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11Department of Infectious Diseases, Cork University Hospital, Cork, Ireland, 12Department of
Infectious Diseases, Beaumont Hospital, Dublin, Ireland, 13Department of International Health and
Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland, 14Partner Site Bonn-Cologne
Department Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
Introduction: A clear immune correlate of protection from severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has not been

defined. We explored antibody, B-cell, and T-cell responses to the third-dose

vaccine and relationship to incident SARS-CoV-2 infection.

Methods: Adults in a prospective cohort provided blood samples at day 0, day 14,

and 10 months after the third-dose SARS-CoV-2 vaccine. Participants self-

reported incident SARS-CoV-2 infection. Plasma anti–SARS-CoV-2 receptor-

binding domain (RBD) and spike-subunit-1 and spike-subunit-2 antibodies were

measured. A sub-study assessed SARS-CoV-2–specific plasma and memory B-

cell and memory T-cell responses in peripheral blood mononuclear cells by

enzyme-linked immunospot. Comparative analysis between participants who

developed incident infection and uninfected participants utilised non-parametric

t-tests, Kaplan–Meier survival analysis, and Cox proportional hazard ratios.
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Results: Of the 132 participants, 47 (36%) reported incident SARS-CoV-2

infection at a median 16.5 (16.25–21) weeks after the third-dose vaccination.

RBD titres and B-cell responses, but not T-cell responses, increased after the

third-dose vaccine. Whereas no significant difference in day 14 antibody titres or

T-cell responses was observed between participants with and without incident

SARS-CoV-2 infection, RBDmemory B-cell frequencies were significantly higher

in those who did not develop infection [10.0% (4.5%–16.0%) versus 4.9% (1.6%–

9.3%), p = 0.01]. RBD titres and memory B-cell frequencies remained significantly

higher at 10 months than day 0 levels (p < 0.01).

Discussion: Robust antibody and B-cell responses persisted at 10 months

following the third-dose vaccination. Higher memory B-cell frequencies, rather

than antibody titres or T-cell responses, predicted protection from subsequent

infection, identifying memory B cells as a correlate of protection.
KEYWORDS

SARS-CoV-2, COVID-19, COVID-19 vaccine, immunogenicity, B cells, T cells
Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) vaccination markedly decreases the risk of progression to severe

coronavirus disease 2019 (COVID-19) and death (1). However,

breakthrough infections occur despite repeated vaccinations.

Although both waning immunity and immune escape driven by

viral evolution are thought to contribute to breakthrough infections,

a clear immune correlate of protection from infection has not been

defined and questions remain about which element of the immune

response to vaccination best predicts long-term immunity.

Memory B cells play a crucial role in the immune system’s

anamnestic ability to mount a rapid and enhanced response upon

pathogen re-exposure, undergoing clonal expansion and

differentiation into antigen-secreting cells. The two-dose mRNA-

based vaccination has been shown to effectively induce a memory B-

cell response (2), which is enhanced by the third-dose vaccine (3).

Although neutralising antibodies declined over time following

vaccination, spike (S)–specific and RBD-specific memory B-cell

responses remained detectable at 6 months after primary

vaccination (3). Specialised compartments, such as the germinal

centre (GC) in lymph nodes, house distinct subsets of B cells where

B cells acquire affinity-enhancing somatic hypermutations (SHMs).

Notably, high sustained frequencies of S-binding GC B cells and

plasma cells were demonstrated in draining lymph nodes for at least

12 weeks after the third-dose vaccination facilitating the generation

of robust humoral immunity to SARS-CoV-2 (4). Examination of

the GC in immunocompromised subjects has also demonstrated

blunted SARS-CoV-2–specific GC B-cell responses and reduced

SARS-CoV-2 RBD-specific memory B cells than healthy subjects,

which may explain the reduced neutralising antibody responses

seen in immunocompromised individuals again underscoring the
02
critical role of B-cell GCs in neutralising antibody development (5).

One cohort study demonstrated that individuals experiencing

vaccine breakthrough infection exhibited reduced frequencies of

SARS-CoV-2 receptor-binding domain (RBD)–specific memory B

cells at diagnosis in contrast to their vaccinated close contacts who

did not develop infection (6). However, no prospective studies have

explored the relative contribution of memory B-cell or plasma cell

responses as compared to circulating binding antibody titres or T-

cell responses after vaccination as a reliable predictor of future

protection from infection.

Neutralisation capacity is the gold-standard surrogate of

underlying host immunity. Cohort studies analyses and

aggregated clinical trial data have reported correlations between

circulating binding antibody concentrations and both underlying

host viral neutralising capacity and protection from COVID-19 (7–

11). The emergence of variants of concern (VOCs) further

complicates the search for a correlate of protection against SARS-

CoV-2 infection. The Omicron (OM; B.1.1.529) VOC showed

greater escape from vaccine-elicited neutralising antibody

responses in comparison to wild-type (WT) virus (12, 13).

Although an absolute circulating antibody level as a correlate of

protection has been the subject of much research (14), a recent

study determined an anti-RBD immunoglobulin G (IgG) threshold

of 456 binding antibody units (BAU)/ml to correspond to a

clinically relevant underlying host neutralising capacity against

both WT and immune escape variants of SARS-CoV-2 including

OM (15).

SARS-CoV-2 primary vaccination leads to induction of SARS-

CoV-2–specific T-cell responses (16). However, booster doses of

mRNA vaccines have been shown to have little effect on S-specific

CD8+ T memory stem pool memory frequencies, which remained

constant after three and four vaccine booster doses (17). Memory T
frontiersin.org
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cells, rather than memory B cells, have been demonstrated as the

rapid responders during breakthrough SARS-CoV-2 infection

enhancing the adaptive immune response (18). Yet, conflicting

data exist regarding the role of SARS-CoV-2–specific T-cell

responses in protection against infection. Whereas one cohort

study observed higher SARS-CoV-2–specific memory T cells in

close contacts at the time of exposure compared to diagnosed cases

(19), another study found no significant difference in T-cell

responses between infected individuals and their negative close

contacts at the time of infection (6). A definitive role for vaccine-

elicited memory T-cell responses as a correlate of protection from

SARS-CoV-2 infection remains uncertain.

Comprehensive, prospective, multi-parameter assessments of

these immune factors after booster vaccination, alongside their

protective efficacy against future infection, have not yet been

conducted in a real-world setting. We aimed to explore SARS-

CoV-2–specific B-cell responses, circulating antibody levels, and T-

cell responses before and after the third-dose vaccine and determine

which element of the immune response predicted protection from

subsequent SARS-CoV-2 infection.
Methods

Study design and participants

The All-Ireland Infectious Diseases (AIID) Cohort Study is a

prospective, multicentre, observational study recruiting individuals

with issues pertaining to infectious diseases (approved by the

National Research Ethics Committee in Ireland, reference 20-

NREC-COV-056). Adult (≥18 years) participants provided a

written informed consent in accordance with the Declaration of

Helsinki for collection of clinical data and biobanking of bloods

including ethylenediamine tetraacetic acid–derived plasma (stored

at −80°C) and cryopreserved peripheral blood mononuclear cells

(PBMCs) (in liquid nitrogen). For this analysis, all AIID cohort

participants receiving the third dose of SARS-CoV-2 vaccine in

November 2021 and with blood samples available at day 0, day 14,

and 10 months were included. All included participants were

healthcare workers and received the monovalent Pfizer-BioNTech

BNT162b2 as was national first-line policy at the time. Data on self-

reported SARS-CoV-2 incident infection (PCR or antigen test

confirmed) was collected during the two follow-up periods. Given

the changing nature of circulating SARS-CoV-2 variants,

participants were assumed to have contracted the Delta

(B.1.617.2) variant if reporting a positive test before 12 December

2021 and OM (B.1.1.529) after this date (20).
Measurement of immune responses

Circulating antibody titres were evaluated on samples at the day

0 and day 14 time points for all participants. B-cell responses were

analysed at day 0 and day 14 after the third-dose vaccination in a

sub-study where participants were matched based on age and

gender. An additional analysis of T-cell, B-cell, and circulating
Frontiers in Immunology 03
antibody responses was also performed in samples from a subset of

participants with samples available at 10 months after the third-

dose vaccination. Notably, all of participants in this sub-analysis

were also included in the B-cell analysis.

We used a quantitative electrochemiluminescence assay to

quantify antibodies to WT SARS-CoV-2 spike subunit 1 (S1),

spike subunit 2 (S2), and RBD in plasma using the Centre for

Experimental Pathogen Host Research (CEPHR) COVID-19

serologic assay, described in detail elsewhere (21), with results

reported in World Health Organisation (WHO)–standardised

BAU/mL.

We assessed SARS-CoV-2–specific plasma cell and memory B-

cell responses from PBMCs. Plates were coated with SARS-CoV-2

WT RBD and full-S antigens (Sino Biological Inc., China) or anti-

human IgG (Mabtech, Sweden) serving as controls. For the

measurement of memory B-cell frequencies, cells were stimulated

ex vivo with R848 and interleukin-2 (IL-2) to differentiate into

antibody-secreting cells (ASCs) and analysed by enzyme-linked

immunospot (ELISpot) Mabtech, Sweden). For the plasma cells,

antigen-specific IgG-secreting B cells were expressed as spot-

forming unit (SFU) per 106 PBMCs. For the memory B cells,

antigen-specific IgG-secreting B cells were expressed as SFU per

total IgG-secreting B cells (IgG+ ASC) controls.

We assessed SARS-CoV-2–specific memory T-cell responses

from PBMCs after stimulation, with SARS-CoV-2 WT S and

nucleocapsid (N) peptides and OM BA4&BA5 S and N peptides

(Sino Biological Inc., China) by ELISpot. The SARS-CoV-2–specific

memory T cells were expressed as SFU per 0.5 × 106 PBMCs

subtracted with negative control. Detailed methods are provided in

the Supplementary Materials.
Statistical analysis

Continuous variables were summarised using median and

interquartile range (IQR) and categorical variables with frequency

and percent. We used Wilcoxon signed-rank test and Mann–

Whitney U test for paired and unpaired comparisons, respectively.

Kaplan–Meier survival analysis and Cox proportional hazard

regression analysis were used to explore relationships between

variables of interest and incident infection, adjusting for age, sex,

and antibody titres. Statistical analysis was performed using R

(version 4.3.1) software and Prism version 10.0.2 (GraphPad).
Results

Study population

Of the 132 participants recruited to the analysis, 76 were

included in the B-cell sub-analysis and 23 contributed data to the

T-cell sub-analysis and 10 month follow-up sub-analysis

(summarised in Figure 1). For all included participants, the

median (IQR) age was 43 (32–50), 81% were women, and 101

(77%) had received primary two-dose vaccination with Pfizer-

BioNTech BNT162b2 (demographics are summarised in Table 1).
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The median follow-up for all included participants was 16.5 (16.25–

21) weeks follow-up. Forty-seven (36%) reported incident SARS-

CoV-2 infection, at a median interval of 90 days (57–112.5) after the

third-dose vaccination. Forty (85%) were symptomatic, and 46

(98%) were presumed to have been infected with an OM variant

due to date of infection (20). For the 23 participants with data

available at 10 months [median, 45 weeks (44.75–45.75)], 15 (65%)

reported incident infection at a median 71 days (53–141) after the

third-dose vaccination, an additional four participants subsequent

to the first follow-up period. All participants had mild disease as

classified by the WHO (22).
Frontiers in Immunology 04
Circulating antibody response to the third-
dose SARS-CoV-2 vaccine

The median (IQR) circulating antibody titres (BAU/mL)

increased significantly from day 0 to day 14 from 211 (103–414)

to 8,162 (4,581–11,914) for anti-RBD, 386 (196–728) to 16,305

(9,585–22,623) for anti-S1, and 24 (14–79) to 570 (335–888) for

anti-S2; all p < 0.0001 (Figure 2A). There was no significant

difference in day 14 circulating antibody titres (BAU/mL)

between participants with and without subsequent infection. The

median (IQR) of those who developed infection were [anti-RBD,
TABLE 1 Characteristics of the study population.

Full study cohort B-cell sub-analysis T-cell sub-analysis

Infection*
(n = 47)

No infection
(n = 85)

Infection*
(n = 32)

No infection
(n = 46)

Infection*
(n = 11)

No infection
(n = 12)

Age (years) 41
(33–47.5)

43
(32–51)

40
(34.5–47)

39
(29.5–51.5)

43
(37–51)

38
(31–48.5)

Female sex [n (%)] 33 (70%) 74 (87%) 20 (63%) 36 (82%) 5 (45%) 9 (75%)

Previous (before booster)
SARS-CoV-2 infection [n (%)]

7 (15%) 14 (16%) 7 (22%) 5 (11%) 1 0

Months since previous infection
[median (IQR)]

10 (8.5–17) 10 (8.5–17) 10 (8.5–17) 10 (10–19) 3 NA

Initial vaccinations [n (%)]
Pfizer-BioNTech BNT162b2
AstraZeneca ChAdOx1
nCoV-19

38 (81%)
9 (19%)

63 (74%)
22 (26%)

27(84%)
5(16%)

33(75%)
11(25%)

8 (73%)
3 (27%)

10 (83%)
2 (17%)

Days since the second vaccine 283
(245–286)

282
(188–286)

284
(252–286)

284
(193–286)

285
(225–286)

285
(261–289)

Symptomatic infection 40 (85%) NA 26 (81%) NA 6 (55%) NA
*Infection as self-reported by participants by SARS-CoV-2 PCR or antigen test during follow-up period [median (IQR)] of 16.5 (16.25–21) weeks.
FIGURE 1

Flow diagram of study population.
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7,332 (4404–11017); anti-S1, 16,011 (8,405–22,427); and anti-S2,

470 (345–773)] versus those who did not develop infection [anti-

RBD, 8,310 (4,896–11,959); anti-S1, 16,449 (10,659–22,993); and

anti-S2, 612 (335–955)]; all p > 0.05 (Figure 2B).
B-cell response to the third-dose SARS-
CoV-2 vaccination

We evaluated B-cell function through SARS-CoV-2 RBD and

full-S–specific memory B and plasma cell responses. The median

(IQR) RBD and S-specific memory B cells (% total IgG-secreting B

cells) increased significantly from day 0 to day 14, from 0.95 (0.26–

2.26) to 7.86 (3.83–13.55) for RBD-specific and 2.5 (0.58–4.2) to

33.62 (12.63–63.48) for S-specific. Similarly, the median (IQR)

plasma cell responses (SFU/106 PBMCs) increased significantly

from day 0 to day 14, from 12 (5–21.5) to 25.5 (12–58.5) for

RBD-specific and 14 (7–24) to 79.5 (35.5–268.5) for S-specific; all p

< 0.0001 (Figure 3A). There was no significant difference in

memory B-cell frequency–based. Linear regression analysis of the
Frontiers in Immunology 05
day 14 S-specific memory B-cell responses indicated that the

vaccine type used for priming did not significantly impact the day

14 responses (p = 0.95), suggesting that the observed increase in B-

cell responses is consistent across different vaccine types.

In contrast to what we observed with circulating antibody

responses, those reporting incident SARS-CoV-2 infection had

significantly lower memory RBD-specific B-cell frequencies both at

day 0 and day 14 compared to those who did not report incident SARS-

CoV-2 infection. The median (IQR) RBD memory B-cell frequencies

(% total IgG-secreting B cells) at day 0 were 0.45 (0.24–1.36) versus 1.46

(0.58–2.48) (Figure 3B) and the median day 14 RBD-specific memory

B-cell frequencies 4.94 (1.6–9.26) versus 10.03 (4.45–16) in those with

and without incident SARS-CoV-2 infection, respectively (Figure 3C).

Similarly, day 14 full-S–specific memory B-cell frequencies were

significantly lower in those with incident SARS-CoV-2 infection with

median of 15.75 (6.52–54.4) versus 38.94 (19.34–67.24) in those

without incident SARS-CoV-2 infection (Figure 3C).

Day 14 RBD-specific plasma cell responses (SFU/106 PBMCs)

were also significantly lower in those with incident infection with

median of 17 (9.5–36.25) versus 29 (18.25–69) in those without
frontiersin.or
FIGURE 2

SARS-CoV-2–specific antibody titres and relationship with incident infection. (A) Significantly higher SARS-CoV-2–specific anti-RBD, anti-S1, and
anti-S2 titres at day 14. *p ≤ 0.0001 compared to pre-vaccine response by Wilcoxon signed-rank test. (B) There was no significant difference in anti-
RBD IgG, anti–spike-subunit-1 IgG, or anti–spike-subunit-2 IgG titres at day 14 in those who developed infection and those who did not develop
infection. Bars represent median and interquartile range. P-values calculated by Mann–Whitney U test are shown above each comparison. D0, day 0;
D14, day 14; RBD, receptor-binding domain; S, spike; S1, spike subunit 1; S2, spike subunit 2; BAU, binding antibody unit; IgG Immunoglobulin G.
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incident SARS-CoV-2 infection (Figure 3C). However, day 14 S-

specific plasma cell responses were not significantly different between

the groups 58 (27.5–208.5) versus 99.5 (38.25–283.25) in those with

and without incident infection, respectively, p = 0.15 (Figure 3C).
Memory T-cell response to the third-dose
SARS-CoV-2 vaccine

We investigated T-cell function through full-S– and N-specific

memory T-cell responses directed against WT and OM variants in a
Frontiers in Immunology 06
subset (N = 23) of participants at day 0 and day 14 after the third-dose

vaccination, of whom 11 (45%) reported incident SARS-CoV-2 infection

during the initial follow-up period of median (IQR) 17 weeks (16.5–21).

WT T-cell responses (SFU/0.5 × 106 PBMCs) did not significantly

change from day 0 to day 14, from median of 9.5 (4.25–46) to 3.5 (0–

24.75) for WT S and of 8 (0.25–38.5) to 2 (0–21.5) for WT N. Similarly,

OM-specific T-cell responses did not significantly change from day 0 to

day 14, frommedian of 28.5 (7.75–46) to 8.5 (3.25–31.5) for OMS and of

6 (2–27.75) to 5.5 (0–23.25) for OM N; all p > 0.05 (Figure 4A). There

was also no significant difference in T-cell responses between those who

developed infection and those who did not (Figure 4B).
FIGURE 3

SARs-CoV-2–specific B-cell responses and relationship with incident infection. (A) Significantly higher SARS-CoV-2–specific memory B-cell and
plasma cell responses at day 14. *p ≤ 0.0001 compared to pre-vaccine response by Wilcoxon signed-rank test. (B) SARS-CoV-2–specific RBD and S
plasma cell and memory B-cell responses before the third-dose SARS-CoV-2 vaccination and relationship with incident SARS-CoV-2 infection. Bars
represent median and interquartile range. P-value calculated by Mann–Whitney U test are shown above each comparison. (C) SARS-CoV-2–specific
RBD and S plasma cell and memory B-cell responses 14 days after the third-dose SARS-CoV-2 vaccination and relationship with incident SARS-
CoV-2 infection. D0, day 0; D14, day 14; PBMCs, peripheral blood mononuclear cells; RBD, receptor-binding domain; S, spike; ns, not significant;
SFU, spot-forming unit.
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Immune responses at 10 months after the
third-dose SARS-CoV-2 vaccine

We evaluated antibody, B-cell responses, and T-cell responses in

the same subset (N = 23) of participants additionally at 10 months

after the third-dose vaccine; 15 (65%) self-reported SARS-CoV-2

infection at 10 months after the third-dose vaccine. We observed

robust, persistent memory B-cell frequencies, with levels maintained

significantly above those recorded at day 0. RBD-specific memory B

cells (% total IgG-secreting B cells) were median of 2.71 (1.17–4.46) at

month 10 versus 0.95 (0.31–2.11) at day 0 (p = 0.01). S-specific

memory B cells (% total IgG-secreting B cells) were median of 6.74

(2.73–14.66) at month 10 versus 2.2 (0.96–4.05) at day 0 (p = 0.01)

(Figure 5A). Circulating antibody titres (BAU/mL) were also

significantly higher at month 10 after vaccine compared to day 0

(anti-RBD titres median of 2,498 (850–7840) versus 200 (28–326),

anti-S1 titres of 22,188 (2,267–71,619) versus 378 (175–581), and

anti-S2 titres of 365 (204–608) versus 17 (8–39) at month 10 versus

day 0, respectively; all p < 0.0001 (Figure 5B). Nineteen (83%)

participants had anti-RBD titres >456 BAU/m, versus 3 (13%)

participants at day 0, a threshold that has previously been

demonstrated to predict clinically relevant host neutralising

capacity against SARS-CoV-2 (15). There was no significant

differences in memory T-cell responses (SFU/0.5 × 106 PBMCs) at

month 10 from day 0 [WT RBD-specific at 14.00 (5–35.75) versus 3.5
Frontiers in Immunology 07
(0–24.75) SFU and WT N-specific at 7.5 (2–25.5) versus 2.0 (0–21.5)

at month 10 versus day 0 respectively; Figure 5C].
Impact of heterologous prime-boost
vaccination on memory B-cell responses

We investigated the impact of heterologous prime-boost

vaccination on memory B-cell responses at day 14 after booster

vaccination. There was no significant difference in day 14 RBD-

specific memory B-cell frequencies between those primed with

Pfizer-BioNTech (n = 60) with a median (IQR) of 7.86 (3.85–13.6)

and those who had a heterologous prime-boost vaccination with

AstraZeneca (n = 16) who had a median (IQR) of 7.32 (3.45–13.7);

p = 0.99. Similarly, there was no significant difference in S-specific

memory B-cell frequencies at day 14 after the third-dose vaccination

between those primed with Pfizer-BioNTech [28.3 (11.6–63.9)] and

those primed with AstraZeneca [46.4 (16.4–60.6)]; p = 0.41.
Higher memory B-cell and plasma cell
responses independently predict
protection from infection

Higher memory B-cell and plasma cell responses at day 14 after

the third-dose vaccine were independently associated with protection
FIGURE 4

SARS-CoV-2–specific memory T-cell responses and relationship with incident infection. (A) There was no significant difference in SARS-CoV-2–
specific memory T-cell responses at day 14. P-values calculated by Wilcoxon signed-rank test compared to pre-vaccine responses. (B) There was no
significant differences in the day 14 memory T-cell responses between those who developed infection and those who did not develop infection. P-
values calculated by Mann–Whitney U test. Bars represent median and interquartile range. S, spike; N, nucleocapsid; SFU, spot-forming unit; PBMCs,
peripheral blood mononuclear cells; ns, not significant.
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from incident SARS-CoV-2 infection during the follow-up period of

16.5 (16.25–21) weeks. On univariate analysis, higher day 14 S-

specific memory cell frequencies above the median (33.62% total IgG-

secreting B cells) were associated with a 59% reduction in risk of

incident infection [HR, 0.41 (95%CI, 0.20–0.85); p = 0.02; Figure 6A].

This strengthened when adjusted for age, sex, and day 14 anti S-1

titres [aHR, 0.33 (95% CI, 0.16–0.69); p = 0.01]. Day 14 RBD-specific

memory B-cell frequencies above the median (7.86% total IgG-

secreting B cells) were also associated with a 54% reduction in risk

of incident infection [HR, 0.46 (95% CI, 0.22–0.98); p = 0.04]. Higher
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day 0 RBD-specific memory B-cell frequencies were also associated

with protection from incident SARS-CoV-2 infection, with day 0

RBD-specific memory B frequencies above the median (0.95% total

IgG-secreting B cells) associated with a 63% reduction in risk of

incident infection at 16.5 (16.25–21) weeks [HR, 0.37 (95% CI, 0.17–

0.78); p = 0.01], when adjusted for age, sex, and day 0 RBD titres

[aHR, 0.36 (95% CI, 0.16–0.80); p = 0.01] (Figure 6B). Similarly, day

14 S-specific plasma cell responses above the median (79.5 SFU/106

PBMCs) also were associated with a 75% reduction in risk of incident

infection [aHR, 0.25 (95% CI, 0.12–0.53); p = 0.01] and day 14 RBD-
FIGURE 5

Immune responses at 10 months after the third-dose vaccine. (A) Significantly higher SARS-CoV-2–specific memory B-cell frequencies at 10
months after third-dose vaccine in comparison to day 0 frequencies. (B) Significantly higher anti-RBD, anti-S1, and anti-S2 titres at 10 months after
the third-dose vaccine in comparison to day 0 responses. (C) There was no significant difference in SARS-CoV-2–specific memory T-cell responses
at month 10 in comparison to day 0 responses. P-value calculated by Wilcoxon signed-rank of responses at 10 months in comparison to day 0
responses. **p = 0.01, *p ≤ 0.0001; ns, not significant. RBD, receptor-binding domain; S, full spike; S1, spike subunit 1; S2, spike subunit 2; N,
nucleocapsid; WT, wild type; MBC, memory B cell; PBMCs, peripheral blood mononuclear cells, BAU, binding antibody unit; SFU, spot-forming unit.
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specific plasma cell responses above the median (25.5 SFU/106

PBMCs) with a 65% reduction in risk of incident infection [aHR,

0.35 (95% CI, 0.15–0.82); p = 0.02] when adjusted for age, sex, and

day 14 anti-S1 or anti-RBD titres, respectively. This protective effect

was not observed with other B-cell responses before the third-dose

vaccine. In addition, the median day 14 antibody titres or T-cell

responses after the third-dose vaccination were not associated with a

reduction in risk of incident infection. In the 10-month sub-analysis,

the protective effect of higher day 14 S-specific memory B-cell

frequencies was seen up to 10 months, where responses above the

median (36.8% total IgG-secreting B cells) in this sub-analysis were

associated with 65% reduction in risk of incident infection at 10

months after vaccination [HR, 0.45 (95% CI, 0.11–0.98); p = 0.05;

Figure 7] and strengthened when adjusted for age, sex, and day 14 S-

specific titres [aHR, 0.27 (95% CI, 0.07–0.95); p = 0.04].
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Discussion

This is the first study evaluating a multi-parameter immune

response to the third-dose SARS-CoV-2 vaccine to determine which

element of the immune response best predicts protection from

subsequent SARS-CoV-2 infection. We found that higher memory

B-cell frequencies, but not circulating antibody titres or T-cell

responses, protected against SARS-CoV-2 infection, an effect that

persisted up to 10 months after vaccination. Additionally, the third-

dose SARS-CoV-2 vaccine led to a significant increase in both

memory B-cell frequencies and circulating antibody titres, but not

T-cell responses, and these increases in immune response also

persisted at 10-month follow-up. These data clearly establish

SARS-CoV-2–specific memory B-cell frequencies as an important

correlate of protection from future SARS-CoV-2 infection.
FIGURE 6

Higher SARS-CoV-2–specific memory B-cell frequencies determine survival from SARS-CoV-2 infection. (A) Kaplan–Meier survival curve based on the
median SARS-CoV-2 full spike–specific memory B-cell frequencies (33.62% total IgG-secreting B cells) at day 14 after the third-dose SARS-CoV-2
vaccination and incident infection. (B) Kaplan–Meier survival curve based on the median SARS-CoV-2 RBD memory B-cell frequencies (0.95% total
IgG-secreting B cells) at day 0 after SARS-CoV-2 vaccination and incident infection. Survival analysis p-value calculated by log-rank (Mantel–Cox) test.
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Both SARS-CoV-2–specific plasma cells and memory B cells

significantly increased after administration of the third-dose of

SARS-CoV-2 vaccine. Significantly higher memory B-cell

frequencies were observed in those who did not develop incident

infection, when measured both prior to and 14 days after the third-

dose SARS-CoV-2 vaccination. Furthermore, higher day 14 S-

specific memory B-cell frequencies were associated with a reduced

risk of infection up to 10 months after vaccination. This suggests

that higher memory B-cell frequencies serve as reliable correlate of

protection from SARS-CoV-2 infection. The significant increase in

memory B-cell frequencies induced by the third-dose vaccination is

consistent with previous studies (2, 3), and lower memory B-cell

frequencies have previously been reported in cases of breakthrough

SARS-CoV-2 infection with the Delta variant in one cohort study of

close contacts when measured at the time of exposure (6). Our

prospective study, conducted during the emergence of the OM

variant and over a longer follow-up period (median of 90 days

between vaccination and infection), builds on the evidence

supporting memory B-cell frequencies as an important correlate

of protection from infection.

Despite antibody titres also significantly increasing after the

third-dose vaccine, we found no association between either pre- or

post-booster vaccination binding antibody titres and protection

from infection in our analyses. SARS-CoV-2 mRNA-based

vaccination has been demonstrated to induce a persistent GC B-

cell response, with SHM frequencies of S-specific GC B cells

increasing over time, resulting in S-specific memory B cells with

high levels of SHM (4). We speculate that, although higher binding

antibody titres offer protection against SARS-CoV-2 infection, the

relative protection offered by memory B-cell frequencies may

increase over time since vaccination as circulating antibody levels

decline and SHM accumulates. This is in keeping with our findings,

where despite the significant rise in antibody titres in response to
Frontiers in Immunology 10
vaccination, higher antibody titres were not associated with

protection from subsequent infections.

We did not observe significant changes in memory T-cell

responses following the third-dose vaccination. SARS-CoV-2

mRNA vaccination has previously been shown to induce S-

specific CD4+ T cells with a gradual and more variable

development of CD8+ T-cell responses (23), which differentiate

into memory cells (16). Typically, it takes several weeks after

immunisation for memory T cells with a high proliferative

capacity to develop (24), which may explain the absence of a

significant increase at 14 days after the third-dose vaccination.

The duration of effective immunity after SARS-CoV-2

vaccination remains controversial. Although circulating antibody

titres decreased at 10 months after vaccination, they remained

significantly higher than that before the third-dose titres,

consistent with previous reports (25). Long-lasting memory B-cell

responses have also previously been reported in convalescent

COVID-19 (26). That memory B-cell responses persisted to 10

months in our study suggests that vaccines may provide a longer

duration of protection against SARS-CoV-2 infection than what is

measured through measurement of circulating antibody titres alone.

Memory B cells may serve as a promising correlate of protection

in responses to several viral vaccines. The emergence of GC

memory B-cell responses has been previously demonstrated

following influenza vaccination (27) and may play a pivotal role

in broadening the spectrum of vaccine-induced protective

antibodies against mutating viral pathogens such as SARS-CoV-2

or influenza. SARS-CoV-2 vaccine mRNA and S antigen has been

detected in the axillary lymph nodes of vaccinated but only rare foci

of S antigen in the lymph nodes of previously infected individuals

for up to 2 months following vaccination (28). This ongoing antigen

presentation following mRNA vaccination may broaden the

immune response to viral variants by stimulating B cells with
FIGURE 7

Higher spike-specific memory B-cell frequencies determine survival from SARS-CoV-2 infection at 10 months. Day 14 full spike–specific memory
B-cell responses above the median (36.80% total IgG-secreting B cells) were significantly associated with protection from infection in a survival
analysis at 10 months after the third-dose vaccination. Survival analysis p-value calculated by log-rank (Mantel–Cox) test.
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lower affinity for the original S epitopes, potentially leading to

increased binding to variant epitopes. This appears to be unique to

SARS-CoV-2 mRNA vaccination as such long-lasting GC reactions

have not been observed after other vaccinations such as influenza

(27). The role of T cells in protection from development of SARS-

CoV-2 infection is unclear but may play a similar role to other viral

infections such as influenza, where T cells are thought to contribute

more to protect against severe disease rather than affecting the risk

of acquisition of infection (29, 30).

During the follow-up period from December 2021 to April 2022

in Ireland, the dominant SARS-CoV-2 variants were OM BA.1 and

BA.2 (20), which exhibited the greatest extent of immune evasion of

all VOCs at that time (31). Memory B cells could provide a second

layer of defence against challenge by variant pathogens, whereas T-

cell responses may have a more pivotal role in the underlying

control of significant tissue damage underpinning the defence

against severe disease. Studies have demonstrated that the third

dose of WT virus mRNA significantly enhances the production of

neutralising antibodies against highly mutated strains such as OM

(32, 33). Additionally, the third dose expands the generation of

memory B cells targeting subdominant epitopes that are less

mutated in OM, boosting anti-variant neutralising antibodies

(34). The ongoing GC responses in B cells result in increased

SHM within memory B cells, leading to the development of

neutralising antibodies with heightened affinity (35).

Furthermore, the third SARS-CoV-2 vaccine dose has been

shown to enhance the quantity and diversity of RBD-specific

memory B cells, including the emergence of novel, antibody-

producing clones with significantly increased potency, targeting

more conserved regions of the RBD (36). Monoclonal antibodies

sequenced from these cells showed increased potency and breadth

against multiple variants, including OM (36). This enhanced memory

B-cell response may explain the observed protection from OM

infection in individuals with higher memory B-cell frequencies

following a third mRNA vaccine dose in this study, despite the

vaccine not being specifically tailored to SARS-CoV-2 variants.

There are limitations to this study. The population consisted of

relatively young participants. Additional research involving older

populations would be necessary to determine the generalisability of

these findings across diverse demographic groups at higher risk of

severe COVID-19. During this period, participants followed

prevailing public health guidance to test if symptomatic or if a

close contact, which may not have captured all incident infections,

particularly asymptomatic infections, even though a number of

asymptomatic infections were indeed reported. As participants self-

reported incident SARS-CoV-2 infection, we were unable to collect

more detailed specimen data related to the SARS-CoV-2 pathogen,

such as the VOC or the viral inoculum size. The limited sample size

of the T-cell sub-study should be considered when interpreting the

results, as there may have been insufficient statistical power to

detect smaller changes. Furthermore, there are limitations to the

scope of this study including the lack of data for assessing correlates

against other outcomes apart from SARS-CoV-2 infection (e.g.,

severity of COVID-19 and viral shedding).
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Despite these limitations, this study provides novel insights into

which components of the immune response to SARS-CoV-2

vaccination predict protection against SARS-CoV-2 infection. To

the best of our knowledge, this is the first multi-parameter study to

describe which components of the immunological response to

SARS-CoV-2 vaccination predict protection from SARS-CoV-2

infection. We demonstrated that higher memory B-cell

frequencies, rather than circulating antibody titres or T cells

before and after the third-dose vaccination, best predicted

protection from incident SARS-CoV-2 infection. Further research

with longer follow-up time is needed to establish the durability of

this protection. However, this study clearly establishes memory B

cells as a correlate of protection from infection. This knowledge

could identify individuals in whom to prioritise future booster

vaccines and therefore help to guide targeted future vaccine

schedules alongside future vaccine efficacy studies with

implications beyond SARS-CoV-2 to other viral pathogens.
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