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Cluster of differentiation-44 as a
novel biomarker of lupus
nephritis and its role in kidney
inflammation and fibrosis
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Danting Zhang1, Desmond Y.H. Yap1, Shirley K.Y. Ying2,
Cheuk Kwong Lee3, Susan Yung1* and Tak Mao Chan1*

1Department of Medicine, School of Clinical Medicine, The University of Hong Kong,
Hong Kong, Hong Kong SAR, China, 2Department of Medicine and Geriatrics, Princess Margaret
Hospital, Hong Kong, Hong Kong SAR, China, 3Hong Kong Red Cross Blood Transfusion Service,
Hong Kong, Hong Kong SAR, China
Introduction: CD44 is a transmembrane glycoprotein implicated in tissue

inflammation and fibrosis. We investigated its role in kidney inflammation and

fibrosis in a murine model of lupus nephritis (LN), and the clinico-pathological

association of serumCD44 level in patients with biopsy-proven Class III/IV ± V LN.

Methods: NZB/W F1 mice were treated with control IgG or anti-CD44

monoclonal antibody for 4 weeks and disease parameters assessed. Serum

CD44 level in LN patients was determined by ELISA. Control groups included

healthy subjects and patients with non-renal SLE or non-lupus renal disease.

Results: CD44 expression was absent in the normal kidney, but it was expressed in

proximal and distal tubular epithelial cells and infiltrating cells in renal biopsies from

patientswith active proliferative LN. ScRNA-Seq datasets confirmed that CD44was

predominantly expressed in tubular cells and all immune cells identified in LN

patients including tissue resident, inflammatory and phagocytic macrophages,

Treg cells, effector and central memory CD4+ T cells, resident memory CD8+ T

cells and naïve and activated B cells. Treatment of NZB/W F1 mice with anti-CD44

antibody preserved kidney histology and reduced proteinuria, tubulo-interstitial

infiltrationofCD3+,CD4+andCD19+ immunecells, andmediatorsof kidneyfibrosis

compared to Control mice. Longitudinal studies showed that serum CD44 level

increased prior to clinical renal flare by 4.5 months and the level decreased after

treatment. ROC curve analysis showed that CD44 level distinguished patients with

active LN from healthy subjects and patients with quiescent LN, active non-renal

lupus, and non-lupus CKD (ROC AUC of 0.99, 0.96, 0.99 and 0.99 respectively).

CD44 level correlatedwith leukocyte infiltration and interstitial inflammation scores

in active LN kidney biopsies.

Discussion: Our findings suggest that CD44 plays a pathogenic role in renal

parenchymal inflammation and fibrosis in active LN and monitoring CD44 may

facilitate early diagnosis of flare.
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1 Introduction

Lupus nephritis (LN) is a common and severe manifestation of

systemic lupus erythematosus (SLE), and is an important cause of

acute kidney injury and chronic kidney disease (CKD) (1). LN is

initiated by the deposition of immune complexes in the glomerular

and tubular basement membranes triggering complement

activation, proliferation of resident renal cells, recruitment of

immune cells and induction of inflammatory and fibrotic

processes, which if not adequately controlled, will lead to scarring

and loss of renal reserve (1, 2). Reducing acute immune-mediated

kidney damage and preventing kidney fibrosis is essential to ensure

optimum long-term kidney and patient survival. Kidney biopsy

remains the gold standard for confirming the diagnosis of LN and

subsequent assessment of histopathological changes in the kidney,

but since it is invasive it cannot be performed frequently.

Conventional investigations such as lupus serological tests to

assess anti-dsDNA and C3 levels reflect immunological status but

not organ injury, and their change over time is useful in many but

not all patients (3, 4). Indicators of kidney injury or function such as

proteinuria and serum creatinine are insensitive and could present

late in the course of disease activation, and they may not accurately

reflect histopathological changes (5, 6). There is a pressing need to

identify novel molecules that not only serve as diagnostic and

prognostic biomarkers but contribute to LN pathogenesis and

serve as potential therapeutic targets.

CD44 is a transmembrane glycoprotein widely expressed on the

surface of both immune and non-immune cells including

monocytes, lymphocytes, epithelial cells and fibroblasts. CD44

plays important roles in cell migration, proliferation, cell-matrix

interaction, and presentation of cytokines including TGF-b1, to
their cognate receptors thereby inducing downstream tissue

fibrosis. CD44 is a major cell surface receptor for hyaluronan

(HA) and CD44-HA interactions have been reported to induce

murine B cell activation and effector functions in T cells and

macrophages (7, 8). The ability of CD44 to bind HA is dependent

on its activation status, which can be induced by pro-inflammatory

mediators including TNF-a, IL-1b, and RANTES (9, 10). CD44 is

also a component of the endothelial glycocalyx, a delicate gel-like
Abbreviations: ACAN, aggrecan; a-SMA, a-smooth muscle actin; AU, arbitrary

unit; AUC, area under curve; C3, complement 3; CD44, cluster of differentiation-

44; CKD, chronic kidney disease; DC, distal tubules cells; dsDNA, double-

stranded deoxyribonucleic acid; FN or FN1, fibronectin; eGFR, estimated

glomerular filtration rate; ELISA, enzyme-linked immunosorbent assay; HA,

hyaluronan; HAS2, hyaluronan synthase 2; H&E, Haematoxylin & Eosin;

HYAL2, hyaluronidase-2; IgG, immunoglobulin G; ITGAD, integrin aD;

ITGAV, integrin aV; LCN2, lipocalin-2; LN, lupus nephritis; LoH, Loop of

Henle; MMF, mycophenolate mofetil; NGAL, neutrophil gelatinase-associated

lipocalin; PBS, phosphate buffered saline; PTEC, proximal tubular epithelial cells;

RNA-Seq, ribonucleic acid sequencing; ROC, receiver operating characteristic; sc,

single cell; SDS-PAGE, sodium dodecyl sulphate polyacrylamide gel

electrophoresis; SLE, systemic lupus erythematosus; SLEDAI, systemic lupus

erythematosus disease activity index; SPP1, osteopontin; TGF-b1, transforming

growth factor beta1, tSNE, t-distributed stochastic neighbour embedding;

VCAM-1, vascular cell adhesion molecule-1.
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layer located at the interface between the endothelium and

bloodstream, and it impedes leukocyte binding to cell adhesion

molecules and their transmigration from the circulation across the

endothelium to sites of injury (11). Acute or chronic inflammation

induces endothelial cell activation, which results in the shedding of

glycocalyx constituents and their detection in the circulation (12),

and exposes cell adhesion molecules that medicate immune cell

infiltration to sites of injury.

In the normal kidney, CD44 expression is restricted to passenger

leukocytes and resident macrophages and is weakly expressed in the

mesangium (13–15). Renal expression of CD44 is markedly

increased in experimental models of kidney injury, and human

nephropathies such as IgA nephropathy , c rescent i c

glomerulonephritis and membranoproliferative glomerulonephritis

(14–16). In patients with IgA nephropathy, renal CD44 expression

strongly correlated with the degree of glomerular and tubulo-

interstitial damage, and proteinuria (17). In lupus-prone MRL-lpr

mice, increased CD44 expression was observed in perivascular

inflammatory infiltrates, glomerular crescents and cortical tubules

(15). The role of CD44 in LN pathogenesis has not been defined.

This study investigated the role of CD44 in kidney

inflammation and fibrosis in NZB/W F1 mice and its potential

role as a novel biomarker in the diagnosis and clinical management

of LN.
2 Materials and methods

2.1 Chemicals, reagents and assay kits

All chemicals were of the highest purity and were purchased

from Sigma Aldrich (Tin Hang Technology, Hong Kong) unless

otherwise stated. Human CD44 and mouse VCAM-1 Duoset ELISA

kits were purchased from R&D Systems Inc. (Genetimes

Technology International Holding Limited, Hong Kong). Mouse

CD44 ELISA kits were purchased from Lifespan Biosciences, Inc

(Bio-Gene Technology Limited, Hong Kong). Kallestad™ anti-

dsDNA microplate EIA kits and DC Protein Assay kits were

purchased from Bio-Rad Pacific Limited, Hong Kong.

QuantiChrom™ Urea, Creatinine and Albumin Assay Kits were

purchased from BioAssay Systems (California, USA). Tissue culture

flasks were purchased from Falcon (Becton Dickinson, Gene

Company Limited, Hong Kong), and L-glutamine were purchased

from Life Technologies (Thermo Fisher Scientific, Hong Kong). Rat

B cell hybridomas that produce monoclonal antibody against

mouse CD44 (clone IM7.8.1) were purchased from American

Type Culture Collection (ATCC, Tin Hang Technology Limited,

Hong Kong). EX-CELL hybridoma medium®, Hematoxylin

solution (Gill No. 3), Eosin Y solution, Bouin’s solution, Biebrich

Scarlet-Acid Fuchsin Solution and Weigert’s Iron Hematoxylin

solution were purchased from Sigma-Aldrich (Tin Hang

Technology Limited, Hong Kong). HiTrap® Protein G High

Performance column was purchased from GE Healthcare (Tin

Hang Technology, Hong Kong). Pierce™ High Capacity

Endotoxin Removal Spin Columns, IgG2b Rat Uncoated ELISA
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kits, Taqman® gene expression assay probes for mouse CD44

(Mm01277163_m1), VCAM-1 (Mm01320970_m1), ICAM-1

(Mm00516023_m1), TGF-b1 (Mm00441726_m1), a-smooth

muscle actin (a-SMA) (Mm00725412_s1) and fibronectin (FN)

(Mm00692666_m1), and mouse GAPDH endogenous control

(VICTM/MGB probe, primer limited) were purchased from

Thermo Fisher Scientific, Hong Kong Limited. RNeasy mini kits

were purchased from Qiagen Hong Kong Pte Limited, Hong Kong.

Non-immune rat anti-mouse IgG was purchased from MP

Biomedicals (Genetimes ExCell Technology Inc. Hong Kong).
2.2 Preparation of mouse anti-
CD44 antibody

Rat B cell hybridomas (clone IM7.8.1) were cultured in EX-

CELL hybridoma medium supplemented with L-glutamine (10mM,

final concentration) and the medium changed every 2-3 days.

Endotoxin-free anti-CD44 monoclonal antibody was purified

f rom the cu l tu r e med ium by pro t e in G-Sepharose

chromatography using HiTrap® Protein G High Performance

columns followed by Pierce™ High Capacity Endotoxin Removal

Spin Columns. The purity of the antibody was assessed by SDS-

PAGE (Supplementary Figure 1A), and IgG concentration

determined using IgG2b Rat Uncoated ELISA kits according to

the manufacturer’s instructions. Anti-CD44 antibody was filtered

sterilized using 0.22 mm filter, stored at -20°C in endotoxin-free PBS

at a concentration of 1mg/ml until required.
2.3 Animal studies

Female NZB/W F1 mice were bred from female NZB and male

NZW mice purchased from the Jackson Laboratory (Bar Harbor,

Maine, USA) under an AAALAC International accredited program

at the Centre for Comparative Medicine Research, the University of

Hong Kong under specific pathogen free conditions. Mice were kept

under normal housing conditions in a 12-hour night and day cycle,

and water and chow were available ad libitum. Treatment started

when mice were 25 - 28 weeks of age when they developed

proteinuria, defined as spot albumin-to-creatinine ratio (ACR)

greater than 10 mg/g on two occasions at least 2 days apart. In

the first study, NZB/W F1 mice were randomized into 2 groups to

receive either non-immune rat anti-mouse IgG (Control) or anti-

CD44 antibody (CD44 Ab) (10 mg), once weekly by intravenous

administration for 4 weeks, after which time mice were sacrificed,

blood collected, and kidneys harvested (n = 4 - 6 mice per group).

This dose represented the lowest dose of CD44 antibody that could

reduce proteinuria after 4 weeks compared to control IgG

(Supplementary Figure 1B). In a separate study, female NZB/W

F1 mice were randomized into 2 groups to receive either vehicle or

mycophenolate mofetil (MMF, 100 mg/kg/day), once daily by oral

gavage for 4 weeks, and blood and kidneys harvested. The MMF

dose used was previously shown to reduce inflammation and

fibrosis in NZB/W F1 mice (18–20). Animal studies were

reviewed and approved by the Committee on the Use of Live
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Animals in Teaching and Research (CULATR) at the University

of Hong Kong.
2.4 Renal histopathology

Paraffin-embedded kidney sections (5 mm) from NZB/W F1

mice treated with either Control IgG or anti-CD44 antibody were

stained with H&E and Masson’s trichome as previous described

(19). Renal histology was scored by two independent observers in a

blinded manner. Briefly, following H & E staining, kidney lesions in

the glomerular and tubulo-interstitial compartments were graded 0

to 3 (0 = normal, 1 = mild, 2 = moderate and 3 = severe) and

expressed as mean glomerular and tubulo-interstitial lesion scores

for each group (19). For each mouse, approximately 20 glomeruli,

tubular, interstitial and vascular areas were evaluated for glomerular

hypercellularity, mesangial matrix expansion, crescent formation,

influx of mononuclear cells, fibrinoid necrosis, hyaline deposits,

tubular atrophy, protein cast deposition and vasculopathy (18, 21,

22). For semi-quantitative assessment of Masson’s trichrome

staining, collagen-positive area was assessed using computer-

assisted image analysis software (ImageJ, NIH, USA).
2.5 Cytochemical staining

In NZB/W F1 mice, paraffin-embedded kidney sections (5 mm)

were stained for CD44, CD3, CD4, CD19, F4/80, hyaluronan

binding protein (HABR), VCAM-1 and NGAL as previously

described (23). Signal detection was by the peroxidase method,

visualized by 3,3’-diaminobenzidine (DAB) and counterstained

with Haematoxylin. CD44 expression was assessed in paraffin-

embedded normal kidney specimens (5 mm) from patients

undergoing nephrectomy (n = 6) and renal biopsies from patients

with active proliferative LN (n = 15) using cytochemical staining as

previously described (23). Signal detection and visualization was by

the peroxidase-anti-peroxidase method and specimens were

counterstained with Haematoxylin. Five to ten non-overlapping

images were taken for each specimen using a Zeiss™ Axioscope 5

upright microscope and Axiocam 208 digital camera system (Carl

Zeiss Far East Company Limited, Hong Kong), and semi-

quantitative assessment of mediators of inflammation and fibrosis

was performed using ImageJ software (NIH, USA).
2.6 Gene expression

Total mRNA was extracted from the kidney cortex of NZB/W

F1 mice using RNeasy mini kits according to the manufacturer’s

instructions. Two micrograms of total mRNA were reverse-

transcribed into cDNA with Primescript™ RT reagent kit with

gDNA Eraser, and gene transcripts for CD44, VCAM-1, ICAM-1,

TGF-b1, a-SMA and FN assessed by quantitative real-time PCR

using Taqman gene expression assay on a Lightcycler 480 II real

time PCR system (Roche Diagnostics, DKSH Hong Kong Limited,

Hong Kong). All samples were analyzed in triplicate, and mRNA
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expression of the aforementioned markers of inflammation and

fibrosis were calculated using the delta delta Ct (2−DDCt) method,

normalized to GAPDH.
2.7 Patients and controls

Archived sera collected during the period February 2000 to

August 2015 from 41 adult Chinese patients with kidney biopsy-

proven Class III/IV ± V LN under active follow-up at the SLE clinic

at Queen Mary Hospital, Hong Kong were included in this study.

Paired sera, one collected during renal flare and the other during

quiescent, were obtained from 39 patients and were used in the

comparison between active disease and remission, and also in the

cross-sectional study. In addition, serial sera collected from 39

patients at intervals of 3 to 4 months during long-term follow-up

with at least one sample collected during active disease, were used in

the longitudinal study. Patients with serum creatinine above 450

µmol/l and eGFR below 15ml/min were excluded since renal

function deterioration per se is associated with altered immune

responsiveness (24), and could confound the results. Disease

activity was classified as ‘active’ or ‘inactive’ based on clinical and

serological parameters of disease such as proteinuria, active urinary

sediment, with or without deteriorating kidney function (25). All

renal flares were confirmed with kidney biopsy, whereas inactive

renal disease was defined by insignificant proteinuria and stable

kidney function in patients on stable low-dose maintenance

immunosuppressive treatment, typically at a daily dose of

prednisolone ≤5 mg. Renal SLEDAI-2K was calculated as

previously described (25–27). Corresponding clinical, serological,

and histopathological parameters were retrieved from database and

hospital records. Standard therapy for active LN was prednisolone

and mycophenolate mofetil (MMF), at tapering doses, as both

initial and maintenance therapy continuously (28). Activity and

Chronicity Indices in renal biopsies were determined as previously

reported, with maximum scores of 24 and 12 respectively (27). Sera

from age- and sex-matched healthy subjects (n = 46), patients with

non-proliferative CKD and comparable eGFR as LN patients (n =

37), and SLE patients without renal involvement (n = 53), served as

controls. The studies involving human participants were reviewed

and approved by the University of Hong Kong and Hospital

Authority Hong Kong West Cluster Institutional Review Board

(HKU/HA HKW IRB), and all subjects gave written consent for the

use of their serum and clinical data in this study.
2.8 ELISAs and assays

All samples were measured in duplicate. Anti-dsDNA antibody

level in LN and SLE patients was measured using Kallestad™ anti-

dsDNA microplate EIA kits according to the manufacturer’s

instructions, with a detection range of 20 - 300 IU/ml. Serum

CD44 and VCAM-1 levels in patients and/or mice were measured

using commercially available ELISAs according to the
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CD44 Duoset ELISA kits was 78.10 - 5,000 pg/ml. Seropositivity

was defined as values greater than mean + 3 SD in healthy subjects,

with a cut-off value of 1.36 ng/ml.

In animal studies, mouse CD44 and VCAM-1 ELISA kits had

detection range of 0.156 - 10 ng/ml and 125 - 8,000 pg/ml

respectively. Serum creatinine and urea levels were measured

using QuantiChrom™ Creatinine and Urea assay kits

respectively. Spot urine was collected weekly from Control IgG-

treated and anti-CD44 antibody-treated mice, and ACR was

determined using QuantiChrom™ Albumin and Creatinine assay

kits to assess disease progression.
2.9 Analysis of CD44 expression from
public sequencing datasets

Published Bulk RNA-Seq transcriptomic datasets from NBCI

Gene Expression Omnibus [GEO accession no. GSE127797 (29),

GSE32591 (30), GSE69438 (31), and GSE37463 (32)], and single cell

data of AMPPhase 1 (33, 34) were retrieved to assessCD44 expression

in micro-dissected glomeruli and tubules from patients with biopsy-

proven LN and healthy control subjects. The expression matrix for

each GEO series was downloaded, and batch normalization of

microarrays was performed using the R package limma and sva.

ScRNA-Seq datasets from resident renal cells (33) and immune cells

(34) from renal specimens fromLNpatients and healthy controls were

used to assess CD44 in individual cell populations using Seurat R

package (v 5.0.1). Highly expressed ubiquitous gene, including

mitochondrially encoded and nuclear-genome encoded ribosomal

proteins, were excluded from clustering and removed. For the single

cell dataset comprising resident renal cells and immune cells, highly

variable genes were loaded to a PCAanalysis utilizing the top principal

components for clustering and t-SNEvisualization.Cell annotation for

tubular cells and immune cells was conducted as described (33, 34).
2.10 Construction of protein-protein
interaction network

The protein-protein interaction (PPI) network was constructed

by mapping CD44 and mediators of inflammation and fibrosis

identified in our animal study to the Search Tool for the Retrieval of

Interacting Genes (STRING) (35), with the full STRING network

having an interaction score set to 0.7 and false discovery rate (FDR)

set at <0.05. Biological processes and molecular functions from

Gene Ontology, KEGG Pathways and Disease-gene associations

were retrieved.
2.11 Statistical analyses

All data were presented as mean ± SEM unless otherwise stated.

Statistical analysis was performed using GraphPad Prism 10.1.0 for
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Windows (GraphPad Software, California, USA) and SPSS version

26 (SPSS, Chicago, Illinois, USA). Normal distribution was assessed

using the D’Agostino-Pearson normality test. Differences were

assessed by Wilcoxon signed-ranked test for nonparametric

paired data, or Mann-Whitney test for nonparametric unpaired

data. For intra-group and inter-group comparisons with three

groups or more, Kruskal-Wallis test followed by Dunn’s multiple

comparison post-test was used for nonparametric data. Mouse

survival rate was determined using Fisher’s exact test. Correlation

between CD44 and serological and clinical markers of disease was

examined using nonparametric Spearman’s correlation coefficient.

Fisher’s Exact Test was used to compare categorical variables

between patients with or without LN. The sensitivity and

specificity of serum CD44, anti-dsDNA antibody and C3 levels,

proteinuria and renal SLEDAI-2K score in distinguishing patients

with active LN from different comparator groups was assessed using

receiver operating characteristic (ROC) curve analysis. Two-tailed

P<0.05 was considered statistically significant.
3 Results

3.1 Renal CD44 expression in patients and
mice with active LN

CD44 expression was absent in the normal kidney, but it was

expressed in tubular cells and infiltrating immune cells in renal

biopsies from patients with active proliferative LN (Figure 1A). We

utilized public bulk and single-cell RNA-Seq datasets obtained from

micro-dissected glomeruli and tubulo-interstitial compartments,

resident renal cells (33) or immune cells (34) to confirm our

findings. CD44 gene expression was significantly increased in

glomeruli and within the tubulo-interstitium in LN patients

compared to control samples (Figure 1B, C), and was

predominantly expressed in tubular cells attributed to PTEC,

distal tubular cells and cells in the Loop of Henle (Figures 1D–F).

In healthy subjects, CD44 was expressed on resident macrophages,

CD56dimCD16+NK cells, effector memory CD4+ T cells and

resident memory CD8+ T cells, whereas CD44 was expressed in

all immune cells identified in LN patients including tissue resident,

inflammatory and phagocytic macrophages, naïve and activated B

cells, Treg cells, effector and central memory CD4+ T cells and

resident memory CD8+ T cells (Figures 2A–F). Of the immune cells

identified in both healthy subjects and LN patients, CD44

expression in tissue resident macrophages was significantly

increased in LN patients compared to healthy subjects (Figure 2C).

Renal biopsies provide a snap-shot of histopathological changes

at the time of biopsy, whereas longitudinal animal studies allow

researchers to monitor histopathological changes with time. In

NZB/W F1 mice, CD44 expression was negligible in 8-week old

pre-nephritic mice, and detected in PTEC and glomeruli, localized

to mesangial cells, endothelial cells, and infiltrating immune cells, at

the time of anti-dsDNA antibody emergence at 16 weeks of age. As

disease progressed from acute kidney injury to CKD, CD44 was

detected in crescents, areas of interstitial fibrosis, and on infiltrating
Frontiers in Immunology 05
immune cells in both the glomerular and tubulo-interstitial

compartments suggesting that LN pathogenesis is accompanied

by an increase in CD44 expression (Figure 3).
3.2 Effect of anti-CD44 antibody on
LN pathogenesis

We next investigated whether suppressing CD44 activation using

neutralizing anti-CD44 antibody could improve disease

manifestation in NZB/W F1 mice. All mice survived after 4 weeks’

treatment with either Control IgG or anti-CD44 antibody. Nephritis

in the kidney of Control IgG-treated mice was accompanied by anti-

dsDNA antibody production, proteinuria and detection of serum

creatinine and urea levels (Figures 4A–C). Histopathological changes

in the kidney included glomerular hypertrophy, glomerulosclerosis,

tubular dilation, protein cast formation and pronounced infiltration

of mononuclear cells in the periglomerular and tubulo-interstitial

area (glomerular lesion score: 2.67 +/- 0.52 AU; tubulo-interstitial

lesion score: 2.83 +/- 0.41 AU), attributed in part by CD3+ and CD4+

T cells, CD19+ B cells and macrophages. CD44 was predominantly

expressed in the glomeruli and localized in the mesangium,

Bowman’s capsule and crescents. CD44 was also expressed in the

tubulo-interstitium and in infiltrating cells although to a lesser extent.

Administration of anti-CD44 antibody to mice significantly reduced

CD44 expression at the transcription and translation level, and was

accompanied by preservation of the kidney structure, and a

significant decrease in proteinuria, and CD3+ and CD4+ T cell and

CD19+ B cell infiltration, and an increase in macrophages in the

tubulo-interstitium. Mediators of inflammation and fibrosis

including HA, TGF-b1, a-SMA, FN, collagen, VCAM-1 and

ICAM-1 were also significantly decreased at the gene and/or

protein level in CD44 Ab-treated mice (Figures 4D, E). Neutrophil

gelatinase-associated lipocalin (NGAL), also known as lipocalin-2

(LCN-2), a marker of acute tubular injury, was expressed in dilated

proximal tubules in Control mice, and its expression was significantly

reduced in CD44 Ab-treated mice (Figure 4E).

Serum VCAM-1 and CD44 levels were significantly increased in

Control IgG-treated mice compared to pre-disease mice. Serum

VCAM-1, but not CD44 level, was significantly reduced in CD44

Ab-treated mice compared to Control mice (Figures 4F, G). We

previously demonstrated that MMF improved serological, clinical

and histological parameters of disease in NZB/W F1 mice (18–20).

After 4 weeks’ treatment, MMF significantly reduced serum CD44

and VCAM-1 levels to pre-nephritic levels compared to vehicle-

treated mice (Figures 4F, G).

Using STRING, we assessed the putative interaction of CD44

with 5 markers offibrosis and tubular injury including HA, VCAM-

1, TGF-b1, FN, and NGAL identified in our animal studies. These 6

proteins were connected by 11 nodes and 27 edges and

demonstrated a significant PPI network (PPI enrichment P value

= 5.56x10-10). From the network, CD44 may induce HA synthesis

and tubular injury indicated by NGAL/LCN2 expression through

increased HAS2 activity and FN expression respectively. CD44 may

directly regulate biological processes such as monocyte aggregation
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and ECM-receptor interaction, and regulate renal water absorption,

signaling and kidney disease/fibrosis through its interaction with

HA, HAS2, hyaluronidase, TGF-b1 and FN (Figure 4H).
3.3 Clinico-pathological association of
CD44 level in LN patients

In our animal studies, we demonstrated that serum CD44 level

was increased in vehicle-treated mice compared to pre-nephritic
Frontiers in Immunology 06
mice, whereas CD44 level in MMF-treated mice was comparable to

pre-disease level (Figure 4F). To determine whether serum CD44

level could serve as a potential biomarker for LN, we measured

serum CD44 level in 490 serum samples from 41 LN patients.

Demographics and clinical characteristics of LN patients are

presented in Table 1. None of the patients had anti-phospholipid

syndrome or antiphospholipid antibodies. Nine patients had newly

diagnosed active LN in the inclusion period. Serum creatinine level

was similar between LN patients with active disease and CKD

controls (113.70 ± 64.66 vs 93.09 ± 29.31µmol/l, P=0.35). In the
FIGURE 1

CD44 expression in renal specimens from LN patients. (A) Left panel: representative images of CD44 staining in normal kidney specimens (Control, n
= 6) and patients with active proliferative LN (n=15). Black arrows depict recruitment of CD44+ immune cells into the kidney and yellow arrows
indicate CD44 staining in tubular cells. Original magnification x400. Right panel: violin plot showing CD44-positive staining as a percentage of the
whole image area using ImageJ software. Each dot represents CD44 staining from an individual control or LN patient. Data analysed using Mann-
Whitney test. Box and Whiskers plots comparing CD44 gene expression in micro-dissected (B) glomeruli from 37 healthy controls and 73 LN
patients and (C) tubulo-interstitial compartments from 36 healthy controls and 95 LN patients. Data obtained from bulk RNA-Seq datasets
GSE127797, GSE32591, GSE69438 and GSE37463. (D) tSNE plots showing CD44 expression in resident renal cells using public scRNA-Seq dataset
obtained from 21 LN patients and 3 healthy controls (33). Each dot represents a single cell and grey to blue colour represents low to high CD44
expression. (E) tSNE plots showing CD44 expression in renal tubular cells (n = 1223 cells) after sub-clustering according to their canonical markers:
ALDOB and MIOX for PTEC (n = 177 cells), CALB1 for distal tubular cells (DC, n = 400 cells) and UMOD and SLC12A1 for Loop of Henle cells (LoH, n
= 646 cells). Data obtained from public scRNA-Seq dataset from 21 LN patients and 3 healthy controls (33). (F) Histogram showing CD44 expression
in renal tubular cells after sub-clustering in healthy controls and LN patients.
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FIGURE 3

CD44 expression in NZB/W F1 mice with progressive LN. Left panel: Representative images showing CD44 expression in NZB/W F1 mice with
progressive disease, where 8, 16, 25 and 32 weeks of age represent different stages of disease, namely pre-nephritis, emergence of anti-dsDNA
antibodies, active nephritis and severe disease respectively (n = 6 mice per timepoint). Original magnification x200. Right panel: scatterplot showing
CD44-positive staining as a percentage of the whole image area using ImageJ software. Each dot represents an individual mouse. Horizontal line
represents the mean for each group. ***P<0.001, compared to 8 weeks of age, ##P<0.001, 16 weeks vs 32 weeks. Data analysed using Kruskal-
Wallis test followed by Dunn’s multiple comparison post-test.
FIGURE 2

CD44 expression in immune cells in LN patients. (A) tSNE plots showing CD44 gene expression in immune cells using public scRNA-Seq dataset
obtained from kidney specimens from 24 LN patients and 10 healthy controls (34). (B) Violin plots showing CD44 gene expression in different
subsets of macrophages, dendritic cells, T cells and B cells in LN patients. Violin plots showing CD44 expression in (C) tissue resident macrophages
(D) CD56dimCD16+ NK cells, (E) effector memory CD4+ T cells and (F) resident memory CD8+ T cells in 10 healthy controls and 24 LN patients. Each
dot represents a single cell. Horizontal line represents mean value for each group.
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FIGURE 4

Effect of anti-CD44 antibody on clinical, serological and histological parameters of disease in NZB/W F1 Mice. Serum (A) creatinine and (B) urea
levels in NZB/W F1 mice treated with either Control IgG (Cont, n = 4) or anti-CD44 antibody (CD44 Ab, n = 5) for 4 weeks. (C) Urine albumin-to-
creatinine ratio (ACR) determined weekly from commencement of study to study’s end for mice treated with Control IgG (n = 4) or anti-CD44
antibody (n = 5). *P<0.05, Control IgG vs anti-CD44 antibody for the same time-point. (D) Gene expression of CD44, VCAM-1, ICAM-1, TGF-b1, a-
SMA and FN in the renal cortex from NZB/W F1 mice treated with either Control IgG (Control, n = 4) or CD44 Ab (n = 5) for 4 weeks. Each sample
was assessed in triplicate by qPCR, normalized to GAPDH and each dot represents the mean value for each mouse. Data analysed using Mann-
Whitney test for each gene. (E) Upper panel: representative images showing H & E, CD3, CD4, CD19, F4/80, CD44, HA, collagen (determined by
Masson’s trichrome), VCAM-1 and NGAL staining in mice treated with either Control IgG (Control, n = 6) or CD44 Ab (n = 6) for 4 weeks. In H & E
image, asterisks depict tubular atrophy, hashtag depicts protein cast formation, arrowhead depicts immune cell infiltration and arrow depicts areas of
glomerulosclerosis. Original magnification x200. Lower panels: Glomerular and tubulo-interstitial lesion scores as determined by H & E staining was
graded for each mouse as described in the Methods and Materials. Scatterplots showing staining of CD3+ T cells, CD4+ T cells, CD19+ B cells and
macrophages as determined by F4/80 staining, and expression of CD44, HA, collagen, VCAM-1 and NGAL as a percentage of the whole image area
as assessed by ImageJ software. Horizontal line represents the mean for each group. Data analysed using Mann-Whitney test. (F) Serum CD44 and
(G) Serum VCAM-1 levels in NZB/W F1 mice treated with Control IgG (n = 4) or CD44 Ab (n = 5) for 4 weeks. In a parallel study, serum CD44 and
VCAM-1 levels were measured in mice treated with vehicle (n = 5) or MMF (n = 6) for 4 weeks. Serum from 8-week old pre-disease mice (n = 6)
served as baseline CD44 and VCAM-1 levels. **P<0.01, compared to pre-disease mice, #P<0.05, ##P<0.01, Control vs CD44 Ab, or Vehicle vs MMF.
Each dot represents an individual mouse. Data analysed using Kruskal-Wallis test followed by Dunn’s multiple comparison post-test. Mice were 29-
32 weeks of age at the time of sacrifice for panels (A–G). Although 6 mice were assigned to Control IgG- and anti-CD44 antibody-treated groups,
frozen biological samples from 2 Control IgG-treated mice and 1 anti-CD44 antibody-treated mouse were compromised, and these 3 samples were
not used for subsequent clinical (C), serological (A, B, F, G) or mRNA analyses (D). (H) PPI network for CD44, HA, FN (FN1), TGF-b1, VCAM-1 and
NGAL (LCN2) constructed using STRING database, with a minimum required interaction score of 0.7 (high confidence). Eleven nodes were identified
with 27 edges (PPI enrichment P value 5.56 x10-10). Line thickness indicates confidence level of protein-protein interaction. Coloured nodes show
their interaction in various biological processes, molecular functions, KEGG pathways and association with disease. False discovery rates (FDR) are
shown. ACAN, aggrecan; HAS2, hyaluronan synthase 2; HYAL2, hyaluronidase-2; ITGAD, integrin aD (receptor for VCAM-1); ITGAV, integrin aV; SPP1,
osteopontin (ligand for CD44).
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cross-sectional study, patients with active LN and remission had

SLEDAI-2K score of 11.74 ± 2.87 (range 6 to 18) and 2.72 ± 2.72

(range 0 to 8) respectively. Extra-renal manifestations included

arthritis (n=2), skin rash (n=1), pleurisy (n=1), fever (n=1),

thrombocytopenia (n=5), leukopenia (n=3). Thirteen patients had

sera collected before renal relapse.

Fifty-three patients with non-renal SLE (46 females and 7 males,

47.96 ± 10.32 years of age, P=0.617 compared to LN patients) were

included, among whom 18 had blood samples collected during

active disease and 35 during remission, with SLEDAI-2K scores of

5.56 ± 3.45 (range 2 to 12) and 2.63 ± 2.49 (range 0 to 8) respectively

(Table 2). Clinical manifestations in active non-renal SLE patients

included arthritis (n=4), leukopenia (n=3), thrombocytopenia

(n=7) and vasculitis (n=4). Patients with active non-renal SLE

were treated with prednisolone alone (n=1), or prednisolone

together with MMF (n=4), azathioprine (n=8), everolimus (n=1)

and cyclosporin A (n=4).

Seropositivity rate for CD44 in LN patients with active disease

and remission was 97.56% and 33.33% respectively compared to

70.37% and 42.31% respectively for anti-dsDNA antibody titre.
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Serum CD44 level was significantly increased in patients with active

LN compared to quiescent LN patients, patients with active non-

renal SLE, CKD patients or healthy subjects (13.58 ± 1.73, 1.57 ±

0.22, 0.57 ± 0.11, 0.67 ± 0.08 and 0.37 ± 0.05ng/ml respectively,

P<0.001, active LN vs remission LN, non-renal active SLE, CKD and

healthy subjects) (Figure 5A). Serum CD44 level was also

significantly higher in quiescent LN patients compared to

quiescent non-renal SLE patients and healthy subjects (1.57 ±

0.22, 0.54 ± 0.07, 0.37 ± 0.05 ng/ml, P<0.001, quiescent LN vs

quiescent non-renal SLE patients or healthy subjects). Serum CD44

level was similar between LN patients in remission and CKD

patients (P=0.143). In paired samples, all patients with active LN

showed higher serum CD44 level compared to their corresponding

remission sample (Figure 5B).

Serum CD44 level correlated with anti-dsDNA antibody level

(r=0.49, P=0.0002), proteinuria (r=0.84, P<0.0001), serum

creatinine (r=0.27, P=0.017) and serum urea (r=0.44, P=0.0005)

levels, and both SLEDAI-2K (r=0.67, P<0.0001) and renal SLEDAI-

2K (r=0.65, P<0.0001) scores. Serum CD44 level also correlated

with serum levels of HA (r=0.40, P=0.013), syndecan-1 (r=0.75,
TABLE 1 Demographics and clinical characteristics of LN patients in cross-sectional study.

Renal flare Remission P value

Age (year) 37.74 ± 10.74 39.80 ± 10.37 <0.0001

Gender (F: M) 29: 12 27: 12 >0.999

aDuration of SLE (y) 5.08 (0.25, 15.57) 7.44 (3.29,17.94) 0.136

aDuration of LN (y) 4.81 (0.04, 13.32) 7.01 (2.87, 14.37) 0.079

SLEDAI-2K score 11.74 ± 2.87 2.72 ± 2.72 <0.0001

Renal SLEDAI-2K score 5.37 ± 3.18 0.61 ± 1.46 <0.0001

Serum anti-dsDNA antibody (IU/ml) 133.10 ± 100.30 80.44 ± 86.48 0.023

Serum C3 (mg/dl) 47.74 ± 18.10 80.33 ± 25.64 <0.0001

eGFR (ml/min/1.73m2) 68.84 ± 29.81 81.78 ± 29.14 0.036

Serum creatinine (µmol/l) 113.70 ± 64.66 106.70 ± 138.40 0.047

Serum urea (mmol/l) 12.12 ± 9.38 7.64 ± 5.76 0.002

Serum albumin (g/l) 29.29 ± 6.79 41.22 ± 3.19 <0.0001

Urine albumin-to-creatinine ratio (mg/mmol Cr) 470.00 ± 332.60 54.78 ± 35.20 <0.0001

Serum IgG (mg/dl) 1287.00 ± 811.30 1278.00 ± 464.20 0.569

Serum IgA (mg/dl) 270.00 ± 136.70 226.00 ± 91.92 0.375

Serum IgM (mg/dl) 89.77 ± 58.54 78.24 ± 46.20 0.599

Prednisolone dose (mg/day) 32.53 ± 12.85 6.81 ± 1.17 <0.0001

Renal biopsy activity score 7.14 ± 3.38

Renal biopsy chronicity score 2.02 ± 2.03

Correlation of serum CD44 level with activity score 0.37 0.025

Correlation of serum CD44 level with leukocyte infiltration 0.45 0.018

Correlation of serum CD44 level with
interstitial inflammation

0.37 0.049
Results expressed as mean ± SD.
aDuration of SLE and LN expressed as median (25 and 75% percentile).
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P<0.0001), thrombomodulin (r=0.59, P<0.0001), and VCAM-1

(r=0.73, P<0.0001) levels. CD44 level showed an inverse

correlation with C3 level (r=-0.69, P<0.0001), eGFR (r=-0.31,

P=0.006), and serum albumin level (r=-0.76, P<0.0001). When

compared to conventional markers of disease activity (anti-

dsDNA antibody and C3 levels) and kidney damage (proteinuria,

serum creatinine and renal SLEDAI-2K score), CD44 level showed a

better correlation with eGFR, and comparable correlation with

serological and clinical parameters of disease (Figure 5C). Serum

CD44 level showed no association with patients’ age or duration of

SLE or LN (data not shown).

Longitudinal studies included 39 LN patients. In 13 patients

who had sera collected before active disease, CD44 level was

increased in 10 patients (76.92%) at 4.50 ± 1.43 months prior to

relapse and at the time of flare in the remaining 3 patients, whereas

anti-dsDNA antibodies increased in 6 patients (46.15%) prior to

clinical flare, in 1 patient at the time of flare and the remaining 6

patients showed normal anti-dsDNA antibody level during active

LN. CD44 level decreased after treatment and returned to basal level

approximately 9 months after commencing induction

immunosuppressive treatment. A temporal relationship was

observed between CD44 level and anti-dsDNA and C3 levels,

SLEDAI-2K and renal SLEDAI-2K scores, proteinuria and eGFR

(Figures 5D–K). At the time of flare, 1 out of 39 patients showed

normal CD44 level but high anti-dsDNA antibody titre, whereas 12

out of 39 patients showed normal anti-dsDNA antibody level.

ROC analysis showed that serum CD44 level distinguished active

LN from healthy subjects with sensitivity and specificity rates of

97.56% and 100.00% respectively (P<0.001), from LN patients in

remission with sensitivity and specificity rates of 89.74% and 90.24%

respectively (P<0.001), from active non-renal SLE with sensitivity and

specificity rates of 100.00% and 95.12% respectively (P<0.001), and

fromCKDpatientswith sensitivity and specificity rates of 100.00%and

97.56% respectively (P<0.001) (Figure 5L, Table 3). CD44 level showed
Frontiers in Immunology 10
a higher sensitivity rate than anti-dsDNA antibody and C3 levels in

distinguishing between patients with active LN and LN remissionwith

sensitivity and specificity rates of 73.08% and 55.56% respectively for

anti-dsDNA antibody, and 74.36% and 84.21% respectively for C3

level (Table 3). CD44 showed comparable sensitivity and specificity

rates as proteinuria (sensitivity and specificity rates of 88.89% and

100.00% respectively) and renal SLEDAI-2K scores (sensitivity and

specificity rates of 84.62% and 87.80% respectively) in distinguishing

between patients with active LN and those in remission. Furthermore,

CD44 level also showed comparable sensitivity and higher specificity

than serum creatinine (sensitivity and specificity rates of 84.62% and

35.00% respectively) in distinguishing active LN and remission. CD44

level showed higher sensitivity and specificity than anti-dsDNA titre

and C3 level in distinguishing between active LN and active non-renal

SLE (sensitivity and specificity rates of 71.43% and70.37% respectively

for anti-dsDNA antibodies, and 85.71% and 86.84% respectively for

C3) (Table 3).

Studies of histopathological association showed that at the time

of active disease, serum CD44 level correlated with activity index

(r=0.37, P=0.025), leukocyte infiltration score (r=0.45, P=0.018) and

interstitial inflammation (r=0.37, P=0.049) in corresponding kidney

biopsies, but not with the other components in activity or chronicity

indices. Anti-dsDNA antibody and C3 levels and renal SLEDAI-2K

score did not correlate with components in activity or chronicity

indices, whereas proteinuria correlated with leukocyte infiltration

score (r=0.52, P=0.018), and serum creatinine with interstitial

inflammation (r=0.46, P= 0.037).
4 Discussion

This study aimed to delineate the role of CD44 in LN

pathogenesis and whether it could serve as a target of therapeutic

intervention. We hypothesized that increased renal CD44
TABLE 2 Demographics and clinical characteristics of non-renal SLE patients in cross-sectional study.

Active non-renal SLE (n=18) Non-renal SLE in remission (n=35) P value

Age (year) 50.61 ± 9.00 46.60 ± 10.80 0.195

Gender (F: M) 15:3 31:4 0.678

aDuration of SLE (y) 20.00 (15.00, 26.00) 13.00 (7.00, 22.00) 0.031

SLEDAI-2K score 5.56 ± 3.45 2.63 ± 2.49 0.001

Serum anti-dsDNA antibody (IU/ml) 98.22 ± 72.96 57.68 ± 64.78 0.020

Serum C3 (mg/dl) 82.94 ± 22.00 81.94 ± 21.88 0.842

Prednisolone dose (mg/day) 14.17 ± 8.36 6.71 ± 3.81 <0.0001

Clinical manifestations during flare:

Arthritis 4

Vasculitis 4

Thrombocytopenia 7

Leukopenia 3
Results expressed as mean ± SD.
aDuration of SLE expressed as median (25 and 75% percentile).
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FIGURE 5

Serum CD44 level in LN patients and control groups. (A) Scatterplot showing serum CD44 level in healthy subjects (n = 46), LN patients with active
disease (LN A, n = 41) or remission (LN R, n = 39), non-renal SLE patients with active disease (SLE A, n = 18), non-renal SLE patients in remission (SLE
R, n = 35) and non-lupus CKD patients (n = 37). ***P<0.001, compared to LN A; ###P<0.001, compared to LN R. Data analysed using Kruskal-Wallis
test followed by Dunn’s multiple comparison post-test. (B) Serum CD44 level was determined in paired serum samples whereby one sample was
obtained during active disease and another during remission (n = 39). Horizontal line represents mean for each group. Data analysed using Wilcoxon
signed-ranked test. (C) Heatmap showing correlation of serum CD44 level with serological and clinical parameters of disease (n = 80). Graphs
showing the temporal relationship between serial serum CD44 level and (D) anti-dsDNA antibody level, (E) serum C3 level, (F) SLEDAI-2K score, (G)
renal SLEDAI-2K score (H) urine albumin-to-creatinine ratio, (I) serum creatinine level, (J) eGFR and (K) serum urea level in LN patients. Results are
expressed as mean ± SEM (n = 39). Dashed line represents mean CD44 level in healthy subjects. (L) ROC AUC analysis of serum CD44 level in
distinguishing patients with active LN (n = 41) from patients with quiescent LN (blue line, n = 39), active non-renal SLE (green line, n = 18), CKD (red
line, n = 37) or healthy subjects (black line, n = 46).
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expression contributes to immune cell recruitment into the kidney

parenchyma and inhibition of CD44 activation in NZB/W F1 mice,

by systemic treatment with IM7.8.1 monoclonal anti-CD44

antibody would improve disease manifestation. This method of

targeting CD44 has been used in murine models of collagen-

induced arthritis and diabetes, and both showed improvement in

disease pathogenesis (36–39). After 4 weeks treatment, glomerular

and tubulo-interstitial CD44 expression was significantly reduced

and this was accompanied by a significant reduction in CD3+, CD4+

T cell and CD19+ B cell infiltration into the tubulo-interstitium.

Reduced CD44 expression was also accompanied by a decrease in

proteinuria, interstitial HA expression and mediators of kidney

inflammation and fibrosis compared to Control IgG-treated mice.

Our study suggests a pathogenic role for CD44 in LN through its

ability to recruit B and T cells into the kidney and induction of

kidney inflammation and fibrosis leading to kidney function

deterioration. Treatment of mice with anti-CD44 antibody

reduced CD44 expression at the transcription level, which may

reduce its biosynthesis. Shedding of endothelial glycocalyx

constituents serves as an indicator of active LN (11, 40, 41).

Serum CD44 and VCAM-1 levels were significantly increased in

Control IgG-treated mice compared to pre-disease mice. Treatment

of mice with anti-CD44 antibody significantly reduced serum

VCAM-1 level compared to Control IgG-treated mice, whereas

serum CD44 level was comparable to that in Control IgG-treated

mice. This suggests that the reduction in renal CD44 expression in

anti-CD44 antibody-treated mice may also be attributed to CD44

shedding into the circulation. In line with our observation, in a

murine model of rheumatoid arthritis, treatment of mice with

IM7.8.1 anti-CD44 antibody was accompanied by a significant

increase in serum CD44 level compared to baseline level (Day 0)
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(39). We previously demonstrated that MMF, the standard-of-care

treatment for LN could exert direct anti-inflammatory and anti-

fibrotic effects on resident renal cells and preserved kidney structure

(19, 20, 23). In this study, MMF reduced serum CD44 and VCAM-1

levels compared to vehicle-treated mice, further highlighting the

putative role of serum CD44 as a potential biomarker for disease

activity and treatment efficacy in human and mice with active LN. It

is intriguing to observe an increase in macrophages within the

tubulo-interstitium in anti-CD44 antibody-treated mice.

Macrophages present in the kidney express FcgR and binds

autoreactive IgG immune complexes, which exacerbates kidney

inflammation (42). Although the macrophage subset was not

further investigated, given that suppression of CD44 activity was

associated with preservation of kidney histology and decreased

expression of mediators of inflammation and fibrosis would

suggest that these macrophages aide repair and resolution of

kidney inflammation and fibrosis.

Although the International Society of Nephrology/Renal

Pathology Society have focused mainly on the classification of

glomerular lesions in LN, up to 70% of LN patients show tubulo-

interstitial inflammation, which if not adequately treated, can lead

to tubular atrophy and interstitial fibrosis resulting in end-stage

kidney disease (43). In this study, we demonstrated that CD44 plays

a key role in kidney fibrosis since treatment of mice with anti-CD44

antibody attenuated tubulo-interstitial fibrosis. CD44, through its

interaction with HA has been shown to activate TGF-b1 signaling

through increased TGF-bRI kinase activity leading to SMAD

phosphorylation (44). Furthermore, TGF-b1 can induce CD44

phosphorylation (44), suggesting an amplification loop. It is

possible that anti-CD44 antibodies mediated its beneficial effect

through suppression of CD44-HA interaction and subsequent TGF-
TABLE 3 Sensitivity and specificity rates of serum CD44 level and conventional markers in distinguishing patients with active LN from healthy
subjects and patients with quiescent LN, non-renal SLE or non-lupus renal disease.

Biomarker Comparison Sensitivity
(%)

Specificity
(%)

AUC P value Cut off

CD44 Active LN vs:

Healthy subjects 97.56 100.00 0.99 <0.001 >1.86

LN patients in remission 89.74 90.24 0.96 <0.001 >3.33

Active non-renal SLE 100.00 95.12 0.99 <0.001 >2.41

CKD control 100.00 97.56 0.99 <0.001 >1.93

Anti-dsDNA Ab LN patients in remission 73.08 55.56 0.68 0.02 >89.50

Active non-renal SLE 71.43 70.37 0.72 0.07 >74.10

C3 LN patients in remission 74.36 84.21 0.89 <0.001 <64.00

Active non-renal SLE 85.71 86.84 0.91 <0.001 <67.00

SLEDAI-2K score LN patients in remission 87.18 87.80 0.90 <0.001 >5.50

Active non-renal SLE 81.82 75.61 0.80 0.003 >7.50

Renal SLEDAI-2K score LN patients in remission 84.62 87.80 0.89 <0.001 >2.00

Urine albumin-to-
creatinine ratio

LN patients in remission 88.89 100.00 0.98 <0.001 >89.50

Serum creatinine LN patients in remission 84.62 35.00 0.62 0.05 >114.00
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b1 activation. Using the STRING database of known and predicted

protein-protein interaction, CD44 showed interaction with TGF-

b1. The STRING database also identified an interaction between

CD44 and HAS2, one of three enzymes that regulate HA

biosynthesis. We previously reported that anti-dsDNA antibodies

increased HA synthesis in human mesangial cells through

induction of HAS2 expression (45). A similar mechanism may

also exist in renal tubular epithelial cells, although further studies

are warranted to confirm this. Increased CD44 expression was

associated with tubular injury in Control mice as demonstrated

by increased expression of NGAL especially in tubules showing

atrophy, whereas anti-CD44 antibody treatment reduced NGAL

expression. Tubular atrophy is a predictor of CKD progression (46).

Analysis of protein-protein interactions using STRING suggests

that CD44 may induce NGAL through FN, which is deposited

within the tubulo-interstitium during the early stages of tubulo-

interstitial fibrosis (47), and serves as a scaffold for the deposition of

other matrix proteins including collagen and laminin. In a murine

model of obstructive nephropathy, CD44 deficiency was associated

with a reduction in kidney fibrosis but increased tubular damage,

the latter attributed to decreased proliferation and increased

apoptosis of renal tubular epithelial cells, suggesting a protective

effect of CD44 on tubular cells (48). The discrepancy between our

findings and that of published results may be attributed to different

murine models of kidney injury and mechanisms through which

CD44 was depleted. We and others have reported that the ERK,

mTOR and PI3K/AKT signaling pathways contribute to kidney

inflammation, epithelial-to-mesenchymal transition and fibrosis

(19, 20, 49, 50). Studies have shown that CD44 activation can

activate ERK and PI3K/AKT signaling (51). It is possible that

treatment of mice with anti-CD44 antibodies may reduce ERK

and PI3K activation and downstream inflammation and fibrosis,

and studies are ongoing to confirm this.

We next investigated the clinico-pathological association of

serum CD44 level in LN patients. The purpose of this study was

to determine whether measurement of CD44 could assist in clinical

management by facilitating early diagnosis, and/or to provide a

more sensitive and/or specific means of diagnosing active LN since

conventional markers of kidney injury such as proteinuria could be

due to factors other than disease activity, such as established

glomerulosclerosis and hypertension. Our results showed

increased serum CD44 level during active LN, and the level

correlated with serological and clinical parameters of disease.

Results from our longitudinal studies showed that serum CD44

level increased approximately 4.5 months before a nephritic flare

was clinically evident and its level decreased after treatment in

parallel with clinical improvement and returned to baseline after 9

months following induction therapy. This suggests that serial

monitoring of serum CD44 level may serve as an early indicator

of impending nephritic flare.

Immunological activity in LN is characterized by an increase in

anti-dsDNA antibody titre and a decrease in C3 level. However, not

all patients with active disease follow this characteristic serological

profile, and it can be challenging to diagnose active nephritis in the

early stage in these patients. Our study demonstrated that at the

time of flare, 1 LN patient showed normal CD44 level, whereas 12
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patients showed normal anti-dsDNA antibody level. The sensitivity

and specificity rates for anti-dsDNA and C3 levels in distinguishing

between active LN and quiescent disease in this study were similar

to results published by independent investigators (52, 53), whereas

CD44 was more sensitive and specific in distinguishing active LN

from quiescent LN, active non-renal SLE and CKD, thereby

demonstrating kidney specificity in SLE patients, and measuring

serum CD44 level could assist in the diagnosis of active LN. Renal

SLEDAI-2K score and proteinuria reflect kidney injury and are

reliable markers of renal activity in active LN. CD44 showed

comparative sensitivity and specificity with renal SLEDAI-2K

score and urine ACR, and similar sensitivity and more specificity

compared to serum creatinine level. When compared to

conventional markers of immunological activity and kidney

injury, serum CD44 level showed stronger correlation with

serological and clinical parameters of active disease. The merits of

our clinical study include a well-characterized patient group with

biopsy-proven active severe LN with standard management

protocols, cross-sectional studies and appropriate control groups

comprising healthy subjects and patients with non-renal SLE or

non-lupus CKD, and longitudinal follow-up data. However, a

limitation of this study is the small number of patients, and a

larger cohort of patients is necessary to validate our results.

Results from our histopathological studies showed that serum

CD44 level was associated with activity index and correlated with

the leukocyte infiltration and interstitial inflammation scores in

renal biopsies from patients with active LN, whereas proteinuria

and serum creatinine level was associated with one of these activity

indices, and renal SLEDAI-2K score, anti-dsDNA antibody and C3

levels were not associated with parameters included in activity or

chronicity indices. This may be attributed to marked inter-patient

variation and highlights the importance of serial monitoring rather

than relying on a single reading in informing clinical decisions.

Class III/IV ± V LN is characterized by active and/or chronic lesions

in glomeruli (54), and over 80% of kidney biopsies assessed in this

study showed endocapillary hypercellularity and subendothelial

hyaline deposits. That serum CD44 level showed no association

with components of histologic activity indices relating to

glomerular injury may be attributed to our observation that CD44

was predominantly expressed in renal tubular cells and may

contribute to the development of tubulo-interstitial rather than

glomerular lesions in active LN. Cytochemical staining of renal

biopsies obtained at the time of active LN, showed that CD44 was

predominantly expressed in tubules. It is possible that serum CD44

level in active LN patients may be attributed to shedding not only

from the endothelial glycocalyx but also from renal tubular cells.

Transcriptomic analysis confirmed an increase in CD44

expression in kidney specimens from LN patients compared to

healthy subjects, predominantly attributed to increased expression

in renal tubular cells, and to a lesser extent in fibroblasts, mesangial

cells and endothelial cells. Molecular profiling of kidney specimens

from serial biopsies from LN patients showed that CD44 transcript

was one of the top genes upregulated in glomeruli that contributed

to inflammation and matrix expansion (55). Its increased

expression in the second biopsy of non-responders despite

treatment suggests its potential use as a marker of persistent
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glomerular inflammation and possible development of chronic

renal damage (55). Since collection of renal biopsies is an invasive

procedure, repeat biopsies are rarely performed. Animal models of

LN allow the collection of serial kidney specimens to assess changes

in CD44 expression with progressive disease. As in normal kidney

specimens, CD44 expression was negligible in pre-nephritic NZB/

W F1 mice. Immunological activity, characterized by the
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production of anti-dsDNA antibodies, was accompanied by

induction of CD44 expression in both glomerular and tubular

cells, and onset of nephritis and progression to CKD was

accompanied by a significant increase in CD44 expression in

crescents and within the tubulo-interstitium, the latter attributed

in part by infiltration of CD44+ immune cells. Changes in the

localization of CD44 in resident renal cells may thus depend on
FIGURE 6

Schematic illustration showing the potential of CD44 as a novel biomarker of active LN, and its role in LN pathogenesis. During active LN, serum
CD44 level is increased and correlates with serological and clinical parameters of disease. Its level is increased approximately 4.5 months before
clinical symptoms of active LN is detected suggesting both predictive and prognostic potential. Serum CD44 level can distinguish between patients
with active LN and quiescent LN, active non-renal SLE and non-lupus CKD suggesting specificity for renal manifestation in SLE patients. It is
expressed by both immune and non-immune cells, and its location in the kidney parenchyma is dependent on disease progression, being present in
glomerular and tubular cells and immune cells during increased immunological activity, and in crescents and interstitial space during onset of
nephritis and kidney fibrosis. CD44 contributes to the recruitment of myeloid cells and lymphocytes into the tubulo-interstitium and increases
tubulo-interstitial deposition of HA, a-SMA, collagen and FN resulting in tubular atrophy and proteinuria. Increased a-SMA expression may indicate
epithelial-to-mesenchymal transition in PTEC. Treatment with anti-CD44 antibody attenuates histopathological changes in the kidney and reduces
lymphocyte recruitment into the kidney parenchyma and this is associated with improvement in kidney function. CD44 may be a novel target of
therapeutic intervention. Created with BioRender.com.
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different stages of disease. Homing of activated T cells to kidney

lesions is mediated in part through the binding of CD44 on the cell

surface of T cells to HA in the endothelial glycocalyx (56). In

healthy subjects, CD44 expression was localized to tissue resident

macrophages, resident memory CD8+ T cells, effector memory

CD4+ T cells and CD56dimCD16+ NK cells, whereas CD44 was

expressed in all myeloid cells and lymphocytes in LN patients. These

immune cells exert immunoregulatory functions through secretion of

various pro-inflammatory cytokines or autoantibody production and

can exacerbate inflammatory processes in the kidney. Studies have

shown that increased expression of CD44 and variant isoforms

CD44v3 and CD44v6 in CD4+ and CD8+ T cells endow them with

an enhanced capacity to infiltrate the kidney and promote

inflammation in SLE (57). Overexpression of CD44 in B cells is

associated with B cell activation and may also promote their

infiltration into the kidney (58, 59). Our animal studies

demonstrated that suppression of CD44 activation can attenuate B

and T cell infiltration into the kidney and preserve kidney structure.

In conclusion, our findings highlight the pathogenic role of

CD44 in mediating tubulo-interstitial inflammation and fibrosis in

LN and the potential of CD44 as a therapeutic target. Figure 6

summarizes our findings. Our study also demonstrated that serum

CD44 level is increased in patients with active LN, and its level is

associated with serological, clinical and histopathological

parameters of disease, and it can distinguish between patients

with active LN and remission. Collectively, these results suggest

that measurement of CD44 level could facilitate early diagnosis of

active LN, especially in patients in whom conventional serological

markers do not appear helpful, and may also be useful in

monitoring treatment response and histopathological changes in

the kidney.
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