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Role and mechanisms of mast
cells in brain disorders
Xuanyu Huang, Ziwei Lan* and Zhiping Hu*

Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha,
Hunan, China
Mast cells serve as crucial effector cells within the innate immune system and are

predominantly localized in the skin, airways, gastrointestinal tract, urinary and

reproductive tracts, as well as in the brain. Under physiological conditions, brain-

resident mast cells secrete a diverse array of neuro-regulatory mediators to

actively participate in neuroprotection. Meanwhile, as the primary source of

molecules causing brain inflammation, mast cells also function as the “first

responders” in brain injury. They interact with neuroglial cells and neurons to

facilitate the release of numerous inflammatory mediators, proteases, and

reactive oxygen species. This process initiates and amplifies immune-

inflammatory responses in the brain, thereby contributing to the regulation of

neuroinflammation and blood-brain barrier permeability. This article provides a

comprehensive overview of the potential mechanisms through which mast cells

in the brain may modulate neuroprotection and their pathological implications in

various neurological disorders. It is our contention that the inhibition of mast cell

activation in brain disorders could represent a novel avenue for

therapeutic breakthroughs.
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1 Introduction

Mast cells (MCs) are derived from hematopoietic progenitor cells and undergo

maturation in vascular tissues, playing a role in both innate and adaptive immune

responses (1). As sentinel cells of the immune system, MCs are predominantly

distributed in anatomical regions that come into contact with the external environment,

such as the skin, respiratory tract, gastrointestinal tract, and urinary tract (2). MCs possess

the capability to degranulate and engage in cross-talk with diverse immune cells, thereby

playing a pivotal role in safeguarding against pathogenic microorganisms and potential

environmental threats (2, 3).

MCs are predominantly located within the vascular lumen of the brain membrane,

entorhinal cortex, choroid plexus, olfactory bulb, midbrain, thalamus, and hypothalamus

regions (4), where they engage in interactions with neurons, glial cells, and endothelial cells

(5, 6). Furthermore, MCs are also found on the basal side of the blood-brain barrier (BBB)

(6). MCs not only facilitate normal brain development and function, but also play a crucial
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role in the regulation of cognition and emotion (5, 7, 8).

Additionally, MCs are considered the “first responders” of the

brain, promptly detecting external stimuli and releasing

inflammatory mediators and chemoattractants to recruit

inflammatory cells in response to injury. They are pivotal in

initiating, amplifying, and sustaining immune and neural

responses (6). As one of the most prominent immune cell

populations in the brain, MCs have emerged as a focal point of

research in the context of brain disorders (9).
2 Mast cells and neuroinflammation

Neuroinflammation plays a crucial role in the pathogenesis and

progression of various brain disorders, making it a prime target for

therapeutic intervention (10, 11). Mounting evidence suggests that

MCs, alongside traditional immune and inflammatory cells such as

microglia and astrocytes, also contribute to the immunological and

inflammatory processes within the brain (12, 13). MCs have the

capacity to release cellular secretions containing immune and

inflammatory mediators, such as histamine, b-tryptase, tumor

necrosis factor-a (TNF-a), and interleukin-1b (IL-1b), among

others (14). It is noteworthy that MCs serve as a predominant

source of histamine within the brain. Indeed, more than half of the

total histamine content found in the central nervous system is

attributed to the degranulation of MCs (12, 15). Additionally, MCs

are the sole cells in the brain that preform and store TNF-a in

advance (16). MCs also express receptors and ligands for various
Frontiers in Immunology 02
inflammation pathways, including the protease-activated receptor-2

(PAR2)-mitogen activated protein kinase (MAPK)-nuclear factor

kb (NF-kB), histamine receptors 1 (H1R)/H4R-MAPK, and

phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)-NF-

kB signaling cascades (17, 18).

In addition to their intrinsic functions, MCs have the potential

for bidirectional signaling with microglia and astrocytes, leading to

the induction and exacerbation of neuroinflammation (12)

(Figure 1). Activated MCs can upregulate levels of cytokines and

chemokines, thereby promoting the polarization of microglia

towards pro-inflammatory phenotypes (19). Furthermore, MCs

release proteolytic enzymes, which can activate PAR-2 receptors

on microglia, triggering the release of pro-inflammatory cytokines

such as TNF-a, IL-1b, and IL-6 (17, 20, 21). Notably, MCs residing

in the white matter have the capacity to instigate alterations in both

the morphology and function of astrocytes. This is achieved

through the action of multiple proteases that originate from mast

cells. These proteases can trigger the release of IL-33 from astrocytes

by engaging and activating specific intracellular signaling cascades.

They activate the p38, ERK1/2 MAPKs, and NF-kB signaling

pathways, thereby facilitating the astrocytic response to

inflammation (22). Moreover, MC-derived histamine can

modulate the activity of microglia and astrocytes by binding to

multiple histamine receptors on these cells (5, 17, 23, 24). In turn,

activated microglia and astrocytes can reciprocally influence MCs,

leading to upregulation of PAR-2 and Toll-like receptors 2 (TLR2)/

TLR4 expression in MCs and triggering the release of histamine, IL-

6, and TNF-a (20, 25). IL-33 generated and secreted by activated
FIGURE 1

A schematic depicting the crosstalk among MCs, microglia, and astrocytes. MCs can modulate the pro-inflammatory phenotype of microglia by
enhancing the expression of cytokines and chemokines. Additionally, MC-released tryptase and histamine can activate PAR-2 receptors on
microglia, ultimately leading to the induction of a robust release of pro-inflammatory factors by microglia. The histamine released by MCs can
stimulate the histamine receptors on astrocytes, thereby modulating their activation. Concurrently, MCs secrete diverse proteases that facilitate the
release of IL-33 through activation of the p38, ERK1/2 MAPKs, and NF-kB signaling pathways in astrocytes. ERK, Extracellular-signal-regulated kinase;
IL, interleukin; MAPK, mitogen-activated protein kinase; MC, mast cell; NF-kB, nuclear factor kB; PAR-2, protease-activated receptor 2.
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astrocytes can also activate the suppression of tumorigenicity-2 (ST-

2) receptor to stimulate microglia and MCs, thereby promoting the

proliferation of the former and inducing the latter to produce IL-6,

IL-8, and IL-13 (26–28). In conclusion, reciprocal activation of

MCs, microglia, and astrocytes through diverse signaling pathways

potentiates the inflammatory response, thereby exacerbating

disease prognosis.
3 Mast cells and neurons

MCs can engage with neurons via cell adhesion molecule-1

(CADM1), N-cadherin, and transgranulation (Figure 2). CADM1

plays a pivotal role in mediating the adhesion between MCs and

neurons, facilitating information exchange between them, and is

closely associated with neural immunity (29). The interaction

between MCs and neurons is facilitated through synaptic-like

structures, wherein N-cadherin assumes a crucial function (30).

Research has demonstrated that N-cadherin participates in

regulating pre- and post-synaptic structural modifications,

promoting the establishment and maintenance of synaptic

connections, as well as governing synaptic adhesion (30).

Additionally, transgranulation enables MCs to release heparin

into neurons, thereby disrupting calcium homeostasis and

inhibiting neuronal responses (31). In turn, the activation of MCs

can be induced by various neuropeptides such as substance P (SP),

calcitonin gene-related peptide (CGRP), neurotensin (NT), and

nerve growth factor (NGF) released by neurons, leading to the

release of cytokines and chemokines like monocytic chemotactic

protein 1 (MCP-1), IL-8, and C-C chemokine ligand 5 (CCL5)

(32, 33).

Under normal physiological conditions, MCs contribute to

neural protection and repair through the secretion of neuro-

regulatory mediators (Table 1). Research has demonstrated that

MCs secrete histamine, which can mitigate neuronal excitotoxicity

induced by N-methyl-D-aspartatic acid (NMDA) and glutamate
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through the cyclic adenosine monophosphate (cAMP)/protein

kinase A (PKA) pathway or by upregulating glutamate

transporter currents and glutamine synthetase expression (34).

Additionally, MCs are capable of promoting neuron growth by

secreting NGF and inducing neuropeptide expression, lowering the

firing threshold, and enhancing central nervous system

transmission (35). Moreover, NGF binds to a specific receptor on

the surface of microglia, enhancing membrane dynamics and

endocytosis, while mediating the tyrosine kinase A pathway. This

leads to an augmented phagocytic capacity for substances such as b-
amyloid and others, thereby exerting neuroprotective effects (36).

Under the stimulation of FceRI-mediated signaling, TLR ligands,

and NGF, MCs synthesize and release angiogenin (37), which

supports motor neuron survival and neurogenesis (38).

Additionally, MCs in the hippocampus secrete serotonin, which

plays a crucial role in regulating hippocampal-dependent behavior

and enhancing neurogenesis (39).
4 Mast cells and blood-brain barrier

The BBB serves as a highly selective and semipermeable

interface between the brain parenchyma and the circulatory

system, playing a pivotal role in upholding the normal function

of the brain and the homeostasis of the internal environment (40).

Research has revealed that MCs are frequently situated in close

proximity to the active sites of matrix metalloproteinases (MMPs)

(41). They influence the permeability of the BBB by relaeasing

MMP. Initially, activated MMPs degrade a majority of the protein

constituents within the extracellular matrix (ECM), such as

collagen, elastin, fibronectin, and vitronectin (42, 43);

subsequently, MMPs target cleavage sites of tight junctions (TJs)

proteins, enabling brain microvascular endothelial cells (BMECs) to

detach from the ECM (44); ultimately, key components of MMPs,

namely MMP-2 and MMP-9, can directly break down

microvascular basement membrane components, particularly type
FIGURE 2

A diagram showing the interaction between MCs and neurons.MCs are capable of engaging in communication with neurons via CADM1.
Furthermore, MCs have the ability to modulate the structural alterations of neuronal dendrites and synapses, facilitate the establishment and
preservation of synaptic connections, and regulate synaptic adhesion by controlling N-cadherin. Additionally, MCs can release heparin into neurons
through transgranulation to disrupt calcium homeostasis. Consequently, the release of various neuropeptides by neurons, such as SP, CGRP, NT, and
NGF, can stimulate mast cells and prompt them to secrete cytokines and chemokines. CADM1, cell adhesion molecule-1; CGRP, calcitonin gene-
related peptide; MC, mast cell; NGF, nerve growth factor; NT, neurotensin; SP, substance P.
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IV collagen (45, 46). Moreover, MCs secrete tryptase that are

capable of activating PAR-2 receptors to enhance the expression

of vascular cell adhesion molecule-1 (VCAM-1), TLR4, and TNF-a,
while simultaneously reducing the expression of Occludin and

Claudin-5, thereby inducing an increase in BBB permeability (47).

Additionally, tryptase can directly compromise the integrity of the

BBB by breaking down zonula occludens-1 (ZO-1), ZO-2,

Occludin, and Claudin-5 proteins associated with TJs (48).

Furthermore, MCs release substantial quantities of histamine

which can bind to H1 and H2 receptors on endothelial cells

leading to an upregulation in P-selectin expression and

consequently elevating BBB permeability (49, 50).

The excessive increase in inflammatory factors following brain

injury or disorder is the primary cause of BBB disruption (40). MCs

represent a major source of these inflammatory factors,

contributing to the disruption of the BBB in pathological

conditions. For instance, the secretion of TNF-a by MCs can

interact with the TNF-1 receptor or activate the NF-kB signaling

pathway, thereby reducing the expression level of Claudin 5, leading

to TJ disruption and subsequent BMEC death (51). Furthermore,

IL-1b secreted by MCs disrupts the BBB through two mechanisms:

firstly, it induces the expression of hypoxia-inducible factor-1 (HIF-

1) and its gene target vascular endothelial growth factor-A (VEGF-

A) in astrocytes, thus initiating BBB disruption (52). Secondly, IL-

1b promotes the secretion of IL-6 and TNF-a, disrupting the

paracellular pathway of BBB cells and increasing cell paracellular

permeability (53).
5 Mast cells and brain disorders

5.1 Ischemic stroke

Ischemic stroke (IS) is the predominant form of stroke,

accounting for approximately 87% of all stroke cases (54). The

injuries associated with IS primarily encompass BBB disruption

(55), oxidative stress (56), excitotoxicity (57), microvascular

impairment (58), and neuroinflammation (59–62), ultimately

leading to neuronal apoptosis (63). MCs play a crucial role in the

pathogenic mechanisms of IS (Figure 3). Following IS, MCs

perceive danger signals from the ischemic brain as early as 2-4
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hours before microglia and astrocytes are activated (12, 64). They

are among the first responders to be activated, contributing to

disease progression and exacerbating neural damage by facilitating

blood-brain barrier disruption and inflammatory infiltration (65).

Relevant studies have demonstrated that rats with IS treated with

MC activators exhibited a significant increase in brain edema,

whereas those treated with MC stabilizers or MC-deficient rats

showed reduced brain edema (65). Mast cells secrete TNF-a and

tissue-type plasminogen activator, which can respectively augment

the secretion of gelatinase by neighboring cells (66, 67) and activate

MMP-9, thereby facilitating the disruption of the BBB (66, 68),

hastening the progression of cerebral edema and increasing the risk

of IS rat mortality (16). Furthermore, neutrophil infiltration

commences several hours post Ischemia/Reperfusion (I/R) (69,

70), further exacerbating the accumulation of MMP-9 in

microvessels (71), a process intricately linked to MCs (65). There

are also reports in the literature indicating that following IS,

meningeal MCs secrete IL-6, which can significantly exacerbate

cerebral edema, enlarge the infarction area, and increase the

number of granulocytes and activated macrophages in the brain

(72). This finding is consistent with early clinical studies, where an

elevated level of IL-6 in the cerebrospinal fluid of stroke patients

was positively correlated with the size of the infarction area (73).

Moreover, considering MCs’ strategic positioning near important

blood vessels around the meninges and their interaction with

cerebral circulation, they may function as potential “gatekeepers”

to regulate immune cell infiltration into the brain during a stroke

event (72).

Recently conducted studies have provided novel insights into

the targeted treatment of MCs in IS. Previous research has

demonstrated the anti-inflammatory and neuroprotective

properties of N-Palmitoylethanolamide-Oxazoline (PEA-OXA)

(74, 75). Fusco et al. demonstrated that PEA-OXA significantly

attenuates the activation and detachment of MCs, as well as the NF-

kB pathway activation in IS rats, leading to a reduction in I/R-

related lesion size, cytokine expression, and histological damage

(76). In recent years, researchers have increasingly focused on the

significant role of the brain-gut axis in stroke (77–79). Following IS,

there is a rise in the number of MCs in the intestines of mice,

accompanied by elevated levels of histamine and pro-inflammatory

cytokines in the brain and circulating plasma (79), which are closely
TABLE 1 The principal neuroprotective mediators released by mast cells.

Mediators Key features Function

Histamine
More than 50% of histamine in the brain is
derived from mast cells

• Suppress neuroinflammatory and inhibit glial scar formation
• Mitigate NMDA and glutamate-induced neuroexcitability toxicity
• Attenuate nerve injury and infarct volume following cerebral ischemia

NGF Released during degranulation
• Facilitate neuronal growth, induce neuropeptide expression, decrease the firing threshold, and
augment central nervous system transmission
• Enhance microglial phagocytic function.

Angiogenin
Released by the IgE receptor crosslinking, TLR
ligands, and NGF.

• Facilitate motor neuron survival and promote neurogenesis

Serotonin
Unlike humans, it is found in high
concentrations in rodent mast cells

• Regulate hippocampal-dependent behavior and enhancing neurogenesis.
IgE, immunoglobulin E; NGF, nerve growth factor; NMDA, n-methyl-d-aspartic acid; TLR, toll-like receptors.
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associated with neurological prognosis (80). Inhibiting MCs during

IS can alleviate cerebral and intestinal MCs activation,

neuroinflammation, peripheral inflammation, reduce neurological

deficits, and improve prognosis (81). Furthermore, recent studies

have identified high expression of the PTGS2 gene, linked to MCs

activation specifically in IS. Inhibiting PTGS2 has been shown to

decrease infarction volume and neurological deficits while

improving neurological prognosis in IS rats. This indirectly

confirms that MCs may play a pivotal role in IS pathogenesis,

suggesting that targeting genes related to MCs activation could lead

to new breakthroughs in IS treatment (82).
5.2 Intracerebral hemorrhage

Intracerebral hemorrhage (ICH) refers to non-traumatic

bleeding occurring in the brain parenchyma (83). Brain injury

following ICH encompasses primary injury caused by hematoma

compression and stimulation, as well as secondary brain injury such

as blood-brain barrier disruption, neuroinflammation, oxidative

stress, cell autophagy and apoptosis (84–86), among which the

severity of secondary brain injury is closely linked to prognosis (87).

The role of MCs in the early stage of secondary brain injury after

ICH and throughout the course of the disease has been

demonstrated by numerous studies (88) (Figure 3). After ICH,

the activation of MCs results in BBB damage, exacerbation of
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cerebral edema, worsening of neurological deficits, and increased

mortality. However, inhibiting MC activation can alleviate these

effects (89, 90). Furthermore, MCs release various immune and

inflammatory media tors tha t d i rec t ly contr ibute to

neuroinflammation following ICH (88). It is worth noting that

MCs also play a role in ICH rebleeding and hematoma expansion.

Studies have demonstrated that MCs release endogenous

anticoagulant heparin, which impairs coagulation function and

leads to red cell extravasation, thereby contributing to hematoma

expansion (91, 92). Stabilizing or inducing deficiency in MCs can

reduce the size of hematomas in ICH rats (89).

Several studies have investigated the inhibition of MCs

activation following ICH. Inhalation of hydrogen has been shown

to exert neuroprotective effects in ICH by reducing Lyn kinase

phosphorylation, thereby inhibiting MCs activation and

degranulation (93). Intravenous immunoglobulin (IVIG) can

inhibit MCs activation after ICH by activating the FcgRIIB/
SHIP1/PIP3 pathway, thus reducing neuroinflammation and

improving BBB permeability (94). Yang et al. ’s study

demonstrated that inhibition of the IRE1a/miR-125/Lyn signaling

pathway can reduce MCs activation, degranulation, and

neuroinflammation after ICH, leading to reduced cerebral edema,

hematoma size, and improved neurological deficits (95). Recent

studies have demonstrated that GW0742 can attenuate

neuroinflammation induced by MCs in rats with GMH (Germinal

matrix hemorrhage) through activation of the PPARb/d/CD300a/
FIGURE 3

A schematic diagram elucidating the role of MCs in the pathogenesis of IS and ICH. After the occurrence of IS and ICH, activated MCs release a
diverse array of vasoactive substances, cytokines, and proteolytic enzymes (including histamine, heparin, IL-6, TNF-a, IL-1b, tryptase, chymase,
MMPs), which orchestrate erythrocyte extravasation, vasodilation and disruption of the BBB. Additionally, the release of various cytokines and
chemokines from MCs triggers the recruitment and activation of neural immune cells (including microglia, astrocytes, macrophages, and
neutrophils) from the periphery, perpetuating the inflammatory response. This pathological process ultimately culminates in the development of
neuroinflammation, vasogenic edema, and hemorrhage. BBB, blood-brain barrier; IS, ischemic stroke; ICH, intracerebral hemorrhage; IL, interleukin;
MC, mast cell; MMP, matrix metalloproteinases; TNF-a, tumor necrosis factor-alpha.
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SHP1 pathway (96). In conclusion, MCs play a role in the complex

pathological process of ICH, and targeting MCs may offer new

prospects for ICH treatment. Nevertheless, the pathophysiological

significance of MCs in ICH remains incompletely understood,

necessitating further investigation.
5.3 Intracranial aneurysm and
subarachnoid hemorrhage

Intracranial aneurysm (IA) is a complex condition

characterized by pathological dilation of cerebral arteries (97, 98).

Subarachnoid hemorrhage (SAH) represents a severe consequence

of IA rupture, associated with high mortality and morbidity rates

(99, 100). Ample evidence suggests that MCs play a significant role

in the pathophysiology of both IA and SAH.

MCs contribute to the IA through diverse mechanisms (101,

102). The intact IA vessel wall harbors a substantial population of

activated MCs, which orchestrate vascular inflammation by

upregulating the expression of inflammation-related molecules

(103–105). Additionally, MCs secrete tryptase and chymase,

leading to the upregulation of MMP-2 and MMP-9 expression

and activity, thereby contributing to the degeneration of the arterial

wall extracellular matrix (106–108). This cascade further induces

the expression of inducible nitric oxide synthase (iNOS), which in

turn mediates smooth muscle cell apoptosis. Consequently, this

process results in decreased arterial stiffness, medial thinning, and

ultimately culminates in IA expansion (105). Moreover, MCs can

induce the formation and remodeling of new blood vessels in IA by

secreting a variety of angiogenic factors (109, 110). Additionally, the

histamine and proteases released by MCs can respectively facilitate

leakage (111) and rupture of newly formed blood vessels (109, 110,

112), ultimately resulting in microbleeding.

Analysis of human IAs revealed a significantly higher degree of

MC infiltration in ruptured IAs compared to unruptured IAs (103).

Activation of MCs markedly increased the rate of IA rupture, while

stabilizing MCs or correcting MC defects significantly reduced the

incidence of IA rupture in mice (113). Stromal Cell-Derived Factor-

1 (SDF-1), a well-known chemokine for MCs, can induce

pathological remodeling of the IA wall (114). Meanwhile, the

MCs in the IA wall secrete tryptase, which can convert

angiotensin I into angiotensin II, thus activating the renin-

angiotensin system and promoting the rupture of the IA (115,

116). In addition, the TNF-a and Hepatocyte Growth Factor (HGF)

released by MCs also play a crucial role in the rupture of the IA

(117, 118).

IA rupture is highly prone to causing SAH. Inflammation plays

a crucial role in the pathogenesis of SAH (119) and is also a pivotal

determinant of prognosis (120). Following SAH, MCs not only

directly contribute to inflammatory damage by releasing various

inflammatory mediators but also activate microglia to exert a

synergistic pro-inflammatory effect (47). Cerebral vasospasm is a

common complication following SAH and significantly increases

the risk of delayed ischemia, leading to poor prognosis (121). The

adenosine A3 receptor (A3R), abundantly expressed on the

membranes of MCs, is responsible for vascular constriction (122).
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Meanwhile, the activation of A3R can also exacerbate brain injury

by inducing the release of tryptase, chymase, pro-inflammatory

cytokines, and chemokines fromMCs, resulting in the infiltration of

inflammatory cells into the injured hemisphere (123).

In recent years, numerous scholars have conducted research on

MC as a therapeutic target. Studies have revealed that intravenous

injection of MSCs can activate the cyclooxygenase-2 (COX-2)-

dependent pathway, suppress MC activation, and effectively

prevent IA rupture (124). Simultaneously, the microvesicles from

intravenous injection of MSCs can also enhance the levels of

prostaglandin E2 (PGE2) and E-prostanoid 4 (EP4) receptor

expression associated with MCs in the IA, thereby safeguarding

the vascular wall and preventing IA rupture (125). After SAH, the

inhibition of MCs has been shown to significantly reduce cerebral

edema, neuroinflammation, and neurological deficits (47).

Moreover, LJ529 has demonstrated the ability to inhibit MC

degranulation through the A3R-PKCe-ALDH2 pathway, thereby

mitigating MC-related inflammation in SAH (126). In addition to

these preclinical studies, it is well-established that various cytokines

and chemokines are implicated in the pathogenic mechanism of

MCs in IA and SAH; however, the specific mechanism remains

incompletely elucidated. Therefore, further research on MCs is

necessary to explore novel therapeutic approaches for IA and

SAH treatment.
5.4 Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative condition

characterized by the prominent pathological features of

extrace l lu lar amylo id-beta (Ab ) prote in depos i t ion ,

hyperphosphorylation of Tau protein, and synaptic loss leading to

the development of neurofibrillary tangles (NFTs) and eventual

neuronal death (127, 128). Research has demonstrated extensive

MCs infiltration in the brains of AD patients, particularly in regions

where Ab protein accumulates (9, 129). This phenomenon is

attributed to neuroglia cells within Ab deposition sites releasing

substantial amounts of chemoattractants for MC infiltration such as

serum amyloid A. Furthermore, MCs themselves serve as early

detectors of Ab accumulation; Harcha et al. observed a rapid

increase in MCs presence in the hippocampus and cortex prior to

noticeable Ab deposition (130).

MCs have been demonstrated to contribute to the development

of AD by promoting Ab formation and neuroinflammation (131)

(Figure 4). Activation of corticotropin-releasing hormone (CRH)

receptors on MCs by CRH, through the hypothalamic-pituitary-

adrenal axis, stimulates MC activation and disrupts the BBB,

facilitating the entry of peripheral inflammatory factors and cells

into the brain, thereby activating neuroglia cells (132). This process

also leads to Ab formation and subsequent tau protein aggregation,

NFT formation, ultimately contributing to AD development (133).

Additionally, deposited Ab can induce degranulation by activating

Pannexin1 hemichannel (Panx1 HC) on MCs and recruit other

immune cells to release substantial amounts of inflammatory

factors, thus participating in AD-related neuroinflammation

(130). Recent studies have revealed that various forms of Ab
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including Ab1-42, Ab1-40, and Ab-35 can stimulate MCs to secrete

significant levels of pro-inflammatory cytokines; among these

forms, Ab1-42 exhibits the most potent effect (134).

Recently, scholars have investigated the potential of MCs as a

therapeutic target for AD. Lin et al. demonstrated that MC

depletion in 5XFAD mice upregulated transcriptomic features of

neuroprotective DAM, downregulated markers of reactive

astrocytes, and improved hippocampal-dependent cognitive

function (135). Furthermore, they discovered that dura mater

MCs can survey cerebrospinal fluid to receive signals from the

intracranial environment and respond by expressing

immunomodulatory mediators that impact cognitive and

neuroglial function (135). The tyrosine kinase inhibitor MC

stabi l izer masi t inib has been demonstrated to exert

neuroprotective effects by inhibiting the upregulation of BBB

permeability by MCs and suppressing neuroinflammation at the

onset of AD (136). These findings offer a preliminary foundation for

exploring novel therapeutic targets for AD, but further research is

necessary to elucidate and validate them.
5.5 Parkinson’s disease

Parkinson’s disease (PD) is an irreversible neurodegenerative

condition characterized by the degeneration and loss of dopamine

neurons in the substantia nigra pars compacta of the midbrain,

along with the accumulation of misfolded a-synuclein (a-Syn),
which forms eosinophilic inclusion bodies known as Lewy bodies

(LB). These pathological changes are accompanied by

neuroinflammation (137, 138).
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MCs play a pivotal role in the pathogenesis of PD through diverse

mechanisms (Figure 5). In the context of PD, activated MCs are

capable of concomitantly releasing other pro-inflammatory mediators

and substantial amounts of reactive oxygen species (ROS), thereby

eliciting oxidative stress (6, 139, 140). This oxidative stress represents a

fundamental contributor to neurodegeneration in PD (141).

Histamine significantly contributes to PD pathogenesis. Elevated

levels along with increased presence within substantia nigra have

been observed both in PD patients as well as animal models (142–

145). Local administration or systemic delivery has been shown to

result in dopaminergic neuron death alongside worsening dyskinesia

symptoms (21). The induction mechanism involves activation

through H2R and H4R receptors leading to dopaminergic

degeneration (146), while inhibiting H2R activation suppresses JNK/

P38 phosphorylation thus reducing CASP3 activity which mitigates

cellular apoptosis (146). Furthermore, blocking H4R hinders MCs

activation within brain tissue resulting in reduced TNF-a
release thereby ameliorating neurodegeneration including LB-

like neuropathological changes (147, 148). Notably, MCs serve

as a primary source accounting for over 50% total brain-

histamine secretion (14), suggesting potential therapeutic promise

lies within regulating their secretory function for future

PD treatments.

MCs may also contribute to the pathogenesis of PD by

interacting with neuralglia cells and neurons. When MCs are co-

cultured with neuralglia cells/neurons and exposed to glia activating

factors, activated MCs can secrete tryptase and brain-specific serine

protease-4 (BSSP-4) to stimulate the release of CC2L and MMP-3

by astrocytes and neurons, thereby contributing to the pathogenesis

of PD (149). Meanwhile, MCs can enhance the expression of PAR-2
FIGURE 4

A schematic diagram illustrating the involvement of MCs in AD. In AD, MCs can be activated by Ab, Panx1 HC, and CRH receptor, subsequently
interacting with microglia and astrocytes. This interaction leads to disruption of the BBB, hyperphosphorylation of tau protein, and neurofibrillary
tangles. AD, alzheimer’s disease; Ab: amyloid-beta; BBB, blood-brain barrier; CRH, Corticotropin-releasing hormone; MC, mast cell; MMP, matrix
metalloproteinases; NFT, neurofibrillary tangles; Panx1 HC, Pannexin1 hemichannel.
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in neuroglia cells and neurons by releasing specific proteases (such

as MMCP-6 and MMCP-7), leading to neuroinflammation and

neuronal apoptosis (32). Conversely, neuroglia cells-secreted CCL2

can attract MCs to the substantia nigra region, triggering the release

of diverse pro-inflammatory mediators and subsequent

dopaminergic neuron death (150). Therefore, targeting MCs

holds promise for novel therapeutic strategies in PD.
5.6 Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative

disorder characterized by the degeneration of motor neurons and

dysfunction of distal motor axons (151–153). Early studies have

observed the activation of MCs in the degenerative regions of the

central nervous system, such as the prefrontal cortex and pyramidal

tract, as well as in the spinal cord of ALS patients (154, 155).

Furthermore, Trials et al. discovered activated MCs in the skeletal

muscles of ALS rats, which were found in the motor axons of the

extensor digitorum longus muscle, sciatic nerve, and ventral root of

the spinal cord (156, 157). These findings suggest that MCs play a

role in ALS development by potentially inducing motor axon

degeneration and accelerating neuromuscular junctions (NMJs)

loss, thereby contributing to peripheral motor pathway

degeneration in ALS patients (156, 157).

Studies indicate that MCs may also contribute to the vascular-

related pathological mechanisms of ALS (158, 159). MCs play a

crucial role in enhancing vascular permeability through the

secretion of tryptase and chymase, which degrade adhesion

protein complexes between endothelial cells (160), as well as

connexin, procollagen, and type IV collagen in the extracellular

matrix (161, 162). Furthermore, MCs release histamine and

prostaglandin, further augmenting microvascular permeability

(163), thereby facilitating the infiltration of peripheral
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inflammatory cells. These processes result in damage to

microvascular endothelial cells and perivascular cells in the brains

and spinal cords of ALS patients, leading to impairment of the BBB

and blood-spinal cord barrier (164–166). Subsequently, MCs can

breach the blood-spinal cord barrier (167, 168) and release

neuropeptides, proteases, cytokines, and histamine, inducing local

neuroinflammation and neuronal dysfunction (9).

MCs may also facilitate disease progression through

interactions with other immune cells and neurons. They secrete

chymase that promote neutrophil infiltration, contributing to the

advancement of ALS paralysis (157). Furthermore, MCs can engage

with microglia by secreting IL-6 and tryptase, establishing a positive

feedback loop that continuously amplifies ALS neuroinflammation

(9). Additionally, reactive astrocytes in ALS may express stem cell

factor (SCF), which induces c-kit+ precursor MC differentiation

and drives their migration from the periphery through the

microvasculature to the spinal cord, where they localize and

exacerbate the disorder (159). Under the influence of 75-kD

neurotrophin receptors (p75NTR) abnormally expressed by

damaged motor neurons, MCs can also induce apoptotic

signaling (169). Therefore, these interactions between MCs and

immune cells as well as neurons represent an important link in the

pathogenesis of ALS.

Research has demonstrated that the MC inhibitor matsitini can

decrease the population of MCs in the extensor digitorum longus

muscle, thereby reducing the occurrence of NMJ denervation and

motor deficits in ALS rats, as well as ameliorating ALS neurological

symptoms (156, 157). This substantiates the specific involvement of

MCs in ALS, and the positive outcomes from a phase III clinical

trial of matsitini in ALS further support its therapeutic potential,

indicating promising prospects for targeting MCs as a treatment

strategy for ALS (170). Nevertheless, there is still a need for

comprehensive research to delve into the specific mechanisms

through which MCs are implicated in ALS.
FIGURE 5

A schematic diagram illustrating the involvement of MCs in PD. MCs engage in interactions with neuroglial cells and neurons, leading to the release
of various substances that ultimately induce neuroinflammation, oxidative stress, and neuronal apoptosis through the secretion of histamine,
inflammatory factors, and ROS. BSSP-4, Brain-Specific Serine Protease-4; CCL-2, chemokine ligand 2; MC, mast cell; PD, parkinson’s disease; PAR-
2, protease activated receptor 2; ROS, reactive oxygen species.
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6 Conclusion and future perspectives

In recent years, with the continuous deepening of research, we

have gained a more profound comprehension of the

neuroprotective function of MCs and its significance in various

brain disorders. On one hand, MCs can induce neuroinflammation

and oxidative stress, promote BBB damage, vascular edema, and

hemorrhage formation, as well as recruit other immune cells to

exacerbate inflammatory responses. On the other hand, the

potentially beneficial effects of activated MCs on the brain cannot

be disregarded. MCs can exert neuroprotective effects by secreting

histamine, NGF, and angiogenic factors. Similar to microglia and

macrophages, brain MCs may contribute to neuroprotection and

repair in the advanced stages of brain disorders.

It is important to acknowledge that numerous obstacles must be

overcome in order to propel research in this domain. First, the

activation of MCs in the brain is a complex process that may give

rise to both neuroprotective and pathogenic effects. Our current

understanding of the transcriptional and epigenetic dynamics

governing MC activation in the brain is still in its early stages,

necessitating further exploration into the regulation of MC

activation. Second, previous studies have predominantly focused

on directly inhibitingMC activation in brain disorder models without

delving into specific underlying mechanisms. Therefore, gaining a

deeper comprehension of the cell-to-cell interactions between MCs

and other immune cells in the brain is essential for effectively

modulating the brain’s immune response network. Third, while

targeted interventions for MCs have demonstrated promising

therapeutic potential in most brain disorders during preclinical

studies, there remains controversy surrounding the role, mechanism,

and potential therapeutic value ofMCs in certain brain disorders. This

highlights an urgent need to investigate the precise functional roles of

MCs within brain pathology. Finally, Intestinal MCs can engage with

neurons and endocrine elements via the brain-gut axis, thereby

modulating immune responses and neuroinflammation linked to

neurodegenerative conditions in the brain. From this perspective,

targeting MCs as a therapeutic approach holds significant promise;

employing strategies to inhibit their activity may offer a novel

perspective for treating brain disorders as disorder-modifying therapy.
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In conclusion, MCs are progressively emerging as a novel target

for the treatment of brain disorders. A comprehensive exploration

of the underlying molecular mechanisms through mechanistic

research and identification of potential therapeutic interventions

is poised to catalyze breakthroughs in the management of

brain disorders.
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24. Ferreira R, Santos T, Gonçalves J, Baltazar G, Ferreira L, Agasse F, et al.
Histamine modulates microglia function. J neuroinflammation. (2012) 9:90.
doi: 10.1186/1742-2094-9-90

25. Zhang H, Yang H, He S. TNF increases expression of IL-4 and PARs in mast
cells. Cell Physiol biochemistry: Int J Exp Cell physiology biochemistry Pharmacol. (2010)
26:327–36. doi: 10.1159/000320556

26. Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J. The glia-derived alarmin IL-
33 orchestrates the immune response and promotes recovery following CNS injury.
Neuron. (2015) 85:703–9. doi: 10.1016/j.neuron.2015.01.013

27. Iikura M, Suto H, Kajiwara N, Oboki K, Ohno T, Okayama Y, et al. IL-33 can
promote survival, adhesion and cytokine production in human mast cells. Lab
investigation; J Tech Methods pathology. (2007) 87:971–8. doi: 10.1038/
labinvest.3700663
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Role of histaminergic system in blood-brain barrier dysfunction associated with
neurological disorders. Arch Med Res . (2014) 45:677–86. doi: 10.1016/
j.arcmed.2014.11.010

51. ChenAQ,FangZ,ChenXL,YangS,ZhouYF,MaoL, et al.Microglia-derivedTNF-a
mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic
stroke. Cell Death disease. (2019) 10:487. doi: 10.1038/s41419-019-1716-9

52. Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, Lee SC, et al. IL-1beta
regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis
program. J Immunol (Baltimore Md: 1950). (2006) 177:5574–84. doi: 10.4049/
jimmunol.177.8.5574

53. Labus J, Häckel S, Lucka L, Danker K. Interleukin-1b induces an inflammatory
response and the breakdown of the endothelial cell layer in an improved human
THBMEC-based in vitro blood-brain barrier model. J Neurosci Methods. (2014)
228:35–45. doi: 10.1016/j.jneumeth.2014.03.002

54. Farina M, Vieira LE, Buttari B, Profumo E, Saso L. The nrf2 pathway in ischemic
stroke: A review. Molecules (Basel Switzerland). (2021) 26:5001. doi: 10.3390/
molecules26165001

55. Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in
ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J
Physiol Cell Physiol. (2018) 315:C343–c56. doi: 10.1152/ajpcell.00095.2018

56. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, et al. Oxidative stress
in ischemic brain damage: mechanisms of cell death and potential molecular targets for
neuroprotection. Antioxidants Redox Signaling. (2011) 14:1505–17. doi: 10.1089/
ars.2010.3576

57. Paschen W. Glutamate excitotoxicity in transient global cerebral ischemia. Acta
neurobiologiae experimentalis. (1996) 56:313–22. doi: 10.55782/ane-1996-1136

58. Logsdon AF, Lucke-Wold BP, Turner RC, Huber JD, Rosen CL, Simpkins JW.
Role of microvascular disruption in brain damage from traumatic brain injury. Compr
Physiol. (2015) 5:1147–60. doi: 10.1002/cphy.c140057

59. Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J
neuroimmunology. (2007) 184:53–68. doi: 10.1016/j.jneuroim.2006.11.014

60. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets
for neuroprotection. Prog neurobiology. (2014) 115:157–88. doi: 10.1016/
j.pneurobio.2013.11.006
frontiersin.org

https://doi.org/10.1016/j.neubiorev.2017.05.001
https://doi.org/10.1177/1073858416687249
https://doi.org/10.1038/nri3690
https://doi.org/10.1046/j.1471-4159.2001.00008.x
https://doi.org/10.1038/jcbfm.2014.239
https://doi.org/10.1007/s12035-014-8697-6
https://doi.org/10.1007/s12035-014-8697-6
https://doi.org/10.1186/s12974-018-1287-1
https://doi.org/10.1080/02699052.2018.1556807
https://doi.org/10.1080/02699052.2018.1556807
https://doi.org/10.1159/000171029
https://doi.org/10.1186/s12974-016-0600-0
https://doi.org/10.1186/s12974-016-0600-0
https://doi.org/10.1007/s12035-018-1177-7
https://doi.org/10.1016/j.ejphar.2013.10.028
https://doi.org/10.1186/1742-2094-9-90
https://doi.org/10.1159/000320556
https://doi.org/10.1016/j.neuron.2015.01.013
https://doi.org/10.1038/labinvest.3700663
https://doi.org/10.1038/labinvest.3700663
https://doi.org/10.1016/j.cyto.2007.09.013
https://doi.org/10.4049/jimmunol.1002244
https://doi.org/10.1016/S0896-6273(02)00765-1
https://doi.org/10.1111/j.1460-9568.2005.04429.x
https://doi.org/10.3233/JAD-180786
https://doi.org/10.1111/j.1365-2567.2007.02705.x
https://doi.org/10.1021/cn200126p
https://doi.org/10.1159/000336523
https://doi.org/10.1002/glia.23312
https://doi.org/10.1189/jlb.0908517
https://doi.org/10.1093/hmg/ddm290
https://doi.org/10.1111/j.1460-9568.2012.08138.x
https://doi.org/10.3389/fnmol.2022.1013933
https://doi.org/10.1074/jbc.M410396200
https://doi.org/10.1074/jbc.M410396200
https://doi.org/10.1523/JNEUROSCI.21-19-07724.2001
https://doi.org/10.1080/07853890902887303
https://doi.org/10.7150/ijbs.20670
https://doi.org/10.1161/01.STR.0000253500.32979.d1
https://doi.org/10.1161/01.STR.0000253500.32979.d1
https://doi.org/10.1016/j.neuroscience.2008.08.028
https://doi.org/10.3389/fncel.2021.710481
https://doi.org/10.1038/s41467-019-08641-z
https://doi.org/10.1007/BF01674394
https://doi.org/10.1007/BF01674394
https://doi.org/10.1016/j.arcmed.2014.11.010
https://doi.org/10.1016/j.arcmed.2014.11.010
https://doi.org/10.1038/s41419-019-1716-9
https://doi.org/10.4049/jimmunol.177.8.5574
https://doi.org/10.4049/jimmunol.177.8.5574
https://doi.org/10.1016/j.jneumeth.2014.03.002
https://doi.org/10.3390/molecules26165001
https://doi.org/10.3390/molecules26165001
https://doi.org/10.1152/ajpcell.00095.2018
https://doi.org/10.1089/ars.2010.3576
https://doi.org/10.1089/ars.2010.3576
https://doi.org/10.55782/ane-1996-1136
https://doi.org/10.1002/cphy.c140057
https://doi.org/10.1016/j.jneuroim.2006.11.014
https://doi.org/10.1016/j.pneurobio.2013.11.006
https://doi.org/10.1016/j.pneurobio.2013.11.006
https://doi.org/10.3389/fimmu.2024.1445867
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2024.1445867
61. Trendelenburg G. Molecular regulation of cell fate in cerebral ischemia: role of
the inflammasome and connected pathways. J Cereb Blood Flow metabolism: Off J Int
Soc Cereb Blood Flow Metab. (2014) 34:1857–67. doi: 10.1038/jcbfm.2014.159

62. Moretti R, Pansiot J, Bettati D, Strazielle N, Ghersi-Egea JF, Damante G, et al.
Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci.
(2015) 9:40. doi: 10.3389/fnins.2015.00040

63. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to
translation. Nat Med. (2011) 17:796–808. doi: 10.1038/nm.2399

64. Parrella E, Porrini V, Benarese M, Pizzi M. The role of mast cells in stroke. Cells.
(2019) 8:437. doi: 10.3390/cells8050437

65. Strbian D, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ. Cerebral
mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb
Blood Flow metabolism: Off J Int Soc Cereb Blood Flow Metab. (2006) 26:605–12.
doi: 10.1038/sj.jcbfm.9600228

66. Mattila OS, Strbian D, Saksi J, Pikkarainen TO, Rantanen V, Tatlisumak T, et al.
Cerebral mast cells mediate blood-brain barrier disruption in acute experimental
ischemic stroke through perivascular gelatinase activation. Stroke. (2011) 42:3600–5.
doi: 10.1161/STROKEAHA.111.632224

67. Rosenberg GA, Estrada EY, Dencoff JE, Stetler-Stevenson WG. Tumor necrosis
factor-alpha-induced gelatinase B causes delayed opening of the blood-brain barrier: an
expanded therapeutic window. Brain Res. (1995) 703:151–5. doi: 10.1016/0006-8993
(95)01089-0

68. Rosenberg GA. Matrix metalloproteinases in neuroinflammation. Glia. (2002)
39:279–91. doi: 10.1002/glia.10108

69. Barone FC, Hillegass LM, Tzimas MN, Schmidt DB, Foley JJ, White RF, et al.
Time-related changes in myeloperoxidase activity and leukotriene B4 receptor binding
reflect leukocyte influx in cerebral focal stroke. Mol Chem neuropathology. (1995)
24:13–30. doi: 10.1007/BF03160109

70. Zhang RL, Chopp M, Chen H, Garcia JH. Temporal profile of ischemic tissue
damage, neutrophil response, and vascular plugging following permanent and transient
(2H) middle cerebral artery occlusion in the rat. J neurological Sci. (1994) 125:3–10.
doi: 10.1016/0022-510X(94)90234-8

71. Rosell A, Cuadrado E, Ortega-Aznar A, Hernández-Guillamon M, Lo EH,
Montaner J. MMP-9-positive neutrophil infiltration is associated to blood-brain
barrier breakdown and basal lamina type IV collagen degradation during
hemorrhagic transformation after human ischemic stroke. Stroke. (2008) 39:1121–6.
doi: 10.1161/STROKEAHA.107.500868

72. Arac A, Grimbaldeston MA, Nepomuceno AR, Olayiwola O, Pereira MP,
Nishiyama Y, et al. Evidence that meningeal mast cells can worsen stroke pathology
in mice. Am J pathology. (2014) 184:2493–504. doi: 10.1016/j.ajpath.2014.06.003

73. Beridze M, Sanikidze T, Shakarishvili R, Intskirveli N, Bornstein NM. Selected
acute phase CSF factors in ischemic stroke: findings and prognostic value. BMC
neurology. (2011) 11:41. doi: 10.1186/1471-2377-11-41

74. Impellizzeri D, Cordaro M, Bruschetta G, Siracusa R, Crupi R, Esposito E, et al.
N-palmitoylethanolamine-oxazoline as a new therapeutic strategy to control
neuroinflammation: neuroprotective effects in experimental models of spinal cord
and brain injury. J neurotrauma. (2017) 34:2609–23. doi: 10.1089/neu.2016.4808

75. Cordaro M, Siracusa R, Crupi R, Impellizzeri D, Peritore AF, D’Amico R, et al. 2-
pentadecyl-2-oxazoline reduces neuroinflammatory environment in the MPTP model
of parkinson disease. Mol neurobiology. (2018) 55:9251–66. doi: 10.1007/s12035-018-
1064-2

76. Fusco R, Scuto M, Cordaro M, D’Amico R, Gugliandolo E, Siracusa R, et al. N-
palmitoylethanolamide-oxazoline protects against middle cerebral artery occlusion
injury in diabetic rats by regulating the SIRT1 pathway. Int J Mol Sci. (2019)
20:4845. doi: 10.3390/ijms20194845

77. Ganesh BP, Nelson JW, Eskew JR, Ganesan A, Ajami NJ, Petrosino JF, et al.
Prebiotics, probiotics, and acetate supplementation prevent hypertension in a model of
obstructive sleep apnea. Hypertension (Dallas Tex: 1979). (2018) 72:1141–50.
doi: 10.1161/HYPERTENSIONAHA.118.11695

78. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions
between enteric microbiota, central and enteric nervous systems. Ann gastroenterology.
(2015) 28:203–9.

79. Blasco MP, Chauhan A, Honarpisheh P, Ahnstedt H, d’Aigle J, Ganesan A, et al.
Age-dependent involvement of gut mast cells and histamine in post-stroke
inflammation. J neuroinflammation. (2020) 17:160. doi: 10.1186/s12974-020-01833-1
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