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Paediatric heart transplant is an established treatment for end stage heart failure

in children, however patients have to commit to lifelong medical surveillance and

adhere to daily immunosuppressants to minimise the risk of rejection.

Compliance with immunosuppressants can be burdensome with their toxic

side effects and need for frequent blood monitoring especially in children.

Though the incidence of early rejection episodes has significantly improved

overtime, the long-term allograft health and survival is determined by Cardiac

Allograft Vasculopathy (CAV) which affects a vast number of post-transplant

patients. Once CAV has set in, there is nomedical or surgical treatment to reverse

it and graft survival is significantly compromised across all age groups. Current

treatment strategies include novel immunosuppressant agents and drugs

to lower blood lipid levels to address the underlying immunological

pathophysiology and to manage traditional cardiac risk factors. Translational

researchers are seeking novel immunological approaches that can lead to

permanent acceptance of the allograft such as using regulatory T cell (Tregs)

immunotherapy. Clinical trials in the setting of graft versus host disease,

autoimmunity and kidney and liver transplantation using Tregs have shown the

feasibility and safety of this strategy. This review will summarise current

knowledge of the latest clinical therapies for CAV and pre-clinical evidence in

support of Treg therapy for CAV. We will also discuss the different Treg sources

and the considerations of translating this into a feasible immunotherapy in clinical

practice in the paediatric population.
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Introduction

Paediatric heart transplant is an established treatment for end

stage heart failure in children with congenital heart disease and

cardiomyopathy. Though this can significantly improve quality of

life, heart transplant recipients will need lifelong medical input

to manage the risk of rejection. Cardiac Allograft Vasculopathy

(CAV) is a form of chronic allograft rejection and is a critical

predictor of long-term survival with nearly half of all paediatric

transplant recipients having developed CAV 15 years post-

transplant (1). Current accepted management includes

immunosuppressive drugs to target the underlying immunological

pathophysiology and also medications to target the traditional

cardiac risk factors, address inflammation and immune mediated

graft injury. There are some interventional options to address severe

stenoses (2) however once established, there is no definitive

treatment for CAV except for re-transplantation which is not a

straightforward solution. There is a pressing need to find a

treatment for CAV or prevent its onset in patients receiving

heart transplantation.

In the face of major challenges for all solid organ transplant

patients such as immune mediated graft rejection and long term

side effects and toxicity of immunosuppressive regimes, research

has focused on novel immunological approaches that can lead to

permanent acceptance of the allograft using regulatory T cells

(Tregs) (3). In pre-clinical and early phase clinical trials, we and

others have demonstrated promising results with Tregs in patients

with solid organ transplants and autoimmunity with feasibility and

safety of this strategy and in some cases a hint of efficacy was

observed (4). To our knowledge, we are one of the two groups that

have established a GMP compatible protocol (5, 6) for the clinical

use of Tregs in the setting of paediatric heart transplant for

preventing the onset of immune rejection. Our group is focusing

specifically on using Treg therapy to target development of CAV. As

described in detail below, animal models of heart and vessel

transplants support the use of Tregs in the prevention of CAV.

However, producing a bespoke immunotherapy that is attainable in

a Good Manufacturing Practice (GMP) has its challenges as most of

the current clinical research is primarily in adults (4) where

obtaining larger volumes of blood from which to isolate Tregs is

more feasible than doing so in smaller children.

In this article, we seek to provide a perspective on supporting

the use of adoptive therapy with Tregs as immune modulators and

as a potential preventative therapy for CAV in children post-heart

transplantation. We will reference data from pre-clinical studies

which provide a robust foundation for the role of Tregs to prevent

solid organ graft rejection and influence the pathophysiology

underlying CAV. We will describe methods used so far to isolate

Tregs from the blood and we will extend our analysis to Tregs

prepared from other sources such as the thymus. We will then set

out the practicalities of expanding them in the laboratory to

translate to a high-quality autologous cell product that can be

administered to adult and in particular to paediatric recipients of

heart transplants at the bedside.
Frontiers in Immunology 02
Immunosuppression for heart
transplantation: a double
edged sword

International Society of Heart Transplant (ISHLT) registry data

shows that rejection continues to be a major cause of morbidity and

mortality in children post-transplant with early rejection being

associated with decrease in overall survival (7). Review of the

Paediatric Heart Transplant Study (PHTS) database with data from

multiple institutions by Gossett et al, showed that between January

1993 and December 2005 the incidence of early rejection episodes

(within the first year of transplant) declined from approximately 60%

to 40% (p<0.001); although the incidence of death due to rejection did

not change over this time (8). Rejection as defined by the PHTS is an

event leading to augmentation of immunosuppressants due to

suspicion based on clinical features such as echocardiographic

findings or endomyocardial biopsies (8). Over the data collection

period, use of tacrolimus, mycophenolate mofetil and azathioprine

increased with reduction in choice of cyclosporine as an agent.

Multiple factors could have explained this finding of reduced

incidence of early rejection. For example, in the later era physicians

were less likely to augment immunosuppression based on clinical

suspicion alone, but instead place a greater reliance on pathological

evidence of rejection seen on endomyocardial biopsies. It could also be

hypothesised that different choices of immunosuppressive regimes

have contributed to this finding, though this study (8) is not

powered adequately to support this. Currently the most common

immunosuppressant regime at discharge includes an antiproliferative

agent (Mycophenolate mofetil -MMF), a calcineurin inhibitor

(Tacrolimus) and oral steroids (methylprednisolone) (9). Despite the

desired effects, these agents also have adverse effects of leaving the

patient at risk of infection, malignancy and contributing to metabolic

effects such as diabetes, hypertension and renal dysfunction (10).
Cardiac Allograft Vasculopathy (CAV)
in the transplant recipient

CAV is a leading cause of death beyond 3 years after heart

transplant and remains an important limitation to long term survival

and graft longevity (11). CAV results from a complex interaction

between multiple immune mediated factors outlined in Figure 1,

such as histocompatibility mismatch between the donor and recipient,

which triggers an endothelial injury and is propagated by non-immune

factors such as ischaemic-reperfusion injury, cytomegalovirus infection,

dyslipidaemia, diabetes and hypertension. Endothelial cell activation

propagates inflammation by upregulating adhesion molecules and

releasing cytokines which draws in immune cells (neutrophils, NK

cells, T effector cells) to the site of injury (12). Subsequent cascade of

immunological reactions, activation of complement, and cytokine

production leads to migration and proliferation of smooth muscle

cells into the intima and eventual laying down of extracellular matrix

which thickens the intimal layer (13–15). Abnormalities within the
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intramyocardial microvasculature causes diffuse luminal stenosis within

the arteries that supply the allograft, which leads to myocardial

ischaemic injury and dysfunction (12). Due to denervation of the

allograft following transplant surgery, underlying ischaemia is not

always felt or reported by patients, so first clinical presentation and

diagnosis may only be made in advanced disease or after graft loss (13).

ISHLT data from 2017 reports that by angiography 67% patients (all

ages) are free from CAV 10 years post-transplant (7). This has not

significantly changed when compared with ISHLT data from 2010

which showed 66% of patients were free fromCAV at 10 years (16). It is

well known that coronary angiography is not the most sensitive method

of diagnosis (13) so early onset disease or true burden of disease may be

well underestimated. Following established CAV, graft survival is also

significantly reduced across all age groups with infants being worst

affected with a median survival of 2 years (7) after diagnosis.

Evidence from recent registered clinical studies, primarily

undertaken in the adult recipients of heart transplants

demonstrates some of the therapeutic strategies for CAV. This is

summarised in Table 1. As CAV represents a chronic allograft

rejection process and patients with increased frequency of early

rejection episodes within a year of transplant are at greater risk of

CAV (17), an important focus for clinicians managing heart

transplant recipients is the choice of induction and maintenance

immunosuppression agent. In fact the ISHLT 2016 report of

paediatric heart transplants undertaken between 1994 and 2014

reported a small, but statistically significant higher CAV free

survival (86% at 5 years and 68% at 10 years post-transplant) in

patients that had induction therapy compared with those that did not

have induction therapy (85% at 5 years and 65% at 10 years) (17).

With regards to maintenance immunotherapy, MMF has shown

superiority to azathioprine in combination with a calcineurin

inhibitor with 70% being free of CAV at 5 years compared to 47%

in adults heart transplant recipients taking ciclosporin and

azathioprine (18). This is likely due to the antiproliferative action
Frontiers in Immunology 03
of MMF that targets smooth muscle cells and fibroblasts which

contribute to intimal lining thickening in CAV (2). Newer agents

such as Proliferation Signal Inhibitors (PSI) such as Everolimus have

shown promise in studies at preservation of the coronary artery

lumen and reduced CAV incidence in patients when compared with

azathioprine (19). More recently SCHEDULE (NCT01266148) trial

(20) with de novo Everolimus initiation with early cyclosporine

withdrawal showed significantly reduced CAV progression at 12

months compared with the conventional ciclosporin. TEAMMATE

trial (NCT03386539) is the first multicentre randomised controlled

trial (21) in paediatric heart transplants recipients to investigate if a

combination of Everolimus and low dose Tacrolimus is associated

with a lower total burden of transplant complications (kidney disease,

CAV and CMV) compared with Tacrolimus andMMF (combination

which is a commonly practised dual therapy in paediatrics).

Preliminary results presented at recent scientific meeting in

November 2023 has shown numerically lower CAV and renal

dysfunction in the Everolimus group with higher report of

infection and lymphoproliferative disorder however it is unclear if

all of these findings are statistically significant. The authors have

confirmed that Everolimus treatment in combination with low dose

tacrolimus is safe to initiate in children 6-months post-transplant

(22). Full results from this trial are eagerly awaited. Other well

established treatment strategies for CAV include managing the

traditional cardiovascular risk factors with antiplatelets

(NCT04770012), antihypertensives (NCT01078363) and

hyperlipidaemia. A number of novel lipid lower agents (as listed in

Table 1) in addition to statins such as Evolocumab (NCT03944577)

or Alirocumab (NCT04193306) which are Proprotein Convertase

Subtilisin Kexin type 9 (PCSK9) inhibitors are also being tried

recently. In terms of interventional approaches, coronary

revascularisation procedures have been explored but have not been

shown to provide survival benefit (2, 13) because the concentric,

progressive and diffuse nature of CAV in distal vessels makes
FIGURE 1

Underlying Pathophysiology of CAV with the cascading effect of initial endothelial cell injury and activation of immune cells. Immune and non-
immune mediated factors contribute to this process with the resulting diseased vessel becoming occluded and resulting in graft ischaemia and loss.
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TABLE 1 Summary of recently registered clinical trials for CAV.

Enrolment
(Number of
patients)/Age

Proposed Intervention/ Treatment target Status

blind 19/ >18 years Oral endothelin receptor antagonist (Macitentan) Completed

contr 0/ 18-70years Thymoglobulin infusion post-transplant Withdrawn
(No approval)

study 55/ >18 years Measuring CD34+ cells in peripheral blood in patients
post-transplant with and without CAV

Completed

blind 26/19-80 years Evolocumab (PCSK9 inhibitor) given to cohort with
existing CAV.

Completed

ebo.
135/ >18 years AERIAL

Antiplatelet drug in heart transplant recipients post-
surgery Aspirin vs Clopidogrel vs placebo

Recruiting

362/ 18-75 years Rituximab with standard immunosuppression vs placebo
with standard immunosuppression

Terminated (inability to
meet accrual goals in
funding period)

200/18-65 years Blood tests for genetics (loss of function mutation P2X7R
gene) and development of CAV in heart transplant
recipients with a view to producing a targeted gene
therapy drug

Completed

stan 115/ 18-70 years Intervention group- Everolimus with complete
cyclosporine withdrawal 7 to 11 weeks after heart
transplantation or standard cyclosporine-
based immunosuppression

Completed

(Continued)
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Study ID Location Start date
(Year)

Study Design

NCT05373108 Los Angeles May 2022 Single centre. Intervention on single cohort, u
control group

NCT01157949 Los Angeles Nov 2010 Single centre. Randomised with treatment and
arm. Unblinded.

NCT05485467 Ljubljana June 2022 Single centre. Prospective observational cohor

NCT03944577 Nebraska July 2019 Single centre. Intervention in single cohort. U
control group

NCT04770012 Ottawa June 2021 Multiple centre
Randomised to one of either treatment vs plac
Triple blinded

NCT01278745 USA Sept 2011 Multicentre
Randomised

NCT02082821 Boston Jan 2014 Single centre
Observational cohort study

NCT01266148 Scandinavia Nov 2009 Multicentre, randomised to treatment group o
care group.
Open label
n

t

n

r
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TABLE 1 Continued

rolment
umber of
tients)/Age

Proposed Intervention/ Treatment target Status

>18 years Everolimus-Eluting Bioresorbable Vascular Scaffold
(ABSORB) used in presence of CAV associated
angiographic lesion with symptoms of ischaemia.

Completed

18-65 years Extracorporeal photopheresis treatment (10 sessions) given
to randomised patients who are receiving usual
immunosuppression and monitored for CAV and
adverse effects

Unknown status

/ >18 years Alirocumab (PCSK9 inhibitor) given to heart tx recipients
in addition to standard statin therapy

Recruiting

>12 years After baseline investigations for CAV, participants are
randomised to ramipril vs placebo groups

Completed

>18 years Efficacy and safety of adding SGL2 inhibitors eg
dapagliflozin or empagliflozin conventional post-Tx
treatment compared with the treatment of isolated
conventional care

Not yet recruiting

>18 years Pioglitazone vs placebo in heart transplant recipients Completed

/ >18 years PROTECT
1.Everolimus + pre-emptive valganciclovir
2. MMF + prophylaxis valganciclovir
3. Everolimus + prophylaxis valganciclovir
4. MMF + pre-emptive valganciclovir
Note- Pre-emptive valganciclovir given only if PCR
positive. All patients have usual immunosuppression in
addition (CsA and prednisolone)

Unknown status

/ <21 years TEAMMATE
Everolimus + low dose tacrolimus vs tacrolimus + MMF
(active comparator)

Active, not recruiting.
Expected completion
April 2024
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(Year)

Study Design En
(N
pa

NCT02377648 Verona Jan 2015 Single centre, Intervention group alone, no control.
Open label (unblinded)

34/

NCT04226521 Zagreb Jan 2018 Single centre, randomised to intervention and standard of
care immunosuppression vs standard of care alone

30/

NCT04193306 Prague Nov 2019 Single centre, randomised to treatment or placebo.
Double blinded.

126

NCT01078363 California June 2009 Single centre.
Randomised to treatment or placebo
Double blinded

96/

NCT06147271 Brazil Nov 2023 Single centre standard care to all patients with some
randomised to intervention group or no
intervention (control)

80/

NCT01186250 California July 2010 Single centre, randomised to group receiving intervention
vs placebo. Blinded

18/

NCT00966836 Bologna April 2009 Single centre
Randomised to study effect of pre-emptive anti-CMV
treatment with universal anti-CMV prophylaxis on CMV
infection. Patients will be additionally randomized to
receive either MMF or Everolimus.
Open label

100

NCT03386539 Boston Jan 2018 Multi centre. Randomised to two groups of treatment
Open label

211
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transplant patients non-ideal candidates with an important risk of re-

stenosis, however novel drug eluting stent options are being

investigated (NCT02377648).

Even with the potential benefits of PSIs or the aspiration to find the

ideal combination of immunosuppressant drugs to reduce incidence of

CAV and increase the longevity of the graft; the side effect profile of

immunosuppressant inhibitors is not to be underestimated. This

includes renal toxicity, hyperlipidaemia, hypertension, increased risk

of infections and impaired wound healing (10). Especially as some of

them are traditional cardiac risk factors themselves, that contribute to

the non-immune factors implicated in the pathophysiology of CAV.

Overall, there is no specific intervention that is proven to prevent or

reverse pathophysiology once CAV has been established (2). The only

definitive treatment of CAV is re-transplantation which is an

enormous undertaking but also limited by availability of donor organs.

In summary, there is an unmet need to find a solution to

prevent the onset of CAV which can have a significant impact on

long term survival of paediatric childhood recipients. Furthermore,

finding an alternative or therapy with the potential to reduce the

need for traditional immunosuppressant and establish operational

tolerance will also improve the short to medium term quality of life

of these children. One such novel therapy proposed is the use of

autologous regulatory T cell (Tregs) therapy which has shownmuch

promise in animal and early clinical studies.
The effect of regulatory T cells on
immune cells

CD4+ Tregs are a subset of T cells characterised by constitutive

expression of IL-2 receptor alpha chain (CD25), low expression of IL-7
Frontiers in Immunology 06
receptor alpha (CD 127) and expression of transcription factor

Forkhead box P3 (FOXP3). Broadly, there are two types of Tregs;

those that have been generated in the thymus (thymus- derived Treg,

tTreg) and a subset of CD4+ T cells that are FOXP3 negative but under

the right circumstance differentiate and become FOXP3 positive in vivo

and these are known as ‘peripherally induced’ T regs (pTreg) (23). Both

subsets are present within the peripheral blood compartment however

discriminating between these two cell populations can be challenging

due to the lack of specific cell markers (24, 25).

Tregs can act on different immune cells directly (cell to cell

contact) or via soluble factors as outlined in Figure 2. Tregs can

interact with dendritic cells (DCs) via CTLA-4 and downregulate co-

stimulatory molecules inhibiting T effector cells activation (4, 26).

Tregs can also directly suppress antigen specific B cells to stop them

releasing antibodies to specific antigens via inhibitory molecules such

as PD-1 and 2 ligands (4). Via cell to cell contact, Tregs by producing

perforin and granzyme can kill cytotoxic T lymphocytes (27); this

mechanism of action of Tregs is of relevance in CAV, as cytotoxic

(CD8+) T lymphocytes are implicated in infiltrating the graft and

contributing to ‘lymphocytic endothelialitis’which is characterised by

immune cells accumulation within the subendothelial space of the

vessel causing it to swell (28, 29). Tregs are scavengers of IL2 and by

depleting the microenvironment of this essential cytokine, can

hamper proliferation of NK cells as well as other effector cells. In

addition, Tregs can also express Transforming Growth Factor- beta

(TGF-b) which can directly downregulate NK cells activity and

reduce their proliferation. The control of NK cells by Tregs is also

important in CAV as they are implicated in early development of

CAV (30) and can attract other inflammatory cells by production of

interferon gamma and Tumour Necrosis Factor-alpha (TNF-a).
Tregs can also influence the innate immune system by reducing the

accumulation of neutrophils by affecting their ability to produce
FIGURE 2

Schematic diagram to demonstrate the different ways in which Tregs can suppress immune cells. Cell to cell contact mechanisms include producing
perforin/granzyme and directly influencing dendritic cells and B cells with surface receptors but also directly influencing neutrophils by reducing
expression of chemoattractants. Indirect mechanisms include uptake of IL-2 by Tregs and depleting the microenvironment which in turn will reduce
NK cell and effector cells proliferation.
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chemoattractants (CXCL1/CXCL 2) and also inducing them to be less

inflammatory by encouraging production of TGF-b and to make less

IL6 (31).

The mechanisms by which Tregs are capable of suppressing

immune cells have been dissected in pre-clinical models of

autoimmune disease (25), graft versus host disease (32), solid

organ transplantation (33) and CAV (30, 34–38). These studies

provide robust proof of concept that can be built on with clinical

studies involving human patients.
Evidence for use of Tregs in
pre-clinical models of CAV

Murine models studying CAV generally require cardiac

transplantation which is undertaken between mice ‘heterotopically’.

Vascularised cardiac allografts from donor mice are transplanted

within the abdominal cavity of recipient mice using various methods

similar to the method described in Corry et al. (39). The aorta and

pulmonary artery of the donor graft is anastomosed end-to-side to

the recipient’s aorta and vena cava. Rather than the whole heart grafts

being transplanted, Warnecke et al. transplanted isolated aorta grafts

from donors into recipient (34). Mice are selected to provide various

combinations of histocompatibility in relation to MHC antigens to

study mismatch. Some mice may be genetically engineered to be fully

immunodeficient or deficient in specific cell lines and exposed to

allogenic blood cells to mimic solid organ mismatch. Humanised

mouse models (37, 40) involve transplanting immunodeficient mice

with human arterial segments (such as side branches of internal

mammary arteries) that have been collected from human bypass

surgeries. Mice are then reconstituted with allogenic peripheral blood

cells that are HLA mismatch to donor vessels to mimic a model of

CAV. The grafts are harvested at specified time points after exposure

and histopathology or immunohistochemistry techniques are

conducted to monitor the nature and severity of any rejection.

Summary of data from the studies in Table 2 support that CAV

is a chronic rejection process mediated by a number of immune

cells that can infiltrate the graft including CD8+ T cells, NK cells

and CD4+ cells (30, 41) and are responsible for causing neointimal

thickening and eventual luminal stenosis that leads to graft

ischaemia and damage. Regulatory T cells are involved in

ameliorating the development of CAV, as adoptive transfer of

these to recipients mice of transplant conferred protection of the

graft from CAV (34, 37, 38, 40, 42) and improve graft survival in

some studies (35, 36, 41). Several studies from above that have

investigated the underlying mechanism show that one of the ways

that Tregs suppress is by directly affecting T effectors (34), NK cells

(30) and via an IFN-gamma mediated pathway (40). Most of the

humanised model studies that test adoptive transfer of Tregs do so

by obtaining Tregs via a purification process from peripheral blood

of the donor or the recipient of the allograft and expanding them

polyclonally with general activation (38, 40–42). Tregs obtained and

activated in this manner are not specifically selected to recognise a

single peptide. Though it is thought that Tregs are more likely to

recognise self-antigens, they have the capacity to also recognise a
Frontiers in Immunology 07
broad range of non-self antigens (43). We have investigated the

expansion of donor-specific Tregs and the results in a mouse

heterotopic transplant model showed that following adoptive

transfer of donor-specific Tregs graft survival was significantly

prolonged (35). In addition, myocardial architecture was

maintained, and luminal occlusion was inhibited. The same result

was obtained in the humanised mouse of human vessel transplant

when human polyclonal Tregs were injected (38). Use of agents

such as rapamycin together with Treg transfer were seen to have an

additive effect at reducing CAV in the same humanised murine

model of vessel transplants (37).
Considerations of translating adoptive
Treg cell therapy from the laboratory
to the bedside

Adoptive Treg cellular therapy involves producing a bespoke

infusion of Tregs that is produced under Good Manufacturing

Practice (GMP). Tregs have been isolated from the peripheral

blood of the patient with autoimmunity or receiving a solid organ

(e.g. kidney or liver) or from the donor of the bone marrow (BM) in

BM transplantation. However, an important consideration when

producing this novel therapy for patients includes choice of starting

material for the Treg infusion and if collection of this material is

feasible in the target patient population. The next steps include

developing a protocol for isolating and expanding Tregs in vitro to

obtain the dose for each patient based on weight, product quality

testing and monitoring in line with the requirements from the

Medicines and Healthcare products Regulatory Agency (MHRA)

and finally recruitment of patients in the clinical trial after all the

necessary ethical approvals are in place.

The first clinical trials with Tregs published were in BoneMarrow

Transplant (BMT) patients in which Tregs were generated from the

BM donor (44–46). The success of these first few clinical trials paved

the way for additional clinical trials not only in BMT patients but also

in patients receiving solid organ transplants. Todo et al. infused a

Treg enriched product that was generated by culturing PBMC with

donor derived cells in the presence of antibodies inhibiting co-

stimulatory molecules. Ten patients who underwent liver

transplants and splenectomy were treated with the Tregs (47). They

were able to wean 7 patients off immunosuppression therapy after

Treg cell infusion however 3 patients had rejection (these 3 patients

had autoimmune hepatitis), so oral conventional immunotherapy

was restarted for them and the trial was stopped early. Altogether,

they demonstrated safety following infusion of their Treg containing

product and for seven patients they demonstrated that operational

tolerance can be actively achieved after liver transplantation.

During the same period, a few groups including ours have used

Tregs purified from the blood of transplant recipient and expanded

either polyclonally or in a donor-specific manner. Tregs have been

infused into patients post kidney and liver transplantation [reviewed

in Romano et al., 2019 (4)]. These trials used good manufacturing

practice (GMP) protocols for the generation of the Treg product via

leukapheresis of peripheral blood of patients. We have completed two
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TABLE 2 Summary of studies that have shown involvement of Tregs in the pathophysiological development of Coronary Allograft Vasculopathy in
animal models.

Study Model of CAV Description of Study Design and Results Summary

Warnecke et al., 2007 (33) Murine model CAV (luminal occlusion of graft vessels due to neointimal formation) developed in immune deficient mice
that received T effector cells. This was significantly reduced (P<0.05) in the group that received concurrent
adoptive T reg therapy.

Tsang et al., 2009 (34) • In vitro culture of Tregs
• Murine model

In vitro studies showed that Tregs with indirect specificity (to recognise specific alloantigen peptide) could
be generated in addition to Tregs that were self-reactive.
Injection of both T reg lines (self-reactive and allospecific) to fully immune competent mice undergoing
mismatched heart transplants could prolong graft survival with allospecific Tregs being only slightly more
effective that autoreactive Tregs.

Zhu et al., 2013 (35) Murine model Mice with gamma-delta TCR deficiency (also those that received anti gamma-delta antibody) had
significantly greater survival of allografts compared with wild type mice. Harvest of tissue from mice with
gamma-delta TCR deficiency showed significantly less CAV when compared with wild type with evidence
of increased number of Tregs (CD25+ FOXP3+) in the graft in the context of reduced expression of IFN
gamma, Hmgb1 and IL-17.
To further investigate the role Tregs played in CAV, gamma-delta TCR deficient mice were injected with
anti CD25 monoclonal antibody (to deplete Tregs) prior to transplantation and the prolonged allograft
survival time was abrogated in those mice (P<0.05) compared with non-Treg depleted mice.

Hirohashi et al., 2014 (29) • In vitro studies
• Murine model of CAV

Mice that underwent NK cells depletion showed no signs of CAV at 3 weeks post transplantation
compared to control group (No NK cell depletion) mice (6 out of 8 allografts showed early CAV changes)
suggesting that early phase CAV post-transplant is NK cell mediated.
Allografts of mice treated with anti CD25 antibodies (Treg depletion) showed similar frequency of CAV as
allografts of control group mice (12/12 vs 6/8). Histology identified that the CAV lesions in T reg depleted
mice were more cellular or ‘advanced’ with significantly increased stenosis (82% vs 23%) as compared with
untreated mice.

Sherman et al., 2009 (37) Murine model Immunodeficient mice were reconstituted with CD4+CD25- T lymphocytes (T effectors) and underwent
cardiac transplantation. Tregs were given (before transplantation) in various numbers and compared with
control group (no Tregs therapy given). In the control group, donor hearts reproducibly developed CAV
within 40 days. Mice given T reg treatment prior to transplant had allografts that showed significantly less
(P<0.05) severe intimal lesions.

Harper et al., 2018 (41) • Human in vivo studies
• Murine model of CAV

A range of donor T lymphocyte subsets were detectable in human recipients’ blood post-transplant at
various time points that are likely released from donor graft (‘passenger’ donor T cells).
Treg depletion of recipient mice prior to and after transplantation (with anti-CD25 antibodies) with
mismatched mice hearts showed accelerated CAV development in grafts which was likely mediated by
passenger donor T cells at the time of graft transplant. When heart donors were from mice that were
genetically T cell deficient, these allografts did not trigger recipient response and grafts survived indefinitely
with no CAV (even with T reg depletion of recipient) supporting that CAV is likely mediated by donor
T cells.

Hester et al., 2012 (36) Humanised murine model Arterial segments of human arteries were transplanted into immunodeficient mice and then exposed to
allogenic HLA human blood alone (control) or in combination with rapamycin and expanded Treg
infusion (vessel donor’s own Tregs) at various doses. CAV was seen in control mice after the graft was
harvested with evidence of intimal expansion and luminal occlusion. The addition of rapamycin or T reg
therapy to the model reduced the neointimal formation and CAV development. Combination therapy
(rapamycin and T reg) significantly reduced development of CAV in the graft.

Nadig et al., 2020 (39) Humanised murine model
In vitro expansion of Tregs
isolated from peripheral
blood donors

Immunodeficient mice underwent transplantation of human arterial segments and exposed to allogenic
blood or autologous blood (control). Grafts were harvested to check for CAV. Significant vascular intimal
proliferation and luminal narrowing was seen in grafts that were exposed to allogenic blood compared to
vessels of mice in the autologous blood group.
CAV in the mice given concurrent Treg infusion was significantly less compared to mice given allogenic
blood alone. In vitro studies suggest that this is through a IFN-gamma pathway as expression of this is
diminished with concurrent Treg therapy.

Ravichandran et al.,
2021 (40)

Murine model Allogenic heterotopic transplant between mice with and without concurrent co-stimulatory blockade (to
reduce risk of acute rejection) was performed.
Mice that had Costimulatory blockade showed fibrosis and significantly increased T, B and NK cells with
CAV at 45 days post-transplant. Mice that received additional IL2 therapy showed attenuated levels of graft
fibrosis and their grafts had more FOXP3 expressing cells and reduced number of CD8+ and NK cells
compared to costimulatory treatment alone.
Higher levels of exosomes with cardiac antigens were isolated from mice that had CAV compared to
control. Exosomes obtained from mice that had costimulatory +IL 2 treatment showed greater expression
of immunoregulatory markers (PD-ligand 1, CD73 and FOXP3) compared with exosomes isolated from
mice with CAV (costimulatory only, no IL2 treatment)
F
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clinical trials (48, 49) in renal (The ONE Study) and liver (ThRIL)

transplant patients. The Tregs were purified either from large volume

of blood or from leukapheresis and then expanded in vitro for 24-36

days as the doses per patients used ranged from 1 to 10x106/Kg. We

have demonstrated that Treg therapy with polyclonal Tregs is

feasible, safe and we showed some biological effect of the Tregs.

More recently, we have started the TWO study (50) a phase 2b

randomised controlled trial of Treg therapy (similar product to the

ONE study) in kidney transplant patients. As previously, the

generation of the Treg product requires a starting blood draw from

the patient exceeding 350ml as stated in the protocol (43). This is

simply not feasible from a clinical perspective in the paediatric

population so alternative sources of Tregs have had to be investigated.
The thymus as alternative source to
generate the Treg product

We and others have investigated alternative sources of starting

material for Treg production such as thymus tissue. An added

advantage of using a thymus as a viable source in the paediatric

cardiology cohort is that this may be routinely removed during

paediatric congenital cardiac surgery (including during heart

transplant surgery) in order to improve the field of view of the

surgeons. This tissue is often discarded however retaining it, is an

added advantage as it is where the Tregs originate. In an elegant

study, Dijke et al. isolated and characterised Tregs from thymi of

children removed during routine cardiac surgery and compared

with Tregs isolated from peripheral blood of healthy adult donors.

They found that the yield of Tregs from 1g of thymus tissue

contains 500 times the amount of Tregs as 1ml of blood from

adult donors and once expanded, thymic Tregs had stable FOXP3

expression and were capable of suppressing allogeneic T cells in

vitro more potently compared with blood derived Tregs (51).

After obtaining this starting material, thymus tissue needs to

undergo mechanical or enzymatic digestion (6, 50). The thymocytes

will then undergo an enrichment process to purify the Tregs.

Isolated Tregs are expanded in culture polyclonally (52) in the

presence of IL2 (53, 54) and Rapamycin. Samples of the resulting

Treg product will undergo rigorous quality control checks using

flow cytometry to check expression of various markers including

FOXP3 (phenotype check) as well as suppression capability. The

final product can then be injected fresh, or it will be frozen down

until use according to the trial. Additional testing for sterility,

phenotype and stability assays after cryopreservation will also

take place prior to infusion to patients.

Another consideration of Tregs based cellular therapy is their

heterogeneity and ‘plasticity’ which is the variability of Treg

subpopulations and also their ability to demonstrate features of

immune cells that they influence (4). Subpopulations of Tregs in

circulation can be naïve/resting (CD45RA+FOXP3low), effector type

(CD45RA-FOXP3high) or cytokine producing (CD45RA-FOXP3low)

depending on level of FOXP3 or CD45RA expression (55). Multiple

rounds of polyclonal stimulation during the production phase, and

also exposure to inflammatory cytokines can push circulating Tregs
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into becoming cells that release inflammatory cytokines like IL 17

and interferon gamma themselves (56). Furthermore, in order to be

effective as suppressors, Tregs must retain stability in a pro-

inflammatory environment which may well be in the setting of a

transplant patient receiving a T reg infusion. Dijke et al. showed that

thymic derived Tregs consistently remain stable and suppressive

even in inflammatory conditions in contrast to blood derived/

peripheral Tregs that are more unpredictable in their response

(51). Furthermore, thymic derived Tregs have a substantial

proportion of naïve (CD45RA+) Tregs that have not been

exposed to differentiation and are more stable compared to

CD45RA- subpopulation seen in greater proportion of peripheral

blood derived Tregs from adult populations (55). In 2021, we

published a GMP compatible protocol (6) using thymic derived

Tregs from children which reproduced findings noted by Dijke et al.

We compared total thymic Tregs and the subpopulation of

CD45RA+ Tregs (after cell sorting) obtained from the thymus of

11 paediatric patients which were then expanded for potential

clinical application. These cells showed high level of suppressive

capacity, stability and retained these features after freezing and

thawing supporting translation into the clinic.
Thymic Treg therapy and the heart
transplant recipient

The first in human thymic derived Treg infusion into a paediatric

heart transplant recipient was reported by a group in Spain in 2023 (5).

They developed and published their own GMP compatible protocol

(57) and following approval from their medicine regulatory body,

commenced recruitment into a phase 1/2 clinical trial with autologous

Treg therapy in children post heart transplant to prevent rejection.

Tregs were generated from thymus tissue removed at the time of

transplant and following a brief ex vivo expansion, the cells were

infused fresh back to the patient 9 days post-transplant. They also

included a control cohort of 6 children (who did not receive a Treg

infusion) but underwent the standard treatment of thymectomy and

heart transplant. All children had regular immune monitoring at

various time points for up to 2 years post-transplant. In the control

group, peripheral Treg levels transiently increased within the first few

weeks of transplant and then showed a progressive decline from 9

months post-transplant. In contrast, their trial patient had an increase

in Treg frequency in blood after the infusion and also maintained T reg

values higher than pre-transplant levels throughout the 2 year follow

up period. Control group data is in keeping with a cohort study

published by the same group in 2021 which aimed to follow heart

transplant patients (n=7) undergoing thymectomy and standard

immunosuppression after heart transplant to identify dysregulation

of T cells compartment in peripheral blood (58). This cohort study

showed a significant decline in the peripheral T reg levels 7 months

post-transplant with a significant increase in effector T cells coinciding

with the T reg drop. The prospect of boosting the Treg pool in the child

who had the autologous T cell therapy 2 years later is remarkable, as in

comparison we demonstrated that Tregs given in adult patients post

liver transplants were detectable in their blood for only 1 month after
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(49). One may hypothesise that this persistence in circulation months

after infusion could be linked to the richer ‘naïve/resting’

subpopulation of Tregs that are isolated from the thymus compared

to those isolated from peripheral blood or something to do with their

inherent nature or metabolism that will require further study.
Targeting the allograft with Treg
cell therapy

The clinical trial in Spain showed feasibility of generation of

autologous Treg therapy at a dose of 20 x 10^6 cells/kg with no

reported toxicity from the infusion. However limited conclusions

about the effect can be drawn with results from a single patient.

Furthermore, though they demonstrated boosting of the peripheral

Treg pool in the treated patient, no definitive biopsy data to show

Treg infiltration of the graft was demonstrated. Additionally,

obtaining further data on the subtype of circulating Tregs after

infusion would be useful. Specifically applying this treatment to

minimise the onset of CAV; an important question to consider is if

the Tregs infused as part of therapy are able to make their way to the

allograft, particularly if they are polyclonally expanded and not

primed to recognise a specific donor heart alloantigen. This is

relevant because if Tregs are not able to navigate to the graft to

modulate chronic inflammation as seen in patients with CAV, one

might have to consider generating donor specific Tregs or Tregs

with chimeric antigen receptor technology (CAR-Tregs) to direct

them to the donor graft directly. This will no doubt add further

steps and greater complexity to the production of the Treg therapy.

However, there is some scientific evidence that recipient circulating

Tregs can accumulate within an allograft. Schmidt-Lucke et al.

demonstrated this in an elegant study in adult heart transplant

recipients by measuring number of Tregs within cell populations

from samples taken from the aortic root and coronary sinus to

obtain a ‘transcoronary gradient’ (59). The control group were non

transplanted patients with a diagnosis of coronary artery disease

who were undergoing routine cardiac catheter and angiography

procedure. Only in the heart transplant recipients, Tregs decrease

after passage through the coronary arteries (p<0.05) suggesting that

they were being recruited into the graft. Furthermore, FOXP3

staining was undertaken on myocardial biopsies which confirmed

presence of FOXP3 positive cells (i.e. Tregs) within the allograft. In

terms of peripheral Treg pool, heart transplant recipients had

significantly lower circulating Tregs by absolute numbers but also

as proportion of lymphocytes compared with control patients

(healthy patients with no known heart disease). The authors

speculate that this may be due to the immunosuppressive regime

or could also be due to the active migration and recruitment of

Tregs into the allograft (59). Further study is required to assess the

effects of immunosuppressive medication and also induction

therapy (such as Basiliximab or anti-thymocyte globulin) utilised

in paediatric heart transplant patients on circulating Tregs both in

vivo and in vitro, as it will help establish the optimal timing of

delivering the autologous T reg cell therapy for future clinical trials.
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Future directions and conclusions

In summary there is encouraging pre-clinical and clinical data for

Tregs to influence host immune response to heart allografts and to act

in particular to regulate the onset of CAV. This strategy holds

promise as a novel treatment to prevent the development of CAV

and prolong the life of the transplanted organ. Furthermore, weaning

immunosuppressive drugs required can limit their undesired side

effects and improve quality of these young patients’ lives.

There are several clinical trials already that have shown that

generating autologous T reg therapy for patients is technically feasible

and safe to administer with one previous trial focusing on infant

recipients of heart transplantation. We are planning to undertake a

Phase 1 trial to formally establish the feasibility and safety of

administering autologous Treg therapy in nine paediatric heart

transplants recipients to prevent the onset of CAV. Our aim is to

collect evidence from immune monitoring and histology from

biopsies to support translating this novel cell therapy from the

laboratory to the bedside. If our clinical trial demonstrates success

in this early phase in paediatric heart transplantation, it will establish

a precedent for cellular, Treg, immune therapy in children to become

part of standard care in children receiving heart transplants.
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