9 (88.89%) A. fumigatus, 5 of 6

(83.33%) S. pneumoniae, 14 of 18 (77.78%) CMV, 42 of 56 (75%)
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SARS-CoV-2, 4 of 6 (66.67%) HHV-7, and none of 34 (0%) TTV

that were detected by mNGS were TP (Figure 4C). As for tNGS

(Figure 4D), T. whipplei (n=12) and E. faecium (n=5) also achieved

a TP rate of 100%, followed by P. jirovecii (n=32) and A. fumigatus

(n=8) with a TP rate of 87.5%. Furthermore, 7 of 9 (77.78%) A.

flavus, 40 of 54 (74.07%) SARS-CoV-2, 3 of 5 (60%) K. pneumoniae,

3 of 7 (42.86%) S. pneumoniae, 2 of 5 (40%) Mycobacterium

tuberculosis complex (MTC), and 0 of 6 (0%) A. niger identified

by tNGS were TP (Figure 4D).
3.4 Distinctive clinical characteristics of
TTV-positive versus TTV-
negative recipients

Regarding the identified microbes by mNGS and their

corresponding post-transplantation time (Figure 5A), the majority of

SARS-CoV-2 (37/56, 66.07%), Aspergillus (13/25, 52%), CMV (9/18,
TABLE 3 Performance characteristics of metagenomic and targeted NGS workflows and conventional microbiological test.

Performance
category

No. of samples categorized as: Sensitivity
(%) (95% CI)

Specificity
(%) (95% CI)

AUC
(95% CI)TP FP TN FN

mNGS

Overall 93 3 3 0
100
(96.11–100.0)

50 (11.81–88.19)
0.75
(0.4892–1.011)

Bacterial 48 1 47 3
94.12
(83.76–98.77)

97.92
(88.93–99.95)

0.96
(0.9157–1.005)

Fungal 47 3 46 3 94 (83.45–98.75)
93.88
(83.13–98.72)

0.94
(0.8848–0.9940)

Viral 64 24 11 0
100
(94.40–100.0)

31.43
(16.85–49.29)

0.66
(0.5360–0.7783)

P. jirovecii 31 3 64 1
96.88
(93.45–100.30)

95.52
(91.45–99.60)

0.96
(0.9167–1.007)

tNGS

Overall 87 3 3 6
93.55
(86.48–97.60)

50 (11.81–88.19)
0.72
(0.4619–0.9736)

Bacterial 28 10 38 23
54.9
(40.34–68.87)

79.17
(65.01–89.53)

0.67
(0.5631–0.7776)

Fungal 38 8 41 12 76 (61.83–86.94)
83.67
(70.34–92.68)

0.8
(0.7067–0.8900)

Viral 54 16 19 10
84.38
(73.14–92.24)

54.29
(36.65–71.17)

0.69
(0.5787–0.8079)

P. jirovecii 28 4 63 4
87.5
(80.99–94.01)

94.03
(89.36–98.70)

0.91
(0.8330–0.9823)

CMT

Overall 11 0 6 82
11.83
(6.055–20.18)

100
(54.07–100.0)

0.56
(0.3442–0.7740)

Bacterial 3 3 45 48 5.88 (1.25–10.52)
93.75
(88.98–98.52)

0.5
(0.3874–0.6162)

Fungal 4 1 48 46 8 (2.223–19.23)
97.96
(89.15–99.95)

0.53
(0.4157–0.6439)
TP, true positive; FP, false positive; TN, true negative; FN, false negative.
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50%), Tropheryma (10/13, 76.92%), and EBV (10/13, 83.33%) were

detected from recipients who underwent surgery over 3 years as

compared to the other three post-transplantation time periods.

However, 55.88% (19/34) TTV were detected from recipients within

1-year post-transplant, followed by 23.53% (8/34) more than 3 years

after surgery (Figure 5A). Most cases survived (96/99, 96.87%) at 28-

day admission, and the top 5 detected genus by mNGS included SARS-

CoV-2, Pneumocystis, TTV,Aspergillus, and CMV (Figure 5B). Among

the three non-survived cases, two numbers of SARS-CoV-2 and TTV;
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one case of T. whipplei, E. faecium, EBV, A. fumigatus, and A. flavus;

and five numbers of others were detected by mNGS (Figure 5C).

We next compared the clinical characteristics between TTV-

positive and TTV-negative patients by mNGS (Table 3). No

significant difference was observed between sex, ages, and underlying

diseases. Notably, we found that the constituent ratio of post-

transplantation time between two groups largely differed (p<0.001),

manifesting as that more than half (19/35, 54.29%) cases in the TTV-

positive group were within 1 year after surgery, whereas most TTV-
FIGURE 3

Comparison of detected pathogens spectrum between mNGS and tNGS. (A) Numbers of mNGS-detected top 15 microorganism identified by mNGS
and tNGS. (B) Radar map shows the distribution of top 15 microorganism identified by tNGS and mNGS detected numbers. (C) Sample numbers of
bacteria, fungi, and viruses identified by mNGS, tNGS, or both.
FIGURE 4

Comparison of detected pathogens true positive rate between mNGS and tNGS. (A) sample numbers of clinically recognized pathogens (only those
with a sample size ≥5 are shown). (B) Comparison of the true positive rate of total microbes and microorganism type per between mNGS and tNGS.
(C, D) The true positive and false positive numbers and true positive rate of corresponding microbes detected by the mNGS (C) and tNGS (D), only
microbes that identified in not less than five samples were shown.
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negative KTRs (47/64, 73.44%) were over 3 years post-transplantation

(Table 4, Figure 6). In addition, TTV-positive cases had a higher ratio

of eosinophils and basophilic granulocyte, along with increased D-

dimer concentration and PSI score, when compared to TTV-negative

patients (p<0.05) (Table 4, Figure 6).
4 Discussion

The application of NGS technologies for pathogens

identification is a burgeoning field, and optimal practices are

areas of active investigation. mNGS has been extensively served as

a novel tool for defining potential causative microorganisms for

infectious diseases including respiratory tract infections. Based on

amplification of primers targeted specific pathogens, tNGS is

economic but covers limited pathogens and has been recently

applied for detecting respiratory tract pathogens (19, 32). In this

study, mNGS significantly outperformed tNGS in identifying

causative respiratory pathogens of BALF samples from KTRs. To

our knowledge, this was the second study to compare mNGS and

tNGS in respiratory infections, and the first was performed by Li

et al. (19)., indicating that tNGS was comparable with mNGS in

adults with pneumonia for pathogenic microorganism detection.

The immunological function of KTRs is clearly compromised

by the long-term use of immunosuppressants, which raises the risk

of postoperative infection. Consequently, KTRs are a population

that is more susceptible to infection with SARS-CoV-2 and other

infections (33). Among 99 KTRs of this study, 96 were diagnosed

with pulmonary infection, and 43 of them were recognized as

SARS-CoV-2 infection. This may be attributed to the sampling

timing of our samples, which covered the partial COVID-19

pandemic period (Jan, 2022 to Sep, 2023). mNGS achieved a
FIGURE 5

The relationship between mNGS-detected microbes and corresponding patients’ post-transplantation time and 28-day outcome. (A) Sankey
diagram illustrates the relationship between mNGS-detected microbes at genus level and corresponding patients’ post-transplantation time.
(B, C) mNGS detected microbes at genus level in 28-day survivors (B) and species in 28-day non-survivors (C).
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TABLE 4 Comparison of clinical characteristics between TTV-positive
and TTV-negative cases by mNGS.

Characteristics
TTV
positive

TTV
negative

p-
value

Case number 35 64 /

Sex, n (%) / 0.227

Male 21 (60) 46 (71.88)
/

Female 14 (40) 18 (28.13)

Age, years (mean ± SD) 37.94 ± 9.12 40.67 ± 9.28 0.149

Underlying diseases /

Hypertension 25 (71.43) 50 (78.13) 0.457

Diabetes 1 (2.86) 3 (4.69) 0.658

Heart disease 2 (5.71) 1 (1.56) 0.249

Post-transplantation time / / <0.0001

<1 year 19 (54.29) 7 (10.94)

/
1–2 years 5 (14.29) 5 (7.81)

2–3 years 2 (5.71) 5 (7.81)

>3 years 9 (25.71) 47 (73.44)

Laboratory findings, median
(Q1, Q3)

/

WBC, 109/L
6.53
(4.6, 10.75)

6.15
(4.67, 8.82)

0.553

Neutrophil count, 109/L
4.96
(3.21, 8.91)

4.46
(3.44, 7.73)

0.647

(Continued)
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sensitivity of 100% for all samples owing to that the three non-

infectious samples were also shown to be negative by mNGS.

Meanwhile, because of the equal number of TN and FP samples

(n=3), mNGS and tNGS showed a poor specificity of 50%. In

previous studies, the sensitivity for BALF mNGS ranged from 55%

to 100% (34–36), and specificity ranged from 60% to 93% (37, 38).

Although the specificity of CMT was calculated to be 100% because

of the zero FP samples, its sensitivity was only 11.83%, with a poor

AUC of 0.56. Herein, the few numbers of diagnosed non-infectious

samples may have influence on the superior sensitivity and

underperforming specificity of mNGS and tNGS.

No significant difference in total, bacterial, and fungal positive

rates between mNGS and tNGS was found, but a significant

difference was observed in virus positive rate. This can be
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explained by the fact that the primary viruses including TTV,

EBV, CMV, and HHV-7 detected by mNGS were beyond tNGS

panel. As for pathogens that were covered by the tNGS panel, there

were also microbes detected by mNGS or tNGS only in one sample.

By sequencing nucleotides in patient samples, the mNGS approach,

which surveys random samples of analyte DNA or RNA, might

potentially identify all pathogens. But since host cells and

nucleotides make up the majority of those samples (usually more

than 90%), sequencing for microbial identification becomes far less

effective (8, 39, 40). Although capture probes were employed for

host DNA/RNA depletion in this study (8), host nucleic acid may

also limit the overall analytical sensitivity of mNGS. Conversely,

tNGS is a strategy that combines simultaneous quantitative analysis

of amplified products with targeted primer extension, which can

theoretically lower the amount of host nucleotides. On the contrary,

we showed that mNGS exhibited better sensitivity than tNGS in

both overall and per microorganism type infections. This was

inconsistent with a recent report, which showed that the

pathogen-targeted NGS had superior performance over mNGS

for common causative pathogen detection in cerebrospinal fluid

(CSF) for infectious meningitis/encephalitis (41). On the one hand,

CSF is known to have high host background, with >200 cells per

cubic milliliter typically observed for CSF cell counts (42), thus may

hamper the sensitivity of mNGS. On the other hand, the

amplification efficiency and threshold criteria for tNGS can

largely impact the FP of reported pathogens, suggesting that

tNGS techniques in our study still require refinement.

Followed by SARS-CoV-2, P. jirovecii was the second causative

pathogen for pulmonary infection in this study. PJP is a severe and

potentially fatal opportunistic illness that typically strikes recipients of

solid organ transplants, especially in KTRs, who are vulnerable to

respiratory infections (14, 43). However, diagnosis of PJP remains

challenging due to its nonspecific clinical presentation and the
TABLE 4 Continued

Characteristics
TTV
positive

TTV
negative

p-
value

Lymphocyte count, 109/L 0.9 (0.5, 1.39)
0.67
(0.41, 1.07)

0.230

Eosinophils% 0.3 (0.04, 2.1) 0.1 (0, 0.28) 0.009

Basophilic granulocyte% 0.2 (0, 0.3) 0.1 (0, 0.1) 0.008

Platelet count, 109/L 185 (125, 232)
160.5
(120.5, 216)

0.285

D-dimer, mg/ml 0.3 (0.12, 0.7) 0.16 (0.1, 0.3) 0.028

Severity and outcome /

PSI score 20 (10, 40) 10 (1, 20) 0.044

Total hospitalization
time, days

19 (12, 31) 15.5 (10, 21.5) 0.094

28-day mortality, n (%) 2 (5.71) 1 (1.56) 0.285
FIGURE 6

Sankey diagram illustrates the relationship between TTV positive or negative and corresponding patients’ post-transplantation time and PSI score.
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inadequate performance of conventional diagnostic methods (44).

Both for immunocompetent and immunocompromised cases, mNGS

has been demonstrated to show superior diagnostic performance over

CMT in PJP, with sensitivity ranging from 83% to 100% and

specificity from 85% to 100% (45, 46). As observed in this research,

both mNGS and tNGS exerted satisfying performance for P. jirovecii,

manifested by sensitivity of 96.88% and 87.50%, specificity of 95.52%

and 94.03%, AUC of 0.96 and 0.91, for mNGS and tNGS, respectively.

No significant difference was observed in P. jirovecii detection

between tNGS and mNGS, indicating that the potential value of

tNGS for PJP diagnosis was comparable with mNGS.

Despite the fact that mNGS detected a large number of viruses

in addition to SARS-CoV-2 in BALF samples, only a few of CMV

and EBV were recognized as true positive and no TTV was

identified as causative pathogen. This may lead to the relatively

lower true positive rate for detected virus by mNGS than tNGS.

Interestingly, we found that the proportion of TTV positivity

decreased with the increase in post-transplantation time (73.08%

for <1 year, 50% for 1–2 years, 28.57% for 2–3 years, and 16.67% for

>3 years). TTV is a ubiquitous and non-pathogenic single-stranded

DNA virus and has been proposed as a marker of functional

immunity in immunocompromised patients (47). Increasing

studies have reported the potential value of monitoring TTV after

kidney transplantation for predicting events associated with

excessive immune suppression and acute rejection (47–49).

Similar to our findings, a previous study showed that TTV

detection rate in the blood from KTRs reached peak point at 75

days after transplantation and subsequently dropped at 180 days

and 360 days after transplantation (50). TTV viral load could

gradually increase during the first 3 months post-transplantation

in KTRs (51). The bidirectional movement of TTV from donor

organ to recipient serum has been shown in lung transplant

recipients by metagenomics analysis (52, 53). in addition, we did

not observe statistical correlation between TTV-positive and post-

transplant virus infection or rejection, but TTV positive cases were

shown to have a higher ratio of eosinophils and basophil, along with

increased D-dimer concentration and PSI score, than TTV-negative

patients. Concentrations of eosinophils may be elevated by

inflammatory conditions of the lower respiratory tract, including

viral infection, and has been shown to be increased by TTV

infection (54, 55). In this study, KTRs were administrated with

reduced dosage of immunosuppressants 1-year post-

transplantation. Therefore, the decreased positive rate for TTV as

post-transplantation time increases may be explained by the

application of immunosuppressors, which predispose KTRs to

viral infections. Additionally, only one patient was shown to be

TTV-3 positive in this study. Studies about the differences in the

TTV genotypes among KTRs are scarce. Considering that the

sequence data of mNGS could allow us to perform genomic

analysis and phylogenetic tree construction, we intended to

analyze the associations between TTV genotypes and clinical

characteristic among KTRs in the subsequent study.

This study had certain shortcomings as well. First, the majority

of patients (87.88%, 87/99) underwent treatment prior to tests,

which may have impacted the performance of NGS and CMT,

particularly for culture. Second, because our studied population
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were immunocompromised hosts, only three were diagnosed as

pathogen negative among 99 KTRs, which may introduce bias into

the estimates of sensitivity and specificity. Lastly, because this was a

single-center, retrospective investigation, bigger sample sizes and

prospective studies are required to validate our results.

Collectively, both mNGS and tNGS could provide valuable

information in addition to CMTs. Although tNGS showed

inferior performance over mNGS for respiratory causative

pathogen detection in BALF for pulmonary infection among

KTRs, tNGS also considerably outperformed CMT. NGS is

expected to make larger contributions in the identification or

exclusion of infections with additional workflow optimization.
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