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Background: Most head and neck squamous cell carcinoma (HNSCC) patients

are diagnosed at an advanced local stage. While immunotherapy has improved

survival rates, only a minority of patients respond durably to targeted

immunotherapies, posing substantial clinical challenges. We investigated the

heterogeneity of the tumor microenvironment in HNSCC cohorts before and

after immunotherapy by analyzing single-cell RNA sequencing (scRNA-seq) data

and bulk RNA sequencing datasets retrieved from public databases.

Methods: We constructed a single-cell transcriptome landscape of HNSCC

patients before and after immunotherapy and analyzed the cellular

composition, developmental trajectories, gene regulatory networks, and

communication patterns of different cell type subpopulations. Additionally, we

assessed the expression levels of relevant indicators in HNSCC cells via western

blot, ELISA, and fluorescent probe techniques.

Results: At the single-cell level, we identified a subpopulation of TP63+ SLC7A5+

HNSCC that exhibited a ferroptosis-resistant phenotype. This subpopulation

suppresses ferroptosis in malignant cells through the transcriptional

upregulation of SLC7A5 mediated by high TP63 expression, thereby promoting

tumor growth and resistance to immunotherapy. The experimental results

demonstrated that the overexpression of TP63 upregulated the expression of

SLC7A5 and suppressed the concentrations of Fe2+ and ROS in HNSCC cells. By

integrating bulk transcriptome data, we developed a clinical scoring model based

on TP63 and SLC7A5, which are closely associated with tumor stage, revealing

the significant prognostic efficacy of the TP63+ SLC7A5+ HNSCC-mediated

ferroptosis mechanism in HNSCC patients.
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Conclusion: Our research elucidates the TME in HNSCC before and after

immunotherapy, revealing a novel mechanism by which TP63+ SLC7A5+

HNSCC inhibits ferroptosis and enhances tumor resistance via TP63-induced

SLC7A5 upregulation. These insights lay the foundation for the development of

more effective treatments for HNSCC.
KEYWORDS
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Introduction

Head and neck squamous cell carcinoma (HNSCC), which

develops from the mucosal epithelium of the oral cavity, pharynx,

and larynx, ranks as the sixth most common malignancy worldwide

(1, 2). Studies indicate that approximately 60% of HNSCC patients

are diagnosed at a locally advanced stage, and despite receiving

treatments, up to 50% of patients experience local recurrence or

distant metastasis (3). Immunotherapy has been shown to induce

changes in the tumor microenvironment, increasing sensitivity to

subsequent treatments (4); however, fewer than 20% of HNSCC

patients exhibit a durable response to targeted immunotherapies

(2). Currently, significant advancements have been achieved in

multimodal treatment strategies for HNSCC, including ablative

surgery, chemotherapy-radiotherapy, and immunotherapy (5).

However, the efficacy of these treatments is limited by various

factors, including tumor heterogeneity and the complexity of the

immune microenvironment (2, 5). Therefore, understanding the

evolutionary mechanisms of tumor cells and enhancing patients’

antitumor responses are essential for developing new

immunotherapeutic approaches that target HNSCC cells.

Ferroptosis is a nonapoptotic form of programmed cell death,

with tumor cell ferroptosis shown to inhibit tumor progression (6).

Owing to the unsatisfactory clinical prognosis and treatment

outcomes of HNSCC patients and given the susceptibility of

ferroptosis to modulation by various combination therapies, the

activation of ferroptosis has garnered significant attention as a

promising therapeutic strategy in recent years (6). Previous

research has revealed a spatial correlation between ferroptosis and

the expression of transcriptional markers of inflammation and

immune activation at the invasion fronts of HNSCC (7).

Furthermore, ferroptosis enhances antitumor immune responses

by inducing immunogenic exposure in HNSCC (8). However, our

understanding of the molecular mechanisms underlying ferroptosis

in HNSCC, particularly at the single-cell level, is still limited. Thus,

the use of single-cell RNA sequencing (scRNA-seq) to analyze gene

expression in individual cells (5) is crucial for revealing the

heterogeneity of ferroptosis-related cellular subpopulations in

HNSCC and identifying potential therapeutic targets for ferroptosis.
02
In this study, by combining scRNA-seq with bulk transcriptome

data, we analyzed the dynamic changes in tumor heterogeneity and

the TME before and after immunotherapy in patients with HNSCC,

providing a comprehensive single-cell transcriptomic landscape for

human HNSCC. Through the analysis of transcriptional features,

our study identified a malignant cell subpopulation that exhibited a

ferroptosis-resistant phenotype, and experimental validation

confirmed this finding. In summary, we have improved our

understanding of the heterogeneity and complexity of the TME in

HNSCC, potentially advancing its application in the personalized

treatment of HNSCC.
Methods

Material sources

The scRNA-seq data related to HNSCC were obtained from the

Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/

geo/) with the accession number GSE195832 (9). The data are based

on the GPL24676 platform, which includes four patient tumors

before and after treatment from a neoadjuvant trial of advanced-

stage HNSCC patients who were treated with the aPD-1 therapy

nivolumab. Moreover, the transcriptome data for HNSCC utilized

in this study, the Cancer Genome Atlas-Head and Neck Squamous

Cell Carcinoma (TCGA-HNSC), were sourced from the TCGA

database (https://portal.gdc.cancer.gov/projects/TCGA-HNSC),

comprising 502 HNSCC samples, 44 adjacent normal controls,

and associated clinical information.
ScRNA-seq data and bulk RNA-seq
data preprocessing

Using the Seurat package (10), this study applied filters to

remove cells whose gene expression was in the top and bottom 1%

and those whose mitochondrial gene expression was greater than

10%. Single-cell unique molecular identifier (UMI) expression data

were normalized via regularized negative binomial regression. The
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Seurat package was subsequently used to refine and integrate

HNSCC scRNA-seq data, facilitating cell dimension reduction and

clustering. Clustering results were visualized through the uniform

manifold approximation and projection (UMAP) algorithm (11).

For TCGA-HNSC data normalization and preprocessing, we

used the normalizeBetweenArrays function in the limma software

package (12).
Identification of cellular clusters

This study utilized the FindAllMarkers function from the Seurat

package to identify genes that were differentially expressed between

specific cell clusters and other clusters (P value < 0.05). The cell

types were manually annotated on the basis of cell marker

databases, laboratory expertise, and previous research publications

(13–15). We subsequently performed cluster analysis on various

types of cells, manually annotating cell subpopulations within each

cell type on the basis of genes that were significantly representative

and functional, indicating specificity.
Estimating the immune response of
the system

This study utilized the easier package (16) to predict the level of

immune response in HNSCC samples. On the basis of the results of

the Easier score, samples were classified according to the median

Easier score: those exceeding the median value were designated the

immunotherapy responsive (IR) group, whereas those below the

median were assigned to the immunotherapy non-responsive (INR)

group. Detailed grouping information for HNSCC samples is

provided in Supplementary Table S1.
Enrichment analysis and gene set
enrichment analysis

To uncover significant biological patterns, enrichment analysis

targets closely related biological phenomena, pinpointing common

or unique biological features across cell subpopulations. This

research utilized the clusterProfiler R package (17) to perform

enrichment analyses on biological processes (BP) and the Kyoto

Encyclopedia of Genes and Genomes (KEGG), adopting a P value

threshold of < 0.05 for statistical significance.

Gene set enrichment analysis (GSEA) (18) was employed to

assess the distribution of genes across an expression profile,

categorized by phenotypic relevance. Using reference genomes

from MsigDB V7.4, specifically c5.bp.v7.0.entrez.gmt and

c2.cp.kegg.v7.0.symbols.gmt (19), we conducted an in-depth

analysis of gene expression and phenotypic profiles within various

cellular subpopulations. Additionally, we employed the AUCell

function (https://bioconductor.org/packages/release/bioc/html/

AUCell.html) to perform cell scoring on specified gene sets,

thereby identifying the expression profiles of gene sets associated

with active pathways at the cellular subpopulation level.
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Inference of differentiation status in
cell subpopulations

Single-cell transcriptional diversity is a powerful indicator of

developmental potential within a cell population. To gain further

insight into the cellular dynamics and potential progression

patterns of malignant cells, this study employed the R package

CytoTRACE (20) to infer the differentiation state of HNSCC

cell subpopulations.
Trajectory analysis

In response to external stimuli or throughout developmental

stages, cells exhibit a range of functional alterations, manifested in

distinct expression profiles. By categorizing cells according to the

trajectories of their gene expression changes, it becomes possible to

delineate their developmental courses. In this study, the R package

Monocle2 (21, 22) was utilized to construct developmental

trajectories within subpopulations of different cell types, with

visualization facilitated by the UMAP algorithm. This approach

offers detailed insight into the dynamics of cellular evolution

and differentiation.
Gene regulatory network analysis

Transcription factors (TFs) shape gene expression, impacting

an organism’s physiological functions by modulating specific gene

expression levels and patterns. To identify the specific TFs

regulating each cell subpopulation, an analysis and reconstruction

of the TF-centered gene regulatory network (GRN) (23, 24) was

conducted via the pySCENIC python module tool. Additionally,

transcription factor binding profiles were obtained from the

JASPAR database (available at https://jaspar.genereg.net) to

establish patterns of transcription factors regulating each

coexpressed gene module.
Gene set variation analysis

Gene set variation analysis (GSVA) transforms the gene

expression matrix across various samples into a matrix of gene set

expression across samples, enabling the assessment of disparities in

distinct gene sets across samples. In this study, the top 15 genes with

significant and specific expression in the different cell subpopulations

were chosen as the gene set. The single-sample gene set enrichment

analysis (ssGSEA) method from the GSVA package (25) was

employed to compute the scores of different subgroups in the

TCGA-HNSC cohort, and the connections between cell

subpopulation abundance and clinical prognosis characteristics

were subsequently analyzed. On the basis of the algorithm-derived

optimal cutoff, the samples were stratified into high-score and low-

score groups, and the R packages survival (https://cran.r-project.org/

web/packages/survival/index.html) and survminer (https://

rdocumentation.org/packages/survminer/versions/0.4.9) were
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subsequently utilized to determine the overall survival (OS) rate and

recurrence-free survival (RFS) rate. The R package pROC was used

to analyze the receiver operating characteristic (ROC) curve (26).
Cox univariate and multivariate analyses

To determine whether our model can be used as an independent

predictor for HNSCC patients, we defined genes with

downregulated ferroptosis signaling pathways in TP63+ SLC7A5+

HNSCC patients as TP63+ SLC7A5+ HNSCC-related ferroptosis

genes. Together with TP63 and SLC7A5, these genes were

amalgamated to formulate the scoring genes. We subsequently

conducted both univariate and multivariate Cox regression

analyses (27) on these scoring genes. We constructed a clinical

scoring model based on the mechanism score through Cox

regression analyses (27), integrating the clinical indicators of

HNSCC patients. We subsequently used the “rms” R package (28)

to create column line plots for predicting one-, three-, and five-year

OS in clinical patients to evaluate the potential of the model for

predicting the prognosis of HNSCC patients. Finally, calibration

curves were employed to assess the accuracy of the model by

comparing the expected and observed survival rates.
Cell communication analysis

The iTALK package (https://doi.org/10.1101/507871) identifies

cell-specific highly or differentially expressed ligand−receptor genes,

recognizing potential communication pathways that may play

crucial roles in tumor progression. In this study, we utilized the

iTALK package to uncover noteworthy ligand−receptor

interactions among subpopulation cells, thus offering an intricate

view of intercellular communication dynamics during

developmental processes.
HNSCC cell line

The human HNSCC cell line SCC25 was acquired from Pricella

(CM-0569) and propagated in Dulbecco’s modified Eagle’s

medium/nutrient mixture F-12 (DMEM/F12, Gibco, 25200072),

supplemented with 10% fetal bovine serum (FBS, Solarbio, P1020),

400 ng/mL hydrocortisone, and 1% penicillin/streptomycin

solution. The cells were cultured at 37°C in a humidified

incubator under an atmosphere containing 5% carbon dioxide.
Synthesis of the TP63-specific siRNA
sequence and siRNA transfection

The small interfering RNA (siRNA) sequence targeting human

TP63 was synthesized by Sangon Biotech (Shanghai, China), with

the following sequence information:

Sense: 5’-UGGAUUUGUACCAUUCUUCUGTT-3’.

Antisense: 5’-GAAGAAUGGUACAAAUCCAAGTT-3’.
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The HNSCC cell line SCC25 was seeded into a six-well plate and

allowed to grow until 60% to 70% confluence was achieved. The old

medium was then discarded, and the cells were washed twice with

phosphate-buffered saline (PBS). Each well was subsequently

supplemented with 2 mL of DMEM/F-12. Two sterile centrifuge

tubes were prepared, each containing 250 mL of DMEM/F-12; 200

pmol of siRNA was added to one tube, and 10 mL of Lipo6000™

transfection reagent (Beyotime, C0526) was added to the other.

Both tubes were allowed to stand at room temperature for 5

minutes. The siRNA mixture was then gently mixed into a tube

containing Lipo6000™ transfection reagent, and the mixture was

incubated at room temperature for an additional 5 minutes. After

transfection, the cells were incubated in the original medium for 4

hours before the medium was replaced with fresh DMEM/F-12

containing 10% FBS, 400 ng/mL hydrocortisone, and 1%

penicillin/streptomycin.
Construction of the TP63 overexpression
plasmid and lipofection

The TP63 overexpression plasmid was constructed by Sangon

Biotech, utilizing the pcDNA3.1 vector with NheI and BamHI as the

restriction sites.

The HNSCC cell line SCC25 was seeded into a six-well plate and

grown until 60% to 70% confluence was achieved. The old medium

was subsequently discarded, and the cells were subsequently rinsed

twice with PBS. Each well was replenished with 2 mL of DMEM/F-

12. Two sterile centrifuge tubes were prepared, each containing 250

mL of DMEM/F-12; one tube was supplemented with 5 mg of the

pcDNA3.1-TP63 overexpression plasmid, and the other was

supplemented with 10 mL of Lipo6000™ transfection reagent.

Both tubes were left at room temperature for 5 minutes. The

solution containing the pcDNA3.1-TP63 plasmid was then gently

mixed into the tube with Lipo6000™ transfection reagent, and the

mixture was incubated at room temperature for an additional 5

minutes. After transfection, the cells were incubated in the original

medium for 4 hours before the medium was replaced with fresh

DMEM/F-12 containing 10% FBS, 400 ng/mL hydrocortisone, and

1% penicillin/streptomycin.
Western blot

To assess the protein expression levels of P63 and SLC7A5,

Western blot assays were performed with the following primary

antibodies: anti-human p63 (ab32353, Abcam; 1:10000) and anti-

human SLC7A5/LAT1 (ab305251, Abcam; 1:1000). Initially, gels

were cast with an acrylamide solution and polymerized via TEMED.

The samples were combined with SDS loading buffer, denatured

and electrophoresed, followed by transfer onto PVDF membranes.

These membranes were subsequently blocked and incubated with

primary antibodies overnight and then with HRP-conjugated

secondary antibodies. Detection was facilitated by enhanced

chemiluminescence, with imaging conducted on a Bio-Rad

CHEMIDOC XRS+ imaging system. For sequential antigen
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detection, the membranes underwent a stripping process before

reprobing with new antibodies, ensuring thorough analysis of

protein expression.
Measurement of iron ion concentrations
via ELISA

The required strip was retrieved from an aluminum foil bag

after equilibration at room temperature for 20 minutes, and any

unused strips were stored at 4°C. Standard and sample wells were

prepared by adding 50 mL of standards at concentrations of 0, 15,

30, 60, 120, and 240 ng/mL to standard wells. A total of 10 mL of

sample and 40 mL of diluent were added to the sample wells, and the

blank wells were left empty. One hundred microliters of HRP-

conjugated detection antibody was added to each nonblank well,

and the samples were sealed with a cover film and incubated at 37°C

for 60 minutes. The reaction mixture was removed, the mixture was

patted dry, washing buffer was added, and the mixture was allowed

to sit for 1 min. The mixture was discarded, and the mixture was

patted dry. This process was repeated 5 times. Then, 50 mL of

substrates A and B from the iron ion assay kit were added to each

well and incubated in the dark at 37 mL for 15 minutes. After 50 mL
of stop solution was added, the OD was measured at 450 nm.
Reactive oxygen species detection

The oxidation-sensitive fluorescent probe (DCFH-DA) was

diluted in serum-free culture medium at a ratio of 1:1000, and the

collected cells were suspended in diluted DCFH-DA solution and

incubated at 37°C in the dark for 20 minutes. The cells were washed

three times with serum-free culture medium to thoroughly remove

any uninternalized DCFH-DA. The intracellular ROS levels were

determined via flow cytometry, with the fluorescence intensity

values reflecting the ROS levels.
Data statistics and analysis

All the bioinformatics analyses and research in this study were

conducted on a bioinformatics cloud platform (http://

www.bioinforcloud.com). A P value < 0.05 was considered

statistically significant.
Results

Single-cell transcriptional landscape of
HNSCC patients before and
after immunotherapy

This study used bioinformatics analysis of a total of 56,582 cells

from 4 pre-immunotherapy and 4 post-immunotherapy HNSCC

samples from the GEO database. Following data preprocessing,

48,457 high-quality single-cell transcriptomes were retained, and 32
Frontiers in Immunology 05
cellular clusters were identified through dimensionality reduction

and clustering (Supplementary Table S2). On the basis of classical

cell markers identified in prior studies (13–15), we manually

annotated and merged these cell clusters on the basis of the

specific cell markers expressed within each cluster and presented

the primary markers within each corresponding cell type

(Supplementary Table S3): HNSCC cells (KRT5, KRT6A, and

PKP3), En (endothelial cells: VWF and PECAM1), Fib

(fibroblasts: COL1A1 and ACTA2), SMC (smooth muscle cells:

DES), Mac (macrophages: CD14 and CD163), DC (dendritic cells:

CD1A and CD1C), ILC (innate lymphoid cells: ID2 and KIT), B

cells (MS4A1, CD79A and CD79B), Naive. T cells (CD3D, CD3E,

CD3G, and CD247), CD4+ T cells (CD4), and CD8+ T cells (CD8A

and CD8B) (Figure 1A). We ultimately annotated 4 major cell

classes or 11 major cell types and depicted the distribution of

different samples across various cell types (Figures 1B-D). The

expression of specific biomarker genes in the single-cell

transcriptional landscape further validated the accuracy of our

annotations (Figure 1E).

Compared with patients in the pre-immunotherapy state,

patients in the post-immunotherapy state presented a significant

reduction in malignant and endothelial cells, with a slight increase

in Fib abundance (Figures 1F, G). This may indicate that

immunotherapy has remodeled the TME, diminished

angiogenesis, and consequently restricted tumor growth and

dissemination. Additionally, the ratio of T cells to B cells

significantly increased after treatment, suggesting that

immunotherapy further activated the patient’s immune cells,

enhancing the immune response against the tumor.
The TP63 and SLC7A5 double-positive
HNSCC cells significantly inhibited the
ferroptotic pathway

To investigate the functional heterogeneity among different

HNSCC subpopulations within the TME, we identified nine

HNSCC subpopulations through cluster analysis and annotated

each subpopulation on the basis of functionally specific genes that

were highly expressed (Figure 2A; Supplementary Figure S1A).

Notably, we identified a malignant cell subpopulation expressing

high levels of the key oncogenic driver gene TP63 in squamous cell

carcinoma, known as TP63+ SLC7A5+ HNSCC. Comparing the

differences in patients with different states, we found that the

subpopulation of TP63+ SLC7A5+ HNSCC subpopulation

increased in abundance following immunotherapy compared with

pre-immunotherapy levels and was more abundant in the immune

non-responsive group than in the immune-responsive group

(Figure 2B; Supplementary Figure S1B). These findings suggest

that TP63+ SLC7A5+ HNSCC subpopulation may exhibit

resistance to immunotherapy.

Our analysis revealed that various HNSCC subpopulations are

distinctly enriched in pathways related to energy metabolism and

the cell cycle (Figure 2C). Notably, TP63+ SLC7A5+ HNSCC

subpopulation presented pronounced enrichment of functions

associated with iron ion transport, mitochondrial activities, and
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cell proliferation, highlighting their unique biological roles

(Figure 2D). Further investigations revealed substantial inhibition

of the ferroptosis signaling pathway in TP63+ SLC7A5+ HNSCC

subpopulation (Figure 2E). By delving deeper into this

subpopulation’s related mechanisms, we observed that TP63 and

SLC7A5 were both coexpressed and strongly positively correlated

(Cor = 0.94) in TP63+ SLC7A5+ HNSCC (Figures 2F, G). This

finding was substantiated by Western blot analysis, which revealed

that the overexpression of TP63 led to a concurrent increase in
Frontiers in Immunology 06
SLC7A5 levels in HNSCC cells (Figure 2H). Moreover, the

overexpression of TP63 in HNSCC cells significantly decreased

the concentrations of Fe2+ and ROS, whereas the knockdown of

TP63 significantly increased these concentrations (Figures 2I, J).

These findings emphasize the critical role of TP63 in inhibiting

ferroptosis in HNSCC cells. By integrating a ferroptosis-related

gene set, we noted that SLC7A5 expression strongly correlated with

ferroptosis inhibition (Cor = 0.42) and inversely correlated with

ferroptosis promotion (Cor = -0.33) (Figure 2K). Moreover, the
FIGURE 1

The global single-cell transcriptional landscape of HNSCC patients before and after immunotherapy. (A) Specific cell biomarker genes for cell cluster
annotation and merging. (B) Single-cell transcriptional landscape of major cell classes in HNSCC. (C) Single-cell transcriptional landscape of major
cell types in HNSCC. (D) Single-cell transcriptional landscape of different HNSCC samples. (E) Expression of specific biomarker genes in the single-
cell transcriptional landscape. (F) Dynamic changes in cellular components. (Left) Cellular composition of different HNSCC samples. (Right) Cellular
composition of HNSCC patients before and after immunotherapy. (Pre: Pre-treatment, Post: Post-treatment) (G) Single-cell transcriptional landscape
of different groups of HNSCC patients.
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predictive analysis of TP63-protein binding to SLC7A5-DNA

revealed significant peak associations (Supplementary Figure

S1C). Importantly, post-immunotherapy, the ferroptosis score of

TP63+ SLC7A5+ HNSCC subpopulation was markedly different

from that of the pre-treatment group (Figure 2L; Supplementary

Figure S1D), suggesting that malignant cells may mediate

ferroptosis to resist immunotherapy.
Frontiers in Immunology 07
On the basis of the inferred differentiation of subpopulations

within HNSCC, the results indicated that CXCL11+ HNSCC and

PDPN+ HNSCC subpopulations possessed the highest potential for

differentiation and may be the developmental origins of HNSCC

cells (Figure 3A). Through trajectory analysis, our study further

revealed the differentiation trajectory of HNSCC subpopulations,

with TP63+ SLC7A5+ HNSCC subpopulation being prevalent
FIGURE 2

Single-cell transcriptional landscape of HNSCC cells before and after immunotherapy. (A) Single-cell transcriptional landscape of HNSCC cell
subpopulations. (B) Dynamic changes in HNSCC cell subpopulations. (Left) HNSCC cell subpopulations composition of different groups. (Right)
HNSCC cell subpopulations composition of different groups. (IN: Immune response, INR: Immune non-response, Pre: Pre-treatment, Post: Post-
treatment) (C) The signaling pathways associated with HNSCC cell subpopulations. (D) The biological processes associated with HNSCC cell
subpopulations. (E) The TP63+ SLC7A5+ HNSCC subpopulation significantly inhibited Ferroptosis. (F) TP63 and SLC7A5 coexpression in TP63+

SLC7A5+ HNSCC subpopulation. (G) Correlation between TP63 and SLC7A5. (H) Western blotting for the protein levels of TP63 and SLC7A5 in each
group of HNSCC cells. (I) Detection of the Fe2+ ion concentration in each group of HNSCC cells. (J) Detection of the ROS concentration in each
group of HNSCC cells. (K) Correlation between SLC7A5 and genes associated with ferroptosis. (L) Ferroptosis inhibition scores of HNSCC
subpopulations. *, P value < 0.05.
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throughout the cell differentiation process (Figures 3B, C). These

findings suggest that this subpopulation possesses high

differentiation potential and plasticity, which aligns with our

predicted outcomes of differentiation (Figure 3A). We

subsequently explored the pseudotime differential gene expression

among the subpopulations, with TP63 and SLC7A5 expressed in the

later stages of the trajectory (Figure 3D; Supplementary Figure S1E),

indicating their significant roles in the maturation and
Frontiers in Immunology 08
differentiation of malignant cells. GRN analysis illustrated the

clustering of regulators within HNSCC cells, identifying TCF4 as

a potential key player in the targeted regulation of TP63+ SLC7A5+

HNSCC subpopulation (Figures 3E-H; Supplementary Figure S1F).

Overall, we discovered a unique self-protection mechanism

evolved by malignant cells: TP63 regulates SLC7A5 to inhibit

ferroptosis, sustain tumor growth and development, and

resist immunotherapy.
FIGURE 3

Trajectory analysis and GRN analysis of HNSCC subpopulations. (A) Inference of the differentiation status of HNSCC cell subpopulations. (B)
Trajectory analysis of HNSCC cell subpopulations. (Left) Pseudotime analysis mapping of HNSCC cell subpopulations. (Right) Pseudotime values
displaying the differentiation trajectory of HNSCC cell subpopulations. (C) Pseudotime analysis mapping the various HNSCC cell subpopulations. (D)
The dynamics of the top 5 differentially expressed genes in various HNSCC cell subpopulations. (E) Motif modules for HNSCC cell subpopulations.
(F) AUCell scores for the main transcription factors. (G) Single-cell transcriptional landscape of the main transcription factors in HNSCC cell
subpopulations. (H) Expression levels of the main transcription factors.
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The clinical scoring model for HNSCC
based on TP63 and SLC7A5
demonstrated robustness

Using bulk transcriptome data from the TCGA database, GSVA

revealed that the abundance of TP63+ SLC7A5+ HNSCC

subpopulation significantly increased within HNSCC, contributing

to adverse patient outcomes, while exhibiting excellent diagnostic

efficacy for identifying HNSCC patients (AUC = 0.887) (Figures 4A-

C). We subsequently explored the critical roles of TP63 and SLC7A5
Frontiers in Immunology 09
in the context of HNSCC patients. Notably, both TP63 and SLC7A5

exhibited elevated expression levels in HNSCC patients compared

with controls, demonstrating a notable positive correlation (Cor =

0.38) (Figures 4D, E). We subsequently selected the genes TP63 and

SLC7A5, as well as genes with downregulated ferroptosis signaling

pathways in TP63+ SLC7A5+ HNSCC subpopulation, as scoring

genes (Supplementary Table S4). A univariate analysis

incorporating scoring genes was conducted to calculate a

mechanism score, revealing that a higher score could be indicative

of poor prognosis in HNSCC patients (Figure 4F). Assessment of the
FIGURE 4

Regulatory mechanisms of the TP63 and SLC7A5 double-positive subpopulation in HNSCC. (A) Abundance variations of TP63+ SLC7A5+ HNSCC in
HNSCC patient tissues. (B) Prognostic efficacy of TP63+ SLC7A5+ HNSCC for OS and RFS. (C) Diagnostic potential of TP63+ SLC7A5+ HNSCC for
HNSCC patients. (D) Expression of TP63 and SLC7A5 in HNSCC patients. (E) Correlation between TP63 and SLC7A5 in HNSCC patients. (F)
Prognostic efficacy of mechanism score for OS and RFS. (G) Univariate prognostic efficacy of mechanism score and clinical indicators. (H) Prediction
of outcomes in HNSCC patients via the clinical scoring model. (I) Prognostic efficacy of the clinical scoring model for OS and RFS. (J) Accuracy of
the clinical scoring model in predicting OS and RFS in the HNSCC clinical patient cohort. ****, P value < 0.0001.
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relationships between distinct characteristics and the risk of patient

survival revealed significant univariate prognostic efficacy for the

mechanism score and tumor stage in HNSCC patients (Figure 4G).

By integrating the mechanistism score with tumor stage, we

developed a clinical scoring model based on TP63 and SLC7A5,

employing nomograms for the prediction of one-year, three-year, and

five-year survival rates in patients (Figure 4H). Survival curve analysis

confirmed the superior prognostic predictive ability of the TP63 and

SLC7A5 clinical scoring models for HNSCC prognosis (Figure 4I).

Finally, the prognostic efficacy for HNSCC patients was further

substantiated by calibration curves, verifying the accuracy of our

predictions (Figure 4J).
NDFA4L2-positive cancer-associated
fibroblasts exhibited characteristics
of myofibroblasts

Through clustering analysis of cancer-associated fibroblasts

(CAFs), a total of eight distinct cell subpopulations were identified

(Figures 5A-C). Previous pancancer analyses of CAFs revealed a

diverse lineage spectrum, further differing into four subtypes:

proCAFs, matCAFs, myCAFs, and iCAFs (29). Within HNSCC, we

observed that NDUFA4L2+ CAF subpopulation highly expressed the

myCAF marker genes RGS5, MYH11, and ACTA2, suggesting the

significant specificity of myCAFs within the TME, whereas other CAF

phenotypes were more challenging to distinguish and define

(Figure 5D). Prior to immunotherapy, the abundance of

NDUFA4L2+ CAF subpopulation was relatively high but

significantly decreased after treatment (Figure 5E). However, this cell

subpopulation still retained a proportion within the CAF population of

post-treatment patients (Figure 5E). Enrichment analysis revealed that

NDUFA4L2+ CAF subpopulation was enriched in pathways such as

oxidative phosphorylation, ECM-receptor interaction, the TGF-beta

signaling pathway, and the Wnt signaling pathway, which are

associated with myofibroblast characteristics (30) (Figure 5F). By

constructing a pseudotemporal developmental trajectory of CAFs,

we found that CAFs exhibited four differentiation paths;

interestingly, NDUFA4L2+ CAF subpopulation was positioned at the

endpoints of these differentiation pathways (Figures 5G, H).

Additionally, GRN analysis further revealed the factors with the

highest transcriptional activity among the CAF subpopulations, with

TP63 being a specific regulator of NDUFA4L2+ CAF subpopulation

(Figure 5I). In summary, NDUFA4L2+ CAF subpopulation exhibited

characteristics of myofibroblasts, potentially promoting HNSCC cell

migration and infiltration.
Activation of multiple energy metabolism
pathways by SPP1-positive tumor-
associated macrophages

Tumor-associated macrophages (TAMs) hold a dominant

position within the tumor microenvironment (31). We clustered

7,088 cells into seven TAM subpopulations on the basis of their gene

expression profiles and annotated each subpopulation according to
Frontiers in Immunology 10
genes specifically expressed within them (Figures 6A, B). Compared

with post-immunotherapy, SPP1+ TAM subpopulation was relatively

more abundant prior to treatment and were associated with poor

prognosis in HNSCC patients (Figures 6C, D). Additionally, SPP1+

TAM subpopulation was significantly enriched in key signaling

pathways related to energy metabolism, the cell cycle, and genomic

stability, with pronounced activation of multiple pathways related to

energy metabolism and angiogenesis (Figures 6E, F). Pseudotime

analysis revealed three distinct differentiation trajectories among

TAM subpopulations, with SPP1+ TAM subpopulation spanning

the entire process of TAM differentiation within the tumor

microenvironment, indicating their involvement in the functional

transition of TAMs from an immature state to a mature state

(Figures 6G, H). Furthermore, SPP1+ TAM subpopulation was

regulated primarily by HIVEP2 transcription modulation

(Figure 6I), suggesting that targeting HIVEP2 to target HIVEP2 in

SPP1+ TAM subpopulation could help mitigate TAM metabolic

activity. In summary, we identified a macrophage subpopulation,

SPP1+ TAM subpopulation, associated with poor prognosis in

HNSCC patients. It activates pathways related to energy

metabolism and angiogenesis, contributing to the reprogramming

of the tumor microenvironment.
The infiltration of CD8+ T cells in the
tumor microenvironment is associated
with FOS- and S100A2-positive effector
T cells

To explore the pivotal role of CD8+ T cells within the TME, we

identified five subpopulations of CD8+ T cells and displayed their

functional specificity markers through UMAP plots (Figures 7A, B).

The changes in the CD8+ T cell composition across the different

groups revealed that FOS+ S100A2+ Teff subpopulation was the

predominant components before immunotherapy (Figure 7C).

Interestingly, within the CD8+ T cell population in the TME,

markers for naive and memory cells were almost not expressed,

whereas a variety of effector genes were highly expressed, along with

partially expressed exhausted genes (Figure 7D). In FOS+ S100A2+

Teff subpopulation, the coexpression of FOS and S100A2 was

significantly positively correlated (Cor = 0.90) (Figures 7E, F). The

enrichment results indicated that FOS+ S100A2+ Teff subpopulation

was significantly enriched in signaling pathways related to cell

migration, such as cytokine−cytokine receptor interactions, ECM

−receptor interactions, and the TGF−b signaling pathway

(Figure 7G). Moreover, FOS+ S100A2+ Teff subpopulation

presented increased inflammatory factor scores (Figure 7H), further

indicating their active state within the TME. By constructing a

developmental trajectory of CD8+ T cells, we highlighted that all

CD8+ T cell subpopulations were in a state of cellular maturity

(Figure 7I). Notably, TP63 was identified as the transcription factor

with the highest activity, specifically regulating CXCL13+ Tex and

FKBP11+ Teff subpopulations, suggesting potential interactions

between HNSCC cells and CD8+ T cells (Figure 7J). These findings

further underscore the crucial role of TP63 in HNSCC. In brief, FOS+

S100A2+ Teff subpopulation may play crucial roles in regulating
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cellular migration, inflammatory responses, and immune reactions

within the tumor microenvironment.
The intricate cellular communication status
within the tumor microenvironment

To further investigate the communication relationships among

different cellular subpopulations within the TME of HNSCC, we
Frontiers in Immunology 11
analyzed the interplay mechanisms of cytokines, immune

checkpoints, the extracellular matrix, and growth factors. The

cytokine network revealed that CCL3L3+ TAM subpopulation

highly expressed CCL3, facilitating strong communication with

both themselves and SPP1+ TAM subpopulation (Figure 8A). In

the immune checkpoint network, TP63+ SLC7A5+ HNSCC

subpopulation communicated with TAM subpopulations via the

CD24-SIGLEC10 axis, whereas SPP1+ TAM subpopulation

interacted with other immune cell subpopulations and CAF
FIGURE 5

Single-cell transcriptional landscape of CAFs before and after immunotherapy. (A) Single-cell transcriptional landscape of CAF subpopulations.
(B) Expression of specific genes in CAF subpopulations. (C) Single-cell transcriptional landscape of CAF subpopulations among different HNSCC
samples. (D) Marker genes for different CAF subtypes. (E) CAF subpopulation compositions of different groups. (Pre: Pre-treatment, Post: Post-
treatment) (F) The signaling pathways associated with CAF subpopulations. (G) Trajectory analysis of CAF subpopulations. (Left) Pseudotime analysis
mapping of CAF subpopulations. (Right) Pseudotime values displaying the differentiation trajectory of CAF subpopulations. (H) Pseudotime analysis
mapping the various CAF subpopulations. (I) Specific regulators with the highest transcriptional activity in different CAF subpopulations.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1445472
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1445472
subpopulations through the LGALS9-HAVCR2 axis (Figure 8B).

Within the extracellular matrix, SPP1+ TAM subpopulation highly

expressed SPP1, which interacted with other cell subpopulations

through multiple axes (Figure 8C). The growth factor network

revealed that MFAP4+ CAF subpopulation interacted strongly with

TAMs and TP63+ SLC7A5+ HNSCC subpopulation via CTGF

(Figure 8D). Notably, TP63+ SLC7A5+ HNSCC subpopulation

exhibited rich diversity in receptor−ligand interactions. Finally,
Frontiers in Immunology 12
we demonstrated the gene expression patterns of more specific

receptor−ligand interaction pairs (Figure 8E).
Discussion

In this study, utilizing single-cell transcriptomics data of

HNSCC, we constructed a comprehensive single-cel l
FIGURE 6

Single-cell transcriptional landscape of TAMs before and after immunotherapy. (A) Single-cell transcriptional landscape of TAM subpopulations.
(B) Expression of specific genes in TAM subpopulations. (C) TAM subpopulation compositions of different groups. (Pre: Pre-treatment, Post: Post-
treatment) (D) Prognostic efficacy of SPP1+ TAM subpopulation for OS. (E) The signaling pathways associated with TAM subpopulations. (F) Signaling
pathways significantly activated by the SPP1+ TAM subpopulation. (G) Trajectory analysis of TAM subpopulations. (Left) Pseudotime analysis mapping
of TAM subpopulations. (Right) Pseudotime values displaying the differentiation trajectory of TAM subpopulations. (H) Pseudotime analysis mapping
the various TAM subpopulations. (I) Specific regulators with the highest transcriptional activity in different TAM subpopulations.
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transcriptional landscape of HNSCC. This allowed us to explore the

dynamic changes and transcriptional characteristics of various cell

types within the TME before and after immunotherapy and to

reveal the communication crosstalk between malignant cells and

immune cells. Notably, we identified a novel tumor immune escape

mechanism whereby HNSCC cells may inhibit ferroptosis via TP63,

thus sustaining tumor growth and differentiation. This discovery
Frontiers in Immunology 13
provides significant insights into how HNSCC resists current

immunotherapeutic approaches.

Ferroptosis is emerging as a novel mechanism that promotes the

synergistic effect of immunotherapy, radiotherapy, and chemotherapy

(6). Ferroptosis is closely associated with the prognosis and

progression of HNSCC and represents one of the key strategies for

immunotherapy in HNSCC (32). We demonstrated that, compared
FIGURE 7

Single-cell transcriptional landscape of CD8+ T cells before and after immunotherapy. (A) Single-cell transcriptional landscape of CD8+ T cell
subpopulations. (B) Expression of specific genes in CD8+ T cell subpopulations. (C) CD8+ T cell subpopulation compositions of the different groups.
(D) Expression of marker genes for CD8+ T cell subtypes among CD8+ T cell subpopulations. (E) FOS and S100A2 coexpression in FOS+ S100A2+

Teff subpopulation. (F) Correlation between FOS and S100A2 in FOS+ S100A2+ Teff subpopulation. (G) The signaling pathways associated with CD8+

T cell subpopulations. (H) Inflammatory scores of different CD8+ T cell subpopulations. (I) Trajectory analysis of TAM subpopulations. (Left)
Pseudotime analysis mapping of CD8+ T cell subpopulations. (Mid) Pseudotime values displaying the differentiation trajectory of CD8+ T cell
subpopulations. (Right) Pseudotime analysis mapping the various CD8+ T cell subpopulations. (J) Specific regulators with the highest transcriptional
activity in different CD8+ T cell subpopulations.
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with that in pre-immunotherapy conditions, the abundance of TP63+

SLC7A5+ HNSCC subpopulation increased after immunotherapy.

Concurrently, TP63+ SLC7A5+ HNSCC subpopulation significantly

inhibited the ferroptosis signaling pathway, which may play a crucial

role in resistance to immunotherapy. TP63 acts as a lineage survival

oncogene in squamous cell carcinoma (33) and is involved in the

differentiation of keratinocytes and the development of squamous

cells. Its encoded protein, p63, mediates epigenomic reprogramming

associated with various epigenetic regulators, including chromatin

remodeling complexes and epigenetic enzymes (34). SLC7A5 provides

essential amino acids to cells and maintains dynamic cellular

homeostasis, addressing oxidative stress by regulating ferroptosis

signal transduction (35–37). In our study, there was a significant

positive correlation between the coexpression of TP63 and SLC7A5 in

cells, where the upregulation of TP63 protein levels led to a notable

increase in SLC7A5 expression. Additionally, SLC7A5 serves as a
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pivotal regulatory factor in the treatment of various cancers, including

multiple myeloma, breast cancer, and gastric cancer, and represents a

potential therapeutic target for overcoming patient resistance (38–40).

Transcriptomic data indicated that elevated SLC7A5 expression

enhances the suppression of ferroptosis, particularly post-

immunotherapy, with TP63+ SLC7A5+ HNSCC subpopulation

demonstrating significant inhibition of the ferroptosis phenotype.

Furthermore, we confirmed that in HNSCC cells overexpressing

TP63, the concentrations of Fe2+ and ROS are significantly reduced,

thereby maintaining cellular homeostasis. In summary, we propose a

novel malignant cell-mediated mechanism of ferroptosis resistance:

high expression of TP63 in TP63+ SLC7A5+ HNSCC subpopulation

upregulates SLC7A5 expression through transcriptional regulation,

inhibits ferroptosis in HNSCC cells, maintains the cellular

homeostatic balance, and promotes tumor resistance

to immunotherapy.
FIGURE 8

Cell communication analysis. (A) The cytokine receptor–ligand pairs in HNSCC. (B) The immune checkpoint receptor–ligand pairs in HNSCC.
(C) The extracellular matrix receptor–ligand pairs in HNSCC. (D) The growth factor receptor–ligand pairs in HNSCC. (E) Expression of specific
receptor−ligand genes.
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Myofibroblasts are the principal cells involved in scar formation

and are ultimately responsible for excessive synthesis, deposition,

and remodeling of extracellular matrix proteins in fibrosis (30). We

discovered that NDUFA4L2+ CAF with pronounced myCAF

characteristics still constitute a significant proportion after

immunotherapy, suggesting the stability of this subgroup within

the TME. NDUFA4L2, which is induced by hypoxia, limits the

production of mitochondrial reactive oxygen species (41), aiding

cells in adapting to hypoxic conditions (42). Moreover, high

expression of NDUFA4L2 in hepatic fibroblasts facilitates tumor

progression (43). Therefore, NDUFA4L2+ CAF subpopulation may

not only adapt to the tumor microenvironment through

NDUFA4L2 but also potentially participate in tissue remodeling

and energy metabolism-related pathways to promote

microenvironmental reprogramming and thus mediate tumor

progression. Pancancer analysis revealed that myCAFs are more

prevalent in late-stage cancers than in early-stage cancers and are

potentially associated with resistance to radiotherapy and

chemotherapy (29). Our study further demonstrated that

myCAFs represent a terminal differentiation state of CAFs in late-

stage HNSCC patients.

In our study, SPP1 was specifically expressed in SPP1+ TAM

subpopulation, and compared with other cell subpopulations,

SPP1+ TAM subpopulation was relatively more abundant in

patients both before and after immunotherapy. SPP1 not only

influences TAM polarization but is also intimately associated with

the immune cell spectrum, antitumor factors, and patient prognosis

(44). Reports have indicated that SPP1+ TAM promote angiogenesis

in HNSCC and enhance tumor infiltration and metastasis through

the upregulation of cytokine expression (45). Notably, we

discovered that SPP1+ TAM subpopulation activated energy

metabolism and angiogenesis-related pathways, suggesting that

SPP1+ TAM subpopulation, by regulating energy metabolism and

altering the tumor microenvironment, promote angiogenesis to

supply resources for tumor growth and migration, ultimately

mediating poor prognosis in HNSCC patients.

CD8+ T cells are terminal effectors of cancer immunity, and

their effector function is indispensable in immunotherapy (46). In

patients with advanced HNSCC, we observed that effector T cells

constitute the main component of the CD8+ T cell landscape, with

naive and memory T cells being almost absent, revealing potential

immune regulatory dysfunctions. Despite the presence of an

activated, tumor antigen-specific immune response within the

HNSCC tumor microenvironment, prolonged activation can lead

to T-cell exhaustion, and a reduction in memory T cells diminishes

immune surveillance against the tumor, thereby facilitating

immune escape. Notably, we identified an active effector T cell

subpopulation, FOS+ S100A2+ Teff, which predominated among

CD8+ T cells prior to immunotherapy. The transcription factor FOS

plays a critical role in various aspects of T-cell activation

programming (47, 48). S100A2 significantly participates in

inflammatory cell responses and is essential for TGF-b-induced
cell migration and invasion (49). Specifically, FOS+ S100A2+ Teff

subpopulation was enriched in multiple cell migration-related

signaling pathways, including the TGF-b signaling pathway. We
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speculate that FOS+ S100A2+ Teff subpopulation promote T-cell

infiltration and migration toward tumor regions by increasing

S100A2 levels through FOS-mediated transcriptional regulation,

thereby inhibiting tumor growth and development.

Importantly, the receptors and ligands of TP63+ SLC7A5+

HNSCC subpopulat ion were abundant, reflect ing the

heterogeneity of HNSCC tumors. This richness not only renders

them more sensitive to external signal stimulation but also

facilitates more dynamic adaptation to the TME. Furthermore,

TP63+ SLC7A5+ HNSCC subpopulation may resist phagocytosis

by macrophages through the CD24-SIGLEC10 axis (50), promoting

tumor escape. Previous research has indicated that CCL3 recruits

immune cells to tumors and may reduce metastasis through tumor

−macrophage interactions (51). We found that CCL3L3+ TAM

subpopulation recruit additional TAM via CCL3 secretion, whereas

SPP1+ TAM subpopulation exacerbate immune suppression in the

TME by highly expressing LGALS9, which binds to the immune

checkpoint molecule HAVCR2 on T cells and CAFs (52). This

finding corroborates the potential of LGALS9-HAVCR2 as a target

for HNSCC immunotherapy. Reports have indicated that the SPP1

−CD44 axis is highly active in the communication of macrophages

with other cells in colorectal cancer, where it mediates immune

suppression (53). Our observations of a similar phenomenon in the

extracellular matrix network of the TME further substantiate the

critical role of SPP1+ TAM subpopulation in HNSCC. Additionally,

our study identified TP63 as the most specific regulatory

transcription factor for CXCL13+ Tex, FKBP11+ Teff, and

NDUF4L2+ CAF subpopulations. These findings suggest that

TP63+ SLC7A5+ HNSCC subpopulation may also regulate the

function and growth of T cells and fibroblasts through the

secretion of TP63, potentially via exosomes. This warrants further

exploration in subsequent studies.

We utilized bioinformatics approaches based on single-cell and

bulk transcriptomics data to reveal the heterogeneity of the TME in

HNSCC before and after immunotherapy, complemented by

preliminary experimental validation of our hypotheses. However,

our results have several limitations. First, the sample size for our

single-cell study cohort was small, necessitating further validation

across a larger clinical sample set. Although the sample size in our

study is limited, the large number of cells captured per sample

provides sufficient data to uncover significant biological insights.

Second, the observational nature of our current study limits the

establishment of causative relationships. The molecular mechanisms

underlying the TP63-mediated transcriptional regulation of SLC7A5

and the subsequent mediation of ferroptosis by SLC7A5 require

further confirmation through functional experiments. We plan to

incorporate functional experiments in future research to validate the

key findings related to treatment response mechanisms.
Summary

In summary, we revealed changes in the cellular ecology of the

TME in HNSCC before and after immunotherapy. We discovered a

novel self-protection mechanism by malignant cells: TP63-mediated
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transcriptional regulation of SLC7A5 expression inhibits ferroptosis

in malignant cells, thereby conferring resistance to immunotherapy.

This contributes to a better understanding of the mechanisms

underlying the response of HNSCC to immunotherapy.
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SUPPLEMENTARY FIGURE 1

Gene expression, predicted peaks, gene set scoring, pseudotemporal gene
dynamics, and regulators of highest transcriptional activity in HNSCC cell

subpopulations. (A) Expression of specific genes in CD8+ T cell subpopulations.
(B) Single-cell transcriptional landscape of HNSCC cell subpopulations in different

groups. (C) Prediction of peaks for TP63-protein and SLC7A5-DNA binding. (D)
Ferroptosis promotion score of HNSCC cell subpopulations. (E) Dynamic

expression distributions of TP63 and SLC7A5 during the development of

HNSCC cell subpopulations. (F) Specific regulators with the highest
transcriptional activity in different HNSCC cell subpopulations.
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