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Introduction: The COVID-19 pandemic had a widespread global impact and presented

numerous challenges. The emergence of SARS-CoV-2 variants has changed transmission

rates and immuneevasion, possibly impacting the severity. This study aims to investigate the

impact of variants on clinical outcomes in southern Brazil.

Methods: In total, samples from 277 patients, hospitalized and non-hospitalized,

were collected betweenMarch 2020 andMarch 2021, before the vaccine wasmade

widely available to the general population in Brazil. Whole genome sequencing of

SARS-CoV-2 was performed and bioinformatics and biostatistics analyses were

implemented on molecular and clinical data, respectively.

Results: The study identified significant demographic and clinical differences. The

hospitalized group exhibited a higher proportion of males (51.9%) and an increased

prevalence of comorbidities, including hypertension (66.0%), obesity (42.6%), and

chronic kidney disease (23.6%). Patients were identified with twelve SARS-CoV-2

strains, predominantly B.1.1.28 and B.1.1.33 in the early 2020 first wave, and P.1

overlapping in the late 2020 and early 2021 second wave of COVID-19. Significant

differences in hospitalization rates were found among patients infected with the

different SARS-CoV-2 lineages: B.1.1.33 (46.0%), B.1.1.28 (65.9%), and P.1 (97.9%).

Severity markers, such as pneumonia (62.5%, p=0.002), acute respiratory distress

syndrome (ARDS, 72.9%, p<0.001), and oxygen support >6 L/min O2 (64.6%,

p<0.001), were more frequent in patients from the second wave. These findings
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highlight the impact of different variants on the clinical evolution and prognosis of

COVID-19, especially when comparing the first and second waves of the pandemic.

Conclusions: The study underscores the association between SARS-CoV-2

strains and COVID-19 severity by integrating clinical and viral data for public

health responses during different pandemic phases, highlighting the importance

of adapting pandemic strategies as the pandemic evolves.
KEYWORDS

Coronavirus disease, Coronavirus strains, clinical outcomes, healthcare,
Brazilian population
1 Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2), the virus responsible for COVID-19, has caused over 700

million infections and 7 million deaths worldwide (1). In Brazil,

more than 37 million COVID-19 cases and 700,000 deaths have

been reported, making it one of the countries most affected by the

pandemic. Brazil ranks sixth in cumulative cases and second in

cumulative deaths worldwide (https://COVID19.who.int/). The first

confirmed case in the country was recorded in São Paulo in

February 2020, followed by a rapid increase in transmissions and

fatalities (2). Over time, multiple SARS-CoV-2 variants have been

identified and co-circulated in the country, including the lineage

B.1.1.28, first identified in Rio de Janeiro, in March 2020 (3, 4). This

lineage, with mutations across the viral genome including a key

mutation on the Spike protein’s S gene, spread rapidly throughout

the country (3) and later gave rise to the variant of concern (VOC)

P.1 and the variant of interest (VOI) P.2, known as Gamma and

Zeta, respectively (5, 6). Another early variant, B.1.1.33, also

featured Spike protein mutations in the receptor-binding domain

(RBD), though it was less discussed. In late 2020, the emergence of

the Gamma lineage in the Amazonas state, located in the North

region of Brazil, coincided with an increasing overlap of this variant

with other circulating strains (7). Characterized by core mutations

that enhance the binding affinity to the human ACE2 receptor, this

lineage rapidly spreads across the country and lead to a second

epidemic wave with higher rates of infection, hospitalization, and

death across the country (8).

The dynamics of the SARS-CoV-2 evolution and the

independent introduction events of new variants have contributed

to the emergence of additional VOIs and VOCs (9, 10). These

evolving patterns were responsible for driving three distinct

epidemic waves in Brazil, each marked by exponential increases

in infections (11, 12), representing a significant challenge for the

management of epidemiological containment measures. COVID-19

waves have been defined and monitored by different institutions

worldwide (13), including in Brazil by the SIVEP-Gripe

(Information System for Epidemiological Surveillance of
02
Influenza) of the Ministry of Health, which uses hospitalization

rates to delineate wave periods (opendatasus.saude.gov.br) (14).

The first wave, from February 2020 to July 2020, was dominated by

lineages B.1.1.28 and B.1.1.33 (5, 9, 11). The second wave, from

November 2020 to December 2021, was the longest and most

severe, characterized by the dominance of the Gamma variant

(11). The third wave, from December 2021 to May 2022, was less

severe and primarily driven by the Omicron variant. Studies suggest

that certain VOIs and VOCs are associated with more severe clinical

outcomes, including higher rates of hospitalizations, ICU

admissions, and mortality (2). Lineages such as B.1.1.7 (Alpha),

B.1.351 (Beta), B.1.617.2 (Delta), and P.1 (Gamma) have mutations

that increase binding affinity, viral replication, and improve

immune system evasion, leading to higher transmission rates and

chances to reinfection (11, 13).

Key mutations within the SARS-CoV-2 genome, particularly in

the Splike protein’s RBD, confer adaptive advantages to the virus

(15, 16). These mutations among different strains, such as K417T,

E484K, N501Y, and D614G, improve the virus’s ability to bind

ACE2 receptor, alter immune response, and affect viral load (17–

20). Additional mutations within other genomic regions have also

been considered key factors in understanding the evolution of

SARS-CoV-2 lineages and the course of the pandemic. For

instance, the R246I in the N-terminal domain (NTD), a key point

for human antibody recognition (21) plays a role in immune

evasion and may impact vaccine and treatment effectiveness (16).

Emerging evidence suggests that specific mutations and lineages can

influence clinical outcomes, with variants such as B.1.1.7 and P.1

associated with increased disease severity and mortality in some

populations (5, 22). For example, the P.1 variant, predominant in

Brazil during certain periods, has been linked to higher viral loads

and increased risk of severe COVID-19, possibly due to its

enhanced transmissibility and immune evasion mechanisms (5,

23). Similarly, the Delta variant (B.1.617.2) has shown

associations with higher hospitalization rates compared to earlier

lineages (22, 24). Despite these insights, there is ongoing debate

about the precise contribution of the lineages to the clinical

outcomes of COVID-19 (25). Beyond viral genetics linked to
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more severe outcomes, other biological factors like age, gender,

previous comorbidities, and host genetics also contribute to

COVID-19 outcomes and severity (20). While studies have shown

differences in hospitalization, pneumonia, and ICU admission due

to infection from different VOCs of large circulation, such as

B.1.1.17 and B.1.1.35 (26), others demonstrated that previous

comorbidities are more critical in determining outcome than a

specific mutation in the SARS-CoV-2 (27). Considering that the

COVID-19 pandemic represented a great demand on the health

system, this study aimed to investigate the characteristics of patients

admitted to a reference assistance center in southern Brazil and

assess the impact of different SARS-CoV-2 strains on

clinical outcomes.
2 Methods

2.1 Sampling and ethical aspects

This cross-sectional study was conducted from March 2020 to

March 2021 at the Hospital de Clıńicas de Porto Alegre (HCPA) in

Porto Alegre in southern Brazil. Hospital de Clinicas de Porto

Alegre is a public tertiary-care hospital, which was a COVID-19

reference hospital, located at the city of Porto Alegre (1,488,000

inhabitants), the capital of Rio Grande do Sul State, Brazil. This

hospital has treated patients from various regions of the city and the

state of Rio Grande do Sul, which we believe enhances the

representativeness of our sample, as seen in other publications.

The vaccination against SARS-CoV-2 was not available for their

ages or risk factors. All individuals had a positive RT-PCR for

SARS-CoV-2, involving 200 participants with mild symptoms of

COVID-19 and 300 participants with more severe outcomes.

Samples of the positive nasopharyngeal–throat combined swabs

were obtained for 277 patients from the Biobank of the HCPA

(doi:10.22491/hcpa-biobanco-amostras). Sociodemographic and

clinical data were retrieved retrospectively from medical records

to analyze comorbidities, main symptoms during hospitalization,

and the related outcome, including only those with clinical data and

SARS-CoV-2 lineage sequencing. Epidemiological data for the

municipality of Porto Alegre were obtained from the Health

Department of the State of Rio Grande do Sul (https://

ti.saude.rs.gov.br/covid19/). The data include the distribution of

SARS-CoV-2 lineages and the corresponding epidemiological

curve. This study was approved by the Research Ethics

Committee of HCPA (CAAE: 36974620.3.0000.5327).
2.2 Nucleic acid isolation and RT–qPCR

SARS-CoV-2 RNA samples from nasopharyngeal–throat swabs

were processed by the QIAamp® Viral RNA Mini Kit as

recommended by the supplier. Reverse transcription was

performed using the kit SuperScript™ IV First-Strand Synthesis

System (Invitrogen) according to the manufacturer’s guidelines.

The cDNA was used in two multiplex PCR assays using the Q5®

High-Fidelity DNA Polymerase and a primer scheme from a
Frontiers in Immunology 03
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products were purified using Agencourt AMPure XP beads

(Beckman Coulter™), and the DNA concentration was measured

by the Qubit Kit Fluorometer (Invitrogen) using the Qubit dsDNA

HS Assay Kit (Invitrogen). DNA Multiplex products were

normalized and pooled together in a final concentration of 50

pmol. Only samples presenting Ct values ≤28 were considered for

genome viral sequencing.
2.3 Library construction and sequencing

Viral libraries were prepared using the Illumina COVIDSeq

Test (Illumina) according to the manufacturer’s protocol at the

DFA/LNCC Genomics Unit. The amount of 8.5 ul of previously

extracted viral RNA from each sample was used as input for library

construction. Subsequently, 5 ul aliquots of each library were

combined in pools of 96 libraries, and then purified. Each pool

was analyzed using the TapeStation System (Agilent) for quality

control and quantification. One NextSeq 500/550 Mid Output Kit

v2.5 (300 Cycles) was used to generate reads of 2×149 bp in the

NextSeq 500 System (Illumina). The Illumina DRAGEN COVID

Lineage v3.5.1 pipeline was used for comprehensive sequence

analysis, consensus building, and variant calling.
2.4 Statistical analysis

The characteristics of the study sample were evaluated

according to clinical and sociodemographic data based on the

medical records related to each of the individuals included in the

study. A comprehensive descriptive analysis was conducted to

summarize the distribution of these variables, offering an

overview of frequency patterns. Pearson’s chi-square test was used

to evaluate the potential association between sociodemographic and

clinical variables with SARS-Cov-2 lineages. This test was chosen as

it is appropriate for assessing the relationships between categorical

variables, allowing us to determine if differences in characteristics

are significantly associated with specific lineages. In cases where

expected frequencies were low, Fisher’s exact test was used as an

alternative to Pearson’s chi-square to ensure the robustness of the

results. We also employed appropriate adjustments for multiple

comparisons where applicable, including the Bonferroni correction,

to control the risk of Type I errors. Logistic regression models are

also implemented to explore associations between SARS-CoV-2

strains, specifically viral strains, P.1., B.1.1.28 and B.1.1.33, and

severity markers outcomes such as the presence of ARDS,

pneumonia, ICU admission, and the need for oxygen >6L. The

models were adjusted for potential confounders, including age at

infection, hypertension, and obesity. Four logistic regression models

were conducted. Odds Ratios (ORs) with 95% Confidence Intervals

(CIs) were calculated for each model to estimate the likelihood of

each outcome, and p-values indicated the statistical significance of

the associations. Analyzes were performed using the SPSS Statistics

v27.0 software (Armonk, NY: IBM Corp) and the R software (R

Core Team, 2022).
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3 Results

In total, viral samples from 277 participants were sequenced,

162 (58.5%) from patients hospitalized due to COVID-19 and 115

(41.5%) from non-hospitalized individuals. A higher proportion of

men were found in the hospitalized group, 84 individuals (51.9%),

compared to the non-hospitalized group with 35 individuals

(30.4%) (p = 0.001). Among hospitalized patients, a higher

proportion of individuals with obesity (42.6%) as well as other

comorbidities such as chronic kidney disease (CKD, 24.1%),

diabetes (51.2%), hypertension (66.0%), other chronic diseases

(59.9%) and immunodeficiencies (11.1%) (Table 1). Pneumonia

was a prevalent complication in this group, affecting 114 (70.4%)

patients. Moreover, 95 (58.6%) patients presented acute respiratory

distress syndrome (ARDS) and 76 (46.9%) required admission to

the ICU. Oxygen supplies with less than 6 L/min O2 were required

in 37 patients (13.0%) and more than 6 L/min O2 in 96 patients

(35.0%). Other complications such as kidney injury (22.0%),

cardiovascular complications (8.3%), hepatic injury (2.9%), and

venous thromboembolism (11.6%) were observed in admitted

patients (Table 1).
Frontiers in Immunology 04
Twelve different lineages were identified, circulating from

March 2020 to March 2021 (Figure 1; Table 2). Among these,

three lineages were predominant: B.1.1.28, identified in 44

individuals (18.0%); B.1.1.33, identified in 124 individuals

(35.4%); and P.1, identified in 48 individuals (29.2%). Together,

these three lineages accounted for 78.0% of all cases. The data also

reflect two distinct phases of the pandemic (Figure 1). In addition to

the lineage distribution, Figure 1 includes the epidemiological curve

corresponding to the COVID-19 incidence data for the

municipality of Porto Alegre, demonstrating the peaks of case

occurrence during the first and second waves of the pandemic.

During the early months of 2020, the first wave of COVID-19 was

characterized by a predominance of B.1.1.28 and B.1.1.33 strains.

FromNovember 2020, the second wave emerged, marked by a rapid

increase in the prevalence of the Gamma variant, which overlapped

with other circulating strains. In early 2021 (January-February), a

decline in the prevalence of the lineage B.1.1.33 was observed, while

the P.1 lineage became more predominant. Furthermore, sub-

lineages of Gamma, specifically P.1.12 and P.1.2, were identified

in 8 and 3 individuals, respectively. Moreover, two other strains, P.2

and P.7, were also observed in this period.
TABLE 1 Clinical characteristics and frequencies within the COVID-19 study cohort with statistically significant differences at the p < 0.05 level
(*CKD- Chronic kidney disease, **ARDS- Acute Respiratory Distress Syndrome, **ICU- Intensive care unit) (n=277).

Hospitalized, n (%) Non-hospitalized, n (%) Total, n (%) p-value

Male 84 (51.9) 35 (30.4) 119 (43.0) 0.001

White 136 (84.0) 96 (83.5) 232 (83.8) 0.007

Age, median (min-max) 63 (19-102) 40 (25-74) 52 (19-102) -

Obesity 69 (42.6) 31 (27) 100 (36.1) 0.008

Chronic diseases 97 (59.9) 41 (35.7) 138 (49.8) <0.001

CKD* 39 (24.1) 0 (0.0) 39 (14.1) <0.001

Diabetes 83 (51.2) 2 (1.7) 85 (30.7) <0.001

Hypertension 107 (66.0) 25 (21.7) 132 (47.7) <0.001

Immunodeficiencies 18 (11.1) 0 (0) 18 (6.5) <0.001

Co-infections 89 (54.9) 0 (0) 89 (32.1) <0.001

Pneumonia 114 (70,4) 0 (0) 114 (70,4) <0.001

ARDS** 95 (58.6) 0 (0) 95 (58.6) <0.001

ICU 76 (46.9) 0 (0) 76 (46.9) <0.001

Oxygen (<6LO2) 37 (66.7) 0 (0) 37 (66.7) <0.001

Oxygen (>6LO2) 96 (59.3) 0 (0) 96 (59.3) <0.001

Kidney Injury 61 (22) 0 (0) 61 (22) <0.001

Cardiovascular Complications 23 (8.3) 0 (0) 23 (8.3) <0.001

Hepatic Injury 8 (2.9) 0 (0) 8 (2.9) <0.001

Venous Thromboembolism 32 (11.6) 0 (0) 32 (11.6) <0.001

Survival 91 (56.2) 115 (100.0) 206 (74.4) <0.001

Total 162 (58.5) 115 (41.5) 277 (100) -
Bold formatting highlights statistically significant values (p < 0.05).
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A comprehensive comparison of clinical characteristics and

outcomes in patients infected with three dominant strains

(B.1.1.28, B.1.1.33, and P.1) revealed no statistically significant

associations between demographic factors, such as sex and
Frontiers in Immunology 05
ethnicity, and the strain of infection (Table 3). However, the

median age varied across the lineages with patients infected with

the P.1 variant having the highest median age (64 years), followed

by B.1.1.33 (63.5 years), and B.1.1.28 (57.2 years). The prevalence of

comorbidities also varied by lineage, with hypertension being more

common in P.1 (66.7%, 32 individuals), followed by B.1.1.33

(40.3%, 50 individuals) and B.1.1.28 (52.3%, 24 individuals)

infected patients (p = 0.007, Table 3). Specific medical

complications were found to be associated with different SARS-

CoV-2 strain infections. For instance, P.1 strain infection was

associated with a higher ICU admission rate, with 20 patients

requiring intensive care (41.7%, p=0.01, Table 3). In addition,

individuals infected with P.1 had a significantly higher incidence

of pneumonia (62.5%, p=0.002) than individuals compared to those

infected with B.1.1.28 (47.4%) and B.1.1.33 (33.1%). P.1 infection

was also linked to a higher incidence of ARDS in 72.9% of patients,

compared to 36.4% in B.1.1.33 and 21% in B.1.1.28 infections

(p<0.001, Table 3). Furthermore, the need for a high flow oxygen

supply (>6 L/min O2) was more common in individuals infected

with the P.1 strain (64.6%) compared to those infected with B1.1.28

(36.4%) and B.1.1.33 (27.4%) strains. Individuals infected with P.1

also had a higher rate of kidney injury (37.5%) than those infected

with B.1.1 .28 (27.3%) and B.1.1 .33 (18.5%) l ineages

(p=0.031, Table 3).

The results of the analysis of risk associated with SARS-CoV-2

lineages highlight significant differences in clinical outcomes,

particularly concerning the development of ARDS and the need

for supplemental oxygen (Supplementary Table S1). The study
FIGURE 1

COVID-19 trends in Porto Alegre and in hospital strain distribution. The upper panel shows an epidemiological curve referent to the daily new
number of cases in the city, highlighting outbreak dynamics. The lower panel displays the frequency of HCPA strain samples, grouped by 7-day
intervals and colored by type.
TABLE 2 Distribution of different strains of the virus (SARS-CoV-2) based
on hospitalization within the COVID-19 study cohort.

Strain
Hospitalized,
n (%)

Non-hospitalized,
n (%)

total,
n (%)

B.1.1 1 (0.6) 2 (1.7) 3 (1.1)

B.1.1.28, 29 (17.9) 15 (13) 44 (15.9)

B.1.1.33, 57 (35.2) 67 (58.3) 124 (44.8)

B.1.1.332 1 (0.6) 1 (0.9) 2 (0.7)

B.1.212 1 (0.6) 0 (0) 1 (0.4)

B.1.91 4 (2.5) 14 (12.2) 18 (6.5)

N.4, 1 (0.6) 0 (0) 1 (0.4)

P.1 48 (29.6) 0 (0) 48 (17.3)

P.1.12 8 (4.9) 0 (0) 8 (2.9)

P.1.2 2 (1.2) 1 (0.9) 3 (1.1)

P.2, 7 (4.3) 10 (8.7) 17 (6.1)

P.7 3 (1.9) 5 (4.3) 8 (2.9)

Total 162 (100) 115 (100) 277 (100)
Bold formatting highlights statistically significant values (p < 0.05).
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revealed that the P.1 lineage was significantly associated with an

increased risk of developing Acute Respiratory Distress Syndrome

(ARDS), with an odds ratio (OR) of f 7.831 (95% CI: 3.427–18.886; p

< 0.001). Additionally, the P.1 lineage was also associated with an

increased risk of requiring more than 6 liters of oxygen (OR = 2.906,

95% CI: 1.287–6.693; p = 0.011). This increased risk remains

significant even after controlling for confounding variables such

as age, hypertension, and obesity, which have consistently been

associated with severe outcomes in COVID-19. These results

underline the critical role of the SARS-CoV-2 lineage in

determining the severity of the disease and the need for targeted

clinical interventions for specific variants. However, we did not find

differences in the rates of cardiovascular complications or

thromboembolism. Finally, there was a statistical association

between death and variant strains, with P.1 exhibiting the highest

death rate (41.7%), followed by B.1.1.33 (22.6%), and B.1.1.28

(15.9%) (p<0.001, Table 3). Overall, the estimated lethality rate

among hospitalized patients was 38.5%.
4 Discussion

During an epidemic period, changes in viral strains are expected

as the virus evolves and disperses over time across different

geographic regions and between populations (28). Genomics

surveillance is crucial for preparing for the emergence of new

strains and mitigating the impact of outbreaks (26, 29, 30). As

well as other countries, due to the COVID-19 pandemic Brazil faced

a public health crisis with the rapid spread of the virus across the

country, with large reports of cases and deaths (26). The country’s
Frontiers in Immunology 06
healthcare system structure has been tested, with many hospitals

and ICUs overcrowded and a lack of medical resources, including

oxygen. SARS-CoV-2, over the pandemic course, has shown itself to

be a virus with a middle-low lethality rate (~2%) (28). However, it

exhibits a high transmission rate and virulence, which led to

reaching a large portion of the population in a short period,

causing the collapse of health systems (31). Thus, in a dynamic

scenario such as the COVID-19 pandemic, it is essential to

understand the interaction between host and pathogen in

response to different selection pressures (20).

Here, we identify that the main variants of SARS-CoV-2

sampled in the first wave, the B.1.128 and B.1.1.33 strains had

significant clinical impacts on admitted individuals. Moreover,

individuals infected with the B.1.1.28 lineage had higher rates of

hospitalization, ICU admission, pneumonia, and ARDS than

compared to B.1.1.33. Due to relevant mutations from a

functional point of view (Figure 2), B.1.1.28 shares more than 10

mutations with P.1, including E484K in the RBD, impacting

immune escape and response to therapies (28, 29). Brazil’s second

wave of COVID-19 was notably more aggressive, with regional

differences in infection and mortality (11, 20, 30). Although age and

previous comorbidity as obesity are well-established risk factors for

severe outcomes in COVID-19, our results highlight the importance

of SARS-CoV-2 variants in the severity markers of clinical

manifestations (32, 33). The P.1 lineage presented an increased

risk of severe complications, such as ARDS and the need for oxygen,

even after adjusting for confounding variables. This finding suggests

that this variant may have intrinsic characteristics that increase its

pathogenic potential, warranting greater attention in the clinical

management of infected patients. In this specific period, the country
TABLE 3 Clinical profile of patients admitted due to Covid-19 sampled in the present study from March 2020 to March 2021, stratified by SARS-CoV-
2 strain (*ICU- Intensive care unit, **ARDS-Acute Respiratory Distress Syndrome) (n=216).

B.1.1.28, n (%) B.1.1.33, n (%) P.1, n (%) Total, n (%) p

Male 23 (52.3) 56 (45.2) 22 (45.8) 101 (46.8) 0.710

White 37 (84.1) 105 (84.7) 38 (79.2) 180 (83.3) 0.208

Age med (max-min) 52.77 (27-84) 51.37 (25-102) 63 (19-92) 51.0 (51.8-64.0) –

Hypertension 23 (52.3) 50 (40.3) 32 (66.7) 105 (48.6) 0.007

Obesity 16 (36.4) 40 (32.3) 18 (37.5) 74 (34.3) 0.767

Diabetes 16 (36.4) 33 (26.6) 22 (45.8) 71 (32.9) 0.047

Hospitalization 29 (65.9) 57 (46) 47 (97.9) 133 (61.7) <0.001

Pneumonia 21 (47.7) 41 (33.1) 30 (62.5) 92 (42.6) 0.002

ARDS* 16 (36.4) 26 (21) 35 (72.9) 77 (35.6) <0.001

ICU** 14 (31.8) 25 (20.2) 20 (41.7) 59 (27.3) 0.013

Kidney Injury 12 (27.3) 23 (18.5) 18 (37.5) 53 (24.5) 0.031

Cardiovascular complications 4 (9.1) 8 (6.5) 8 (16.7) 20 (9.3) 0.117

Venous Thromboembolism 2 (4.5) 16 (12.9) 7 (14.6) 25 (11.6) 0.251

Oxygen support >6L/min 16 (36.4) 34 (27.4) 31 (64.6) 81 (37.5) <0.001

Deceased 7 (15.9) 28 (22.6) 20 (41.7) 55 (25.5) <0.001
Bold values indicate statistical significance (p < 0.05).
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experienced a higher in-hospital mortality, especially in older

patients and those with comorbidities (30, 34), which aligns with

our findings. Among hospitalized patients with severe COVID-19

symptoms, we observed high rates of associated comorbidities,

particularly in individuals aged over 50 years.

The P.1 lineage shows critical mutations (Figure 2) that

significantly affected the second wave by enhancing binding

affinity to the human ACE2 receptor and increasing of

transmission rate (17, 21, 35). In addition to viral mutations,

other factors have been associated with protection or

susceptibility to SARS-CoV-2 infection (36). However, as

observed in other studies, here we report a higher rate of ICU

admission, pneumonia, and ARDS incidence in the second wave of

COVID-19 (2, 37, 38). Also, a consistently high comorbidity rate in

hospitalized patients, which follows Zeister et al. (30), who

described 56% of hospitalized Brazilian patients with

comorbidities. The overall in-hospital mortality rates were 38.3%,

similar to previously described by Peres et al. (34), which reported

an in-hospital mortality of 37% in Brazilian patients. Throughout

the pandemic course, in-hospital mortality increased from 34.8% in

the first wave to 39.3% in the second wave (30). Besides, it is

important to note that Brazil’s vaccination against COVID-19

began in January 2021 (34), with an initial focus on risk groups,

emphasizing then that the data describes a critical period before the

immunization of the general population. All participants of this

study were not vaccinated at the moment of the SARS-CoV-2

infection described here.

This cross-sectional study has some limitations inherent to the

study design, such as the use of convenience sampling available

from the HCPA Biobank repository, which may not fully represent

the epidemiological scenario with broad population coverage.

Despite these limitations, the study results suggest a possible

association between the P.1 variant of SARS-CoV-2 and the
Frontiers in Immunology 07
change in epidemiological profile in southern Brazil as suggested

in other studies (14, 23, 30). Overall, this data highlights significant

differences in the prevalence of chronic diseases, specific

complications, ICU admissions, and death rates among the

different strains. In a country of continental proportions with a

wide ecological and sociodemographic diversity among its different

regions, confronting the COVID-19 pandemic requires strategic

planning to promote effective surveillance and sanitary measures.

Determining the importance of different viral lineages and the

implication in the clinical characteristics results in the

improvement of future effective epidemiological surveillance and

viral containment (39, 40). Furthermore, the arms race between the

host-pathogen and its coevolutionary process can be fundamental

in implementing new diagnoses, developing new therapies, and

updating immunizers.
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FIGURE 2

Schematic representation of the SARS-CoV-2 genome and the main mutations described in the Brazilian lineages B.1.1.28, B.1.1.33, and P.1.
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