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Purpose: Sepsis is an unusual systemic reaction to what is sometimes an

otherwise ordinary infection, and it probably represents a pattern of response

by the immune system to injury. However, the relationship between biomarkers

and sepsis remains unclear. This study aimed to find potential molecular

biomarkers, which could do some help to patients with sepsis.

Methods: The sepsis dataset GSE28750, GSE57065 was downloaded from the

GEO database, and ten patients with or without sepsis from our hospital were

admitted for RNA-seq and the differentially expressed genes (DEGs) were

screened. The Metascape database was used for functional enrichment

analysis and was used to found the differential gene list. Protein-protein

interaction network was used and further analyzed by using Cytoscape and

STRING. Logistic regression and Correlation analysis were used to find the

potential molecular biomarkers.

Results: Taking the intersection of the three datasets yielded 287 differential

genes. The enrichment results included Neutrophil degranulation, leukocyte

activation, immune effectors process, positive regulation of immune response,

regulation of leukocyte activation. The top 10 key genes of PPI connectivity were

screened using cytoHubba plugin, which were KLRK1, KLRB1, IL7R, GZMA, CD27,

PRF1, CD8A, CD2, IL2RB, and GZMB. All of the hub genes are higher expressed in

health group of different databases. Logistic regression showed that IL7R, GZMA

and CD8A proteins were analyzed and all of them were statistically significant.

Correlation analysis showed that there was a statistically significant correlation

between IL7R, GZMA and CD8A.

Conclusion: KLRK1, KLRB1, IL7R, GZMA, CD27, PRF1, CD8A, CD2, IL2RB, GZMB

are key genes in sepsis, which associated with the development of sepsis.

However, IL7R, GZMA and CD8A may serve as the attractively potential

molecular biomarkers for sepsis.
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Introduction

Sepsis is characterized by a dysregulated host immune response

to infection (1). Sepsis-induced immunosuppression is resulted

from disruption of immune homeostasis. It is characterized by

the release of anti-inflammatory cytokines, abnormal death of

immune effector cells, hyperproliferation of immune suppressor

cells, and expression of immune checkpoints (2).

With the efforts of critical care specialists around the world

applying anti-infective combined with fluid resuscitation and organ

function support, the mortality rate of septic patients is still as high

as 20%, although it has been significantly reduced (3). The

pathophysiologic mechanisms of sepsis are complex, and relevant

indicators are not easily accessible, making early diagnosis difficult

in the clinic. Therefore, understanding the pathophysiological

mechanisms of sepsis pathogenesis and identifying potential

diagnostic and therapeutic biomarkers are essential for improving

clinical outcomes and reducing mortality in sepsis patients (4–6).

However, the relationship between biomarkers and sepsis

remains unclear.

Bioinformatics was used to analyze genomic and proteomic

data, which may do some help to predicting novel genes of potential

value accurately (7). In recent years, bioinformatics analysis has

been widely used for the detection and analysis of differential gene

expression in sepsis (8–11). Currently, there is little exploration of

the role of inflammatory factors in sepsis through sequencing and

big data analysis. Therefore, it is necessary to explore the role of

inflammatory factors in sepsis through our clinical sample

sequencing combined with database data. This study aimed to

find potential molecular biomarkers, which could do some help to

patients with sepsis.
Materials and methods

Subject recruitment and blood collection

In the present study, we analyzed 6 patients with sepsis who

were admitted to the emergency intensive care unit of the Fourth

Hospital of Hebei Medical University. The recruitment lasted

from May 2023 to July 2023. Their blood samples were collected

within 24 hours after the admission and were analyzed.

Peripheral blood samples were also collected from the control

group, they were 4 healthy individuals. Inclusion criteria were as

followed: patients were diagnosed with sepsis and were admitted

to emergency intensive care unit, sepsis diagnosed with sepsis 3.0

definition and diagnosis standard (infection + DSOFA scoring

≥2) jointly issued by the Society of Critical Care Medicine and

European Society of Intensive Care Medicine, age ≥18 and ≤65

years, and subjects or legal representatives willing to participate

in the study and to sign an informed consent form. Exclusion

criteria were as followed: those with previous organ failure
Abbreviations: GEO, Gene Expression Omnibus; DEGs, Differentially Expressed

Genes; PPI, protein-protein interaction; SIRS, systemic inflammatory response

syndrome; SOFA, Sequential Organ Failure Assessment; GO, gene ontology.
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(Including heart valve disease, nephritis, nephrotic syndrome,

etc), those with previous immune system diseases, those with

previous blood system diseases, patients unwilling to participate.

Our study plans were approved by the Ethics Committee of

our hospital.
RNA-seq

In the first 24 hours after the patients’ admission, their blood

samples were collected with the PAXgene Blood RNA Tube

(PreAnalytix GmbH, Switzerland)and were stored in the

refrigerator in our hospital until further analysis. After extraction

of RNA samples, quality control detection was made with

Bioanalyzer 2100 (Agilent, CA, USA), and mRNA was required to

meet Concentration >50ng/mL, RIN value >7.0, total RNA >1mg to
satisfy downstream experiments. After sample quality control was

passed, a DNA database was built, and RNA-seq was made with

Illumina NovaseqTM 6000.
Sepsis dataset

In the present study, the GSE28750, GSE57065 dataset was

downloaded from the GEO online database (www.ncbi.nlm.nih.gov/

geo). In our study, 10 peripheral blood samples of sepsis patients

were selected from GSE28750 as the sepsis group, and 20 peripheral

blood samples of healthy volunteers as the control group; 28

peripheral blood samples of sepsis patients were selected from

GSE57065 as the sepsis group, and 25 peripheral blood samples

of healthy volunteers as the control group.
Screening of differential genes

Differential expression genes (DEGs) between the healthy

group and the sepsis group were screened using DESeq2. The

R package limma (version 3.40.6) was used to explore the

DEGs between sepsis and non-sepsis peripheral blood. The

result of RNA-seq (sepsis patients VS. non-sepsis participants)

dataset was analyzed using the lmFit method for multivariate

regression. The Bayes method was used to calculate the moderated

t-statistics, moderated f-statistics and log ratios of differential

expression by empirical Bayesian adjustment. A multiplicity of

differences |FC|≥1.5 and a q-value of <0.05 was used as the

threshold criterion (no multiplicity of differences in the multiple

group comparisons, and genes screened for q<0.05 were genes

statistically different between the multiple groups). Volcano plots

were used to find the DEGs.
Functional enrichment analysis

The Metascape database (https://metascape.org/gp/

index.html#/main/step1) provides a list of annotations and

resources and can visually export them. The Metascape database
frontiersin.org
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was used for functional enrichment analysis and was used to found

the differential gene list.
Protein-protein interaction analysis

Protein-protein interaction (PPI) network is used to screen

potential core genes. In our study, STRING (https://string-db.org/)

online platform was used to screen core genes of DEGs. By using the

multi-protein online tool in the STRING database, the PPI

networks were predicted. The results were showed with Cytoscape

3.6.1The most critical modules were then found using the Complex

Detection (MCODE) plugin.
Statistical analysis

The data were analyzed by using Graph PadPrism version 9.0

(GraphPad Software, Inc.). For comparisons between two groups,

an unpaired, 2-tailed Student’s t-test was used. The data is presented

as the mean ± standard deviation. Univariate and multivariate

logistic regression analyses were performed to analyze the

potential molecular biomarkers. P<0.05 was considered to

indicate a statistically significant difference.
Results

Differentially expressed genes

The design concept of the article was represented by a flowchart

(Figure 1). 244 differential genes were screened from GSE28750,

including 152 expression up-regulated genes and 92 expression

down-regulated genes, and 264 differential genes were screened

from GSE57065, including 163 expression up-regulated genes and

103 expression down-regulated genes. A total of 6,171 differentially

expressed genes were obtained between sepsis and normal control

groups, including 4625 up-regulated and 1546 down-regulated

expressed genes. Taking the intersection of the three datasets

yielded 287 differential genes (Figure 2). Three volcano plots

showed up- and down-regulated expression genes (Figure 3).
Metascape enrichment analysis

Metascape enrichment shows GO enrichment terms

(Figure 4A) and enrichment networks colored with enrichment

terms and p-values (Figures 4B, C, 5). Figure 4A is a bar graph of

enriched terms across input gene lists, colored by p-values. The

enrichment results included Neutrophil degranulation, leukocyte

activation, immune effector process, positive regulation of immune

response, regulation of leukocyte activation. Figure 4B shows the

network of enriched terms. The enriched results were colored with

cluster ID, where nodes sharing the same cluster ID are typically
Frontiers in Immunology 03
close to each other. The Figure 4C shows the enrichment result

items colored with P-values. Items with more genes in them tend to

have more significant P-values. As shown in the Figure 5, the

significant models of genes were shown in Figure 5A, which was

analyzed by MCODE. The significant models of genes were also

shown in the whole Protein-protein interaction network.
Protein-protein interaction network
analysis and identification of hub genes

The Search Tool for Retrieval of 31 Interacting EP-DEG online

database was used to create protein network interaction maps. By
FIGURE 1

Flow chart of the statistical analysis. DEGs, Differentially Expressed
Genes; PPI, protein-protein interaction.st.
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using the multi-protein online tool in the STRING database, the

PPI networks were predicted. The results were showed with

Cytoscape 3.6.1. The most critical modules were then found

using the Complex Detection (MCODE) plugin. The PPI

network obtained from the visual analysis of Cytoscape software

included 281 nodes and 1639 edges, Figure 6A; the most

significant modules were found using the MCODE plug-in,

which contained a total of 34 genes, see Figure 6B. The top 10

key genes of PPI connectivity were screened using cytoHubba

plugin, which were KLRK1, KLRB1, IL7R, GZMA, CD27, PRF1,

CD8A, CD2, IL2RB, GZMB (Figure 6C).
Frontiers in Immunology 04
Expression of key genes in sepsis and
healthy groups

All of the hub genes (IL7R, KLRK1, KLRB1, GZMA, CD27,

PRF1, CD8A, CD2, IL2RB, GZMB) are higher expressed in health

group of different databases (Figures 7A–C).
Univariate and multivariate logistic
regression analyses of hubgenes

In this study we applied logistic regression for analysis and the

results showed that IL7R, GZMA and CD8A proteins were analyzed

and all of them were statistically significant, so we analyzed these 3

proteins for subsequent experiments (Tables 1, 2). Correlation

analysis showed that there was a correlation between the two

IL7R, GZMA and CD8A proteins and the correlation was

statistically significant (Figure 8).
Discussion

Sepsis is described as the syndrome consisting of complex

biochemical and pathophysiological dysregulation (12).

Dysregulation of the body’s inflammatory response followed by

the promotion of an inflammatory cascade is an important basis for

the pathophysiologic changes in sepsis (13). Multiple

pathophysiologic processes are involved in septic organ damage,

and immunoregulatory imbalance is one of the important

mechanisms (14). At the cellular and molecular level, the

mechanisms include dysregulation of the inflammatory response,

immunosuppression, coagulation disorders, apoptosis of immune

cells, endoplasmic reticulum stress, and other pathophysiological

processes (15).
FIGURE 3

(A) GSE28750 microarray, (B) GSE57065 microarray, (C) RNA-seq, Red, relatively high expression; Blue, relatively low expression.
FIGURE 2

Venn diagram of DEGs in different dataset.
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Mechanisms of sepsis have been reported by investigators, but

few of them have addressed its molecular markers; in fact,

molecular biomarkers have great potential for the diagnosis,

monitoring and prognosis of sepsis. Using the sequencing

technology, the use of RNA-seq in subbiology has become very

common, and its role has expanded the understanding of tiny

molecules (16, 17).
Frontiers in Immunology 05
Taking the intersection of the three datasets, we find 287 DEGs.

Moreover, The enrichment results included Neutrophil

degranulation, leukocyte activation, immune effector process,

positive regulation of immune response, regulation of leukocyte

activation. It has been shown that DEGs are associated with the

process of apoptosis and immune system, further, studies have

confirmed that apoptosis of immune cells promotes the process of
FIGURE 4

Metascape enrichment analysis. (A) GO enrichment terms. (B) Enrichment network colored by enrichment terms. (C) Enrichment network colored by
p-value.
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FIGURE 5

Metascape enrichment analysis. (A) The significant model. (B) The protein-protein interaction network.
FIGURE 6

Construction and analysis of the PPI networks. (A) PPI network of DEGs. (B) The interaction of core genes. (C) The top 10 hub genes. hub genes:
KLRK1, KLRB1, IL7R, GZMA, CD27, PRF1, CD8A, CD2, IL2RB, GZMB. PPI, protein-protein interaction; DEG, differentially expressed gene.
Frontiers in Immunology frontiersin.org06
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organ dysfunction along with immune failure in patients with sepsis

(18). Innate immune cells recognize pathogens and release pro-

inflammatory cytokines such as TNF-a, IL-1, IL-6, which play an

immune defense role; at the same time, they also negatively elevate
Frontiers in Immunology 07
anti-inflammatory cytokines such as TGF-b, IL-4, and IL-10 (19–

21). It is now believed that sepsis is caused by excessive systemic

inflammation leading to immune dysfunction, and that immune

cells such as neutrophils, macrophages, and T-lymphocytes are
FIGURE 7

The expression of hub genes in different dataset (A) The expression of genes in GSE28750, (B) The expression of genes in GSE57065, (C) RNA seq of
our dataset. All data was shown by mean ± SD.
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involved in the regulation of the inflammatory response (22). By

using cytoHubba plugin, the top 10 genes KLRK1, KLRB1, IL7R,

GZMA, CD27, PRF1, CD8A, CD2, IL2RB, and GZMB were found

and more of these hub-genes have high relationship with immune

system. Therefore, keeping an eye on the expression of these genes

in the blood can help clinicians make clinical decisions that will

benefit their patients. After initially analyzing the more important

10 hub-genes, we further performed Univariate and multivariate

logistic regression based on the patients’ clinical information, and

found that three genes, IL7R, GZMA and CD8A, were statistically

significant in the multivariate logistic regression, which implies that

these three genes are independent risk factors for determining

sepsis. This provides clinicians with a basis for decision-making

in the diagnosis, treatment, and prediction of clinical prognosis for

patients with sepsis.
Frontiers in Immunology 08
Imbalance of the immune response is one of the main

mechanisms of sepsis, and immune dysfunction in sepsis is

closely related to T lymphocytes (23). CD4, CD8A, CD28, CD2,

CD3E as T cell surface active molecules play important roles in the

immune response process; among them, the roles of CD4 and CD8

T lymphocytes in sepsis have been widely recognized (24). Several

previous studies have demonstrated the CD28, CD3, CD4molecules

in sepsis or septic shock (25, 26). Study showed some hub genes

(CD2, CD27, GZMA, KLRB1, and PRF1) have been screened out as

sepsis biomarkers and all of them were down regulated genes in

sepsis, which consistent with our findings (27).

The protein encoded by CD2 is a surface antigen found on all

peripheral blood T cells. A study also found that CD2 is identified as

the down regulated crucial gene set in sepsis (28). The protein

encoded by CD27 is a member of the tumor necrosis factor receptor

superfamily and is also necessary for the production and long-term

maintenance of T cell immunity. CD27 may help identify preterm

infants with sepsis and may also help clinicians identify children at

high risk (29). CD8A encodes the cd8a chain of the dimeric CD8

protein. CD8A is primarily involved in cell-mediated immune

defense and T cell development (30, 31). CD8 deficiency increases

susceptibility to infection (32). Harland et al (24) revealed that cpG

methylation of the cd8a locus has a potential role in the

downregulation of CD8.

IL7, an important member of the chemokine family, mediates

the immune response by binding to the receptor IL7R to promote

lymphocyte growth, macrophage activation, and cytokine and

inflammatory factor secretion (33). Some studies had shown

that the level of IL7R in sepsis was low expressed, which was

consistent with our findings (34). Animal experiments have shown

that activation of the IL-7/IL-7R signaling pathway improves

survival in septic mice (35). Some clinical studies have also

suggested that the IL-7/IL-7R signaling pathway is associated

with improved lymphocyte function in sepsis patients (36).

IL2RB is a subunit of IL2R and is closely related to humoral

immunity as it triggers IL2R through IL2 binding, leading to

proliferation and differentiation of a large number of immune

cells, including T cells, B cells and macrophages. IL2RB is

recognized as an indicator of sequential organ failure and is

negatively correlated with sepsis mortality (37). Another study

showed that targeting IL2RB can do some help to reduce acute

lung injury caused by sepsis (38).

PRF1 is a perforin protein secreted by natural killer cells,

cytotoxic T-lymphocytes and T-cells, which plays an important

role in immunoregulation and immunosurveillance, and has been

widely studied in tumors and immune diseases (39). Some studies

have found that PRF1 gene expression is reduced in T cells and

natural killer cells in patients with sepsis, but the exact mechanism

of action still needs to be further clarified (40). GZMA is a serine

protease specific for T cells and NK cells. It may be a common

component for cytotoxic T lymphocytes and NK cells to cleave

target cells. Study showed that GZMA was a key gene of the

inflammatory response during abdominal sepsis (41). A study

also showed the inhibition of GZMA can reduce inflammation

and improve survival during Escherichia coli sepsis (42). GZMB is a

member of grazymes family that was considered to exert cytotoxic
TABLE 1 Univariate analysis of hub-genes in sepsis.

Genes P HR
95%CI

LowerCI UpperCI

IL7R <0.05* 6.498 3.539 11.933

KLRK1 <0.05* 9.058 4.467 18.366

KLRB1 <0.05* 5.304 3.136 8.973

GZMA <0.05* 3.534 2.341 5.333

CD27 <0.05* 5.566 3.207 9.661

PRF1 <0.05* 9.468 4.641 19.316

CD8A <0.05* 4.728 2.863 7.806

CD2 <0.05* 8.43 4.298 16.534

IL2RB <0.05* 5.704 3.407 9.551

GZMB <0.05* 3.925 2.53 6.088
* P<0.05.
TABLE 2 Multivariate analysis of hub-genes in sepsis.

Genes P HR
EXP(B)95%CI

LowerCI UpperCI

IL7R 0.045* 0.015 0 0.911

KLRC4-
KLRK1

0.044* 1946.567 1.246 3042206

KLRB1 0.129 21.489 0.409 1129.43

GZMA 0.046* 0.003 0 0.891

CD27 0.464 0.319 0.015 6.826

PRF1 0.052 254.578 0.944 68653.94

CD8A 0.012* 0 0 0.147

CD2 0.003* 272452.6 62.228 1.19E+09

IL2RB 0.58 3.354 0.046 244.811

GZMB 0.113 0.039 0.001 2.142
* P<0.05.
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effects against pathogen invasion (43). Some studies reported that

GZMB is involved in the coagulation cascade, regulating the

function of platelets and endothelial barrier permeability in sepsis

(44). Study showed GZMB have potential diagnostic value in sepsis

diagnosis (45). KLRK1 is known as homo sapiens killer cell lectin-

like receptor subfamily K, member 1. Viral or bacterial infection can

lead to the induction of KLRK1 ligands on cells, which can activate

the immune system to recognize and eliminate them (46). KLRB1,

known as killer cell lectin like receptor B1, is a gene encoding

CD161. CD161 is expressed on immune cells (47). Study showed

that KLRB1 was identified as the downregulated crucial gene set in

sepsis (28).

The stability of mRNA is influenced by temperature, mRNA

length, concentration, pH value, and buffer type, which in turn

affects protein expression (48). A study shows that attenuating

ribosome load improves protein output from mRNA by limiting

translation-dependent mRNA decay (49). Another study states that,

cytidine-containing tails robustly enhance and prolong protein
Frontiers in Immunology 09
production of synthetic mRNA in cell and in vivo (50). Although

the half-life of mRNA has a significant impact on protein

formation, it does not affect the conclusion of the data analysis in

this article that IL7R, GZMA and CD8A may serve as the

attractively potential molecular biomarkers for sepsis.
Conclusion

Based on the discussion and analysis, it is reasonable to assume

that IL7R, GZMA and CD8A possess significant potential value in

the diagnosis and prediction of sepsis. We have found that the

immune system plays an important role in the development of

sepsis, so intervening or modulating the balance of the immune

system in the body may benefit sepsis patients in clinical diagnosis

and treatment. Our study also had the limitation of a small sample

size, so we used correlation analysis to identify key genes for further

clinical trial validation.
FIGURE 8

Correlation analysis showed that there was a correlation between the IL7R, GZMA and CD8A. Red represents normal subjects, and blue represents
sepsis patients. (A, F, J) are the abundance maps of gene expression in different groups, (B, C, G) are the scatter plots of correlation analysis of
corresponding gene expression in different groups, (D, H, K) are the gene expression levels of each patient in the normal group, (E, I, L) are the
expression levels of corresponding genes in each patient in the sepsis group, (M, N, O) are the line box plots of corresponding gene expression in
different groups, presented in the form of mean ± standard deviation. (P) shows the sepsis group and the healthy group.
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