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Background: Due to the unique heterogeneity of neuroblastoma, its treatment

and prognosis are closely related to the biological behavior of the tumor.

However, the effect of the tumor immune microenvironment on

neuroblastoma needs to be investigated, and there is a lack of biomarkers to

reflect the condition of the tumor immune microenvironment.

Methods: The GEO Database was used to download transcriptome data (both

training dataset and test dataset) on neuroblastoma. Immunity scores were

calculated for each sample using ssGSEA, and hierarchical clustering was used

to categorize the samples into high and low immunity groups. Subsequently, the

differences in clinicopathological characteristics and treatment between the

different groups were examined. Three machine learning algorithms (LASSO,

SVM-RFE, and Random Forest) were used to screen biomarkers and synthesize

their function in neuroblastoma.

Results: In the training set, there were 362 samples in the immunity_L group and

136 samples in the immunity_H group, with differences in age, MYCN status, etc.

Additionally, the tumor microenvironment can also affect the therapeutic

response of neuroblastoma. Six characteristic genes (BATF, CXCR3, GIMAP5,

GPR18, ISG20, and IGHM) were identified by machine learning, and these genes

are associated with multiple immune-related pathways and immune cells

in neuroblastoma.

Conclusions: BATF, CXCR3, GIMAP5, GPR18, ISG20, and IGHM may serve as

biomarkers that reflect the conditions of the immune microenvironment of

neuroblastoma and hold promise in guiding neuroblastoma treatment.
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1 Introduction

Neuroblastoma (NBL) is a malignant pediatric tumor

originating from neural crest cells, representing the most

common extracranial solid tumor in children and accounting for

a significant proportion of pediatric cancer cases (1). NBL typically

occurs in the adrenal glands but can also develop in nerve tissue

along the spine, chest, abdomen, or pelvis. NBL, with its striking

predilection for young children, exemplifies the challenges posed by

rare malignancies (2). The incidence rate varies across different

populations and geographical regions, with NBL being more

prevalent in Caucasians than in individuals of African or Asian

descent (3). Certain genetic factors, such as mutations in the ALK

gene (4), MYCN amplification (5), and familial predisposition (6),

are associated with an increased risk of developing NBL. Other

factors, including maternal age, birth weight, and prenatal

exposures, may also influence NBL development (3). Conversely,

NBL is rare in older age groups and adults (7). Due to the significant

heterogeneity of NBL (8), MDT (Multi-disciplinary Team) to HIM

(Holistic Integrative Medicine) is required to provide patients with

precise treatment plans based on the clinicopathological

characteristics of the tumor and maximize the clinical benefits for

patients. The principal treatments for NBL include systemic

chemotherapy and surgery (8, 9). Depending on the disease stage,

additional treatment options such as radiotherapy, stem cell

transplantation and immune-targeted therapy may be utilized to

provide comprehensive care for patients (8, 9). Staging systems for

NBL, including the International NBL Risk Group (INRG) (10)

classification system and the International Neuroblastoma Staging

System (INSS) (11), were developed to standardize the classification

of NBL. However, there is still a significant variation in patient

outcomes within the same stage group under the current staging

system (12). Therefore, further research is needed to investigate the

pathophysiological features and classification of NBL within the

framework of the existing staging system, to establish a foundation

for more precise clinical management and prevent both over-

treatment and under-treatment.
Abbreviations: NBL, Neuroblastoma; MDT, Multi-disciplinary Team; HIM,

Holistic Integrative Medicine; INRG, International NBL Risk Group; INSS,

International Neuroblastoma Staging System; TME, Tumor Microenvironment;

TIME, Tumor Immune Microenvironment; ssGSEA, single-sample Gene Set

Enrichment Analysis; t-SNE, t-distribution Stochastic Neighbor Embedding;

ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumor

tissues using Expression data; CIBERSORT, Cell-type Identification By

Estimating Relative Subsets Of RNA Transcripts; SVR, Support Vector

Regression; TIIC, Tumor-Infiltrating Immune Cell; GDSC2, Genomics of Drug

Sensitivity in Cancer 2; DEGs, Differentially Expressed Genes FDR, False

Discovery Rate; FC, Fold Change; WGCNA, Weighted Gene Co-Expression

Network Analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genomes;

GSEA, Gene Set Enrichment Analysis; LASSO, Least Absolute Shrinkage and

Selection Operator; SVM-RFE, Support Vector Machine Recursive Feature

Elimination; SVMs, Support Vector Machines; AUC, Area Under the Curve;

ROC, receiver operating characteristic; OS, Overall Survival; PFS, Profression

Free Survival; M ± SD, Mean ± Standard Deviation.
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The tumor microenvironment (TME) is a dynamic, constantly

changing, and highly complex environment composed of tumor cells

and a variety of non-tumor cells, including immune cells, fibroblasts,

etc., which play a critical role in tumor proliferation, invasion, and

metastasis (13, 14). The tumor immune microenvironment (TIME),

which constitutes a significant component of the TME, encompasses

not only immune cells (e.g., T cells, macrophages, dendritic cells.), but

also non-immune cells (e.g., fibroblasts, endothelial cells.),

extracellular matrix components, and a range of molecules involved

in the immune response (15). The TIME shapes tumor biological

features through both anti-tumorigenic and pro-tumorigenic effects.

On the one hand, the immune cells in TIME are activated to

recognize and eliminate tumor cells (16). Moreover, immune cells

have the capacity to generate cytokines and chemokines, which serve

to attract other immune cells to the tumor site and stimulate an

immune response against the tumor (16, 17). On the other hand,

tumor cells can also manipulate the TIME and eventually undermine

effective tumor surveillance (18). Tumors achieve immune evasion

through multiple pathways (18–20), including dysfunctional antigen

presentation mechanism, recruitment of regulatory immune cells,

and induction of T cell exhaustion, etc. In non-small cell lung cancer

(21) and colorectal cancer (22), tumor typing based on TIME can

enhance the prediction of patient prognosis and provide guidance for

clinical therapy. In NBL, the immune checkpoint-based signature

constructed using OX40, B7-H3, ICOS, and TIM-3 can differentiate

between high- and low-risk NBL patients and has the potential to

predict prognosis (23). However, there is a lack of sufficient clinical

evidence to reveal the relationship between the TIME of NBL and its

clinicopathologic features. Furthermore, accurately diagnosing the

level of immune infiltration in NBL remains challenging.

In this study, we calculated the immune enrichment score of

each sample using ssGSEA (single-sample Gene Set Enrichment

Analysis), and used hierarchical clustering to categorize the samples

into high and low immunity groups. Subsequently, we

systematically evaluated the relationship between the

clinicopathologic features of the tumor and the status of immune

infiltration. To better distinguish the immune subset profile of NBL,

we employed three machine-learning algorithms to identify

potential diagnostic biomarkers and analyze the function of these

characterized genes in NBL (Figure 1).
2 Methods

2.1 Data acquisition and processing

All transcriptome sequencing data for NBL were obtained from

the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/). The GSE49710 dataset [GPL16876

platform, Agilent-020382 Human Custom Microarray 44k

(Feature Number version)] containing 498 tumor samples was

downloaded for the training set. Two independent cohorts

GSE16476 (GPL570 platform, [HG-U133_Plus_2] Affymetrix

Human Genome U133 Plus 2.0 Array, n=88) and GSE19274

(GPL6102, Illumina human-6 v2.0 expression beadchip, n=100)

were used as test datasets. The GSE85047 dataset (GPL5175
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2024.1446273
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1446273
platform, [HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array

[transcript (gene) version], n=283) was used for survival analysis of

characterized genes. The probe names in the original gene

expression matrix were converted to gene symbols using Perl

(v5.32.1.1), and duplicate gene symbols were averaged. The

expression information of probes without gene symbols

was deleted.
2.2 Immunoclustering performed
by ssGSEA

As a rank-based algorithm, ssGSEA (single-sample Gene Set

Enrichment Analysis) can be conducted to investigate the absolute

enrichment levels of each sample in a particular set of genes by

calculating its enrichment score (24). In this study, ssGSEA was

employed to investigate the enrichment levels of 29 clusters of

immune cell markers, or gene sets associated with immune function

and/or pathways to reflect the immune infiltration conditions of

tumors, in each NBL tissue using “GSVA” (25) and “GSEABase” R

packages. Hierarchical clustering analysis was applied to classify

NBL tissues into high or low immunity groups based on ssGSEA

enrichment results among immune signature genes, using “sparcl”

(26) R package.
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2.3 Validation of immunoclustering

As a dimensionality reduction technique, t-SNE (t-distribution

Stochastic Neighbor Embedding) is commonly used to visualize

high-dimensional data into low-dimensional data. It excels at

capturing complex patterns and relationships within the dataset

(27). The t-SNE algorithm was employed, with the assistance of the

“Rtsne” R package, to analyze the distribution of NBL samples

across different immunity conditions.

Since non-tumor cells and tumor cells display distinct gene

expression patterns, the ESTIMATE (Estimation of STromal and

Immune cells in MAlignant Tumor tissues using Expression data)

algorithm can calculate the relative abundance of non-tumor cells

(e.g., immune cells and stromal cells) in tumor tissues by analyzing

the expression of characteristic genes among those cells within the

sample (28). To assess the outcomes of the ssGSEA-based

hierarchical clustering, ESTIMATE was employed to analyze four

tumor microenvironment scores including tumor purity,

ESTIMATE score, immune score, and stromal score. This analysis

was performed for each patient to compare the high and low

immunity groups, using “estimate” (29) R package.

The CIBERSORT (Cell-type Identification By Estimating

Relative Subsets Of RNA Transcripts) algorithm quantifies the

relative proportions of immune cell clusters in tumor samples by
FIGURE 1

The workflow of this study.
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deconvolution of bulk RNA-Seq results using a support vector

regression (SVR) machine learning approach (30). It assesses the

fraction of 22 tumor-infi l trating immune cel l (TIIC)

subpopulations, including T cells, B cells, natural killer cells,

macrophages, etc., in the tumor microenvironment. This

assessment was based on the matrix file named “LM22,” which

comprises 547 genes and covers 22 mature human hematopoietic

populations (31). The abundance of different immune cells between

the high and low immunity groups of NBL was investigated using

CIBERSORT algorithm.
2.4 Therapeutic response analyses

The influence of the immune infiltration level of NBL on clinical

drug therapy was analyzed. Firstly, the effect of immunity on NBL

immunotherapy was investigated, and we examined six immune-

checkpoint-associated genes (CD274, CTLA4, HAVCR2, LAG3,

PDCD1, PDCD1LG2) in the high and low immunity groups.

Utilizing data from the Genomics of Drug Sensitivity in Cancer 2

database (GDSC2) at https://www.cancerrxgene.org/, the

“oncoPredict” (32) R package was used to predict the sensitivity

of each patient to different drugs, further use of the Wilcoxon rank-

sum test to analyze the differences between high-sensitivity drugs in

various immunity conditions.
2.5 Differentially expressed gene analysis

Using the “limma” (33) R package to analyze differentially

expressed genes (DEGs) between the low and high immunity

groups of NBL samples in the log2-processed training dataset. In

this process, genes with log2|fold change (FC)| ≥ 1 and adjusted p-

value < 0.05 were identified as DEGs affected by immune

infiltration levels and were used as candidate genes for further

analysis. Meanwhile, for the NBL immune-related characteristic

genes identified by machine learning, the samples were

categorized into high- and low-expression groups based on the

median expression of these genes. The selection method of DEGs

between high and low expression groups was the same as

described previously.
2.6 Weighted gene co-expression
network analysis

Weighted Gene Co-Expression Network Analysis (WGCNA)

was used to cluster highly synergistic gene modules in NBL,

correlate these modules with immunity classifications, and

subsequently identify immune-associated core modules and genes.

This analysis was performed using the “WGCNA” R package (34).

Initially, the log2-processed gene expression matrix was screened to

remove genes with low expression levels. To determine the

appropriate soft threshold power value for the median calculation

of the correlation coefficient to obtain the scale-free network

distribution, the “pickSoftThreshold” function is employed to
Frontiers in Immunology 04
calculate the soft thresholding power (b) value. Subsequently, the
“sft$powerEstimate” function is used to select the optimal b value

from a range of 1 to 20, with the requirement that the scale-free

topology fit R^2 index exceeds 0.85. Adjacency matrix and TOM

matrix were then constructed sequentially on the basis of the gene

expression matrix according to the b value. The dynamic tree cut

algorithm was used to construct modules and analyze the

correlation between modules and immunity.
2.7 Functional enrichment analysis

Prior to analysis, the symbol IDs of all genes were converted to

Homo sapiens EnterzID using the “org.Hs.eg.db” R package. We

explored the functions of all DEGs associated with immunity of

NBL using Gene Ontology (GO) analysis and Kyoto Encyclopedia

of Genomes (KEGG) analysis with the assistance of the

“clusterProfiler” (35) R package, and the screening criteria for the

terms were p < 0.05. GO gene set enrichment analysis (GSEA) was

applied to conduct enrichment analysis of DEGs among high- and

low-expression groups of each immune infiltration-related Genes

using “clusterProfiler” R package.
2.8 Machine learning

Three Machine Learning algorithms were utilized to identify

characteristic genes affecting immunity levels in NBL. LASSO (Least

Absolute Shrinkage and Selection Operator) possesses inherent

regularization properties, allowing it to perform feature selection

by shrinking specific regression coefficients to zero. This unique

property makes LASSO well-suited for identifying relevant variables

and selecting a subset of significant features in a given dataset (36).

Genes were ranked by Random Forest, and the top 30 genes were

selected for further analysis. SVM-RFE (Support Vector Machine

Recursive Feature Elimination) operates as a feature selection

algorithm reliant on Support Vector Machines (SVMs). SVM

separates different classes of data points in a high-dimensional

feature space by finding the optimal hyperplane (37). LASSO, SVM,

and Random Forest were implemented using the “glmnet” (38),

“e1071” (39), and “randomForest” (40) R packages, respectively.

The intersection of LASSO, SVM, and Random Forest results was

used to identify hub genes affecting immunity in NBL. Determine

the area under the curve (AUC) using the receiver operating

characteristic (ROC) curve to evaluate the characterized genes

and assess their discrimination value in the immune infiltration

levels, using the “pROC” (41) R package.
2.9 Survival analyses

In order to investigate the effect of the immunity-related

characteristic gene expression on the prognosis of NBL patients,

we analyzed the OS (Overall Survival) and PFS (Profression Free

Survival) data in the GSE85047 dataset. Samples were categorized

into two high and low expression groups based on the median gene
frontiersin.org
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expression, and the Kaplan-Meier curve was used to investigate the

survival differences between the two groups, with the assistance of

the ‘survival’ and ‘survminer’ R packages.
2.10 Statistical analysis

Continuous data were presented using mean ± standard

deviation (M ± SD), and categorical and count data were expressed

as frequencies (rates). When analyzing differences in clinical features

between high and low expression groups of characterized genes using

IBM SPSS Statistics 27, the Mann-Whitney U test was used for

continuous variables and the chi-square test for categorical variables.

A two-sided p-value of less than 0.05 was considered to indicate a

statistically significant difference. The remaining analysis was

performed using R software (version 4.2.2). The Wilcoxon rank-

sum test was used to analyze the difference in continuity variables

between the Immunity_L and Immunity_H groups. P < 0.05 was

considered statistically significant.
3 Results

3.1 Immunoclustering of NBL

Scoring the immune infiltration conditions of 498 NBL samples

from the training dataset (GSE49710) based on transcriptome

sequencing data using the ssGSEA algorithm. An unsupervised

hierarchical clustering algorithm identified two clusters with

different immune infiltration patterns based on the ssGSEA

scores. In total, 362 samples belonged to the low immunity group

(Immunity_L), while 136 samples were categorized as the high

immunity group (Immunity_H), as illustrated in Figure 2A. t-SNE

analysis further demonstrated distinct gene expression patterns

between the high and low immune infiltration groups

(Figure 2B). To validate the immunoclustering based on ssGSEA

scores, the ESTIMATE algorithm was employed. The results

indicated that the high immunity group exhibited significantly

higher ESTIMATE scores (L: -448.0756 ± 1095.2302; H:

1452.7437 ± 936.7952), ImmuneScores (L: -146.0297 ± 627.0643;

H: 1237.8876 ± 554.5626), and StromalScores (L: -302.0459 ±

559.7807; H: 214.8562 ± 502.2821). Additionally, this group

showed lower Tumor Purity (L: 0.8470 ± 0.0784; H: 0.6772 ±

0.1013) (Figures 2C, D). Concurrently, multiple HLA genes

upregulated in the immunity group, as shown in Figure 2E.

Furthermore, CIBERSORT results indicated that NBL samples

with high immunity exhibited increased levels of B cells naive,

Plasma cells, T cells CD8, T cells CD4 naive, T cells CD4 memory

activated, T cells follicular helper, T cells regulatory (Tregs), T cells

gamma delta, Macrophages M1 infiltration, and lower levels of T

cells CD4 memory resting, Macrophages M0, Macrophages M2,

and Mast cells activated infiltration (Figures 2F, G). The

clinicopathologic characteristics among the different groups were

shown in Supplementary Table S1.
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3.2 Immunoclustering and
clinical treatment

To further investigate the clinical value of different immunity

levels in NBL, we analyzed the differences between high and low

immunity groups in immunotherapy and chemotherapy. The

results showed that the high immunity group had higher

expression of 6 immune checkpoint-related genes, as shown in

Figure 3A. Meanwhile, the drug sensitivity results showed that the

high immunity group was more sensitive to drugs AZD8055,

Bortezomib, Camptothecin, CDK9_5038, CDK9_5576,

Dactinomycin, Dactolisib, Dinaciclib, Epirubicin, Gemcitabine,

Luminespib, Podophyllotoxin bromide, Rapamycin, Sabutoclax,

Staurosporine, Vinblastine; while the low immunity group was

more sensitive to drugs Daporinad, Sepantronium bromide

(Figures 3B–S).
3.3 Identification of immunity-related
differentially expressed genes

In the training dataset, 586 genes were up-regulated, while 11

genes were down-regulated in the high-immunity NBL group

when compared to the low-immunity group based on “limma”

method(Figures 4A, B). After excluding abnormal samples and

genes with low expression, we conducted WGCNA analysis on the

remaining samples to identify clusters of genes associated with

NBL immunity. The scale-free network was constructed with an

R^2 value greater than 0.85, using a soft threshold power of 5

(Figures 4C, D). Fifteen genetic modules were identified by

dynamic cutting tree, among which the MEgreen module

displayed the highest positive association with immunity to NBL

(L: R = -0.74, p < 0.001; H: R = 0.74, p < 0.001) (Figures 4E–H).

After intersecting the sets of differentially expressed genes and

MEgreen module genes, a total of 399 differentially expressed

genes associated with NBL immunity were identified as candidates

for further analysis (Figure 4I).
3.4 GO and KEGG analysis results

To further investigate the mechanisms that contribute to the

different immune conditions in NBL, enrichment analyses of

differentially expressed genes that are positively correlated with

immunity in NBL were conducted. The GO results based on gene

count (Figure 5A) and gene ratio (Figure 5B) revealed that the

candidate genes were involved in multiple immune-related

bio log ica l process pathways (e . g . , mononuclear ce l l

differentiation, activation of immune response, immune

response−regulating cell surface receptor signaling pathway.)

and were present in multiple immune-related cellular

components (e.g., alpha-beta T cell receptor complex, T cell

receptor complex, immunoglobulin complex.), and the

molecular functions involved include, for example, immune
frontiersin.org
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receptor activity, cytokine receptor activity, antigen binding.

KEGG results based on gene count (Figure 5C) and gene ratio

(Figure 5D) also showed that candidate genes were enriched in

several immune-related pathways, including Natural killer cell

mediated cytotoxicity, Primary immunodeficiency, and Cytokine

−cytokine receptor interaction.
Frontiers in Immunology 06
3.5 Identification of characteristic genes by
machine learning

Machine learning algorithms were employed to identify

characteristic genes associated with NBL immunity among the

candidate genes screened through differential expression analysis and
FIGURE 2

Results of NB Immunoclustering. (A) Hierarchical clustering analysis results based on ssGSEA enrichment score. (B) t-SNE analysis of the high- and
low-immunity groups. (C) Heatmap of ESTIMATES analysis results. (D) Violin plot of ESTIMATES analysis results. (E) Expression of immune-related
genes between high and low immunity groups. (F) Correlation analysis between 22 immune cells from CIBERSORT analysis. (G) Immune cell
infiltration between high and low immunity groups. (* P<0.05, ** P<0.01, *** P<0.001).
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WGCNA analysis. A total of 20 genes were identified by the LASSO

algorithm, which are IGHM, GPR18, CXCR3, etc (Figures 6A, B). The

top 30 genes ranked by Random Forest were TBC1D10C, GPR18,

CD247, etc (Figures 6C, D). In the the SVM-RFE algorithm, the error

reached its lowest value when the feature count was 40, comprising
Frontiers in Immunology 07
GPR18, ARHGAP9, C20orf174, etc (Figure 6E). The Venn diagram

results (Figure 6F) showed that a total of six overlapping genes (BATF,

CXCR3, GIMAP5, GPR18, ISG20, IGHM) were identified by the three

machine learning algorithms and all six genes were up-regulated in the

high immunity group (Figure 6G).
FIGURE 3

Immunoclustering and clinical treatment results. (A) Expression of genes associated with immune checkpoints between high and low immunity
groups. Results of drug sensitivity analysis: (B) AZD8055; (C) Bortezomib; (D) Camptothecin; (E) CDK9_5038; (F) CDK9_5576; (G) Dactinomycin;
(H) Dactolisib; (I) Daporinad; (J) Dinaciclib; (K) Epirubicin; (L) Gemcitabine; (M) Luminespib; (N) Podophyllotoxin bromide; (O) Rapamycin;
(P) Sabutoclax; (Q) Sepantronium bromide; (R) Staurosporine; (S) Vinblastine.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1446273
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1446273
3.6 Diagnostic capability of characteristic
genes for NBL immunoclustering

First, we analyzed the diagnostic ability of six characteristic

genes for immunoclustering of NBL in the training dataset by

plotting ROC curves. The analysis results suggested that all six

characteristic genes could serve as diagnostic markers for NBL

immunoclustering (BATF: AUC: 0.928, 95%CI: 0.905−0.950;
Frontiers in Immunology 08
CXCR3: AUC: 0.937, 95%CI: 0.913−0.958; GIMAP5: AUC: 0.930,

95%CI: 0.906−0.950; GPR18: AUC: 0.955, 95%CI: 0.935−0.971;

ISG20: AUC: 0.937, 95%CI: 0.916−0.956; IGHM: AUC: 0.941, 95%

CI: 0.921−0.959, Figures 7A–F). When analyzing the GSE16476 test

dataset, all the characteristic genes exhibited the same trend as in the

train dataset (BATF: AUC: 0.919, 95%CI: 0.857−0.971; CXCR3:

AUC: 0.850, 95%CI: 0.757−0.922; GIMAP5: AUC: 0.944, 95%CI:

0.898−0.980; GPR18: AUC: 0.935, 95%CI: 0.872−0.981; ISG20:
FIGURE 4

Results of Differential Expression Analysis and WGCNA Analysis. (A) Heatmap of the most significantly differentially expressed genes. (B) Volcano plot
of differentially expressed genes. (C) Relationship between b and R^2. (D) Plots of b and mean connectedness. (E) Clustering tree diagram for all
genes. (F) Heatmap of the relationship between the characteristic gene modules and immunity. Scatter plots of GS score and MM for each gene in
the MEgreen module among (G) low and (H) high immunity groups. (I) Venn diagram showing differentially expressed genes associated with
immunity between different groups.
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AUC: 0.970, 95%CI: 0.932−0.997; IGHM: AUC: 0.950, 95%CI: 0.887

−0.994, Figures 7G–L). In addition, when analyzing the GSE19274

test dataset, we found that all genes had satisfactory diagnostic

capabilities (BATF: AUC: 0.896, 95%CI: 0.825−0.954; CXCR3: AUC:
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0.889, 95%CI: 0.799−0.958; GIMAP5: AUC: 0.940, 95%CI: 0.890

−0.980; GPR18: AUC: 0.907, 95%CI: 0.841−0.963; ISG20: AUC:

0.932, 95%CI: 0.884−0.972; Figures 7M–Q) except for IGHM (AUC:

0.522, 95%CI: 0.403−0.638; Figure 7R).
FIGURE 5

Functional enrichment analysis results. Results of GO analysis: (A) Bar plot based on gene count, (B) Bubble plot based on gene ratio. Results of
KEGG analysis: (C) Bar plot based on gene count, (D) Bubble plot based on gene ratio.
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3.7 Correlation between characteristic
genes and immune cells

We further analyzed the relationship between six characteristic

genes and immune cells in NBL. The analysis revealed that BATF was

positively correlated with T cells CD4 memory activated, etc., and

negatively correlated with Macrophages M2, etc., (Figure 8A). CXCR3

had a significant positive association with CD4 memory-activated T

cells, etc., and a negative association with Mast cells activated, etc.,
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(Figure 8B). GIMAP5 was significantly positively correlated with T

cells CD4 memory activated, etc., and negatively correlated with Mast

cells activated, etc., (Figure 8C). GPR18 was found to be positively

correlated with T cells CD4 memory activated, etc., and negatively

correlated with Macrophages M2, etc., (Figure 8D). IGHM was

positively correlated with Plasma cells, etc., and negatively correlated

with Mast cells activated, etc., (Figure 8E). ISG20 was positively

associated with T cells CD4 memory activated, etc., and negatively

associated with Macrophages M2, etc., (Figure 8F).
FIGURE 6

Identification of characteristic gene using machine learning. The Lasso algorithm identified 20 characteristic genes that distinguish the immune
levels of NBL: (A) regression coefficients plot, (B) cross-validation plot. Top 30 characteristic genes ranked by random forest algorithm: (C) Out-Of-
Bag (OOB) errors against number of trees plot, (D) Feature importance plot. (E) 40 genes were identified by SVM-RFE algorithm. (F) Venn diagram
showing the 6 characteristic genes co-identified by LASSO, Random Forest, and SVM-RFE. (G) Heatmap of characteristic genes expression.
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3.8 Functional enrichment analysis of
characterized genes

In order to better understand the function of the characterized

genes in NBL, we divided the training group into high and low
Frontiers in Immunology 11
expression groups with the median gene expression value as the

threshold, and then performed GSEA_GO analysis on the

differentially expressed genes among these two groups. We

found that these genes participated in various immune-

associated pathways (IGHM: ie. antigen receptor−mediated
FIGURE 8

Correlation between characteristic genes and immune cells. (A) BATF, (B) CXCR3, (C) GIMAP5, (D) GPR18, (E) IGHM, (F) ISG20.
FIGURE 7

ROC curve of characteristic gene. Train dataset GSE49710: (A) BATF, (B) CXCR3, (C) GIMAP5, (D) GPR18, (E) ISG20, (F) IGHM. Test dataset GSE16476:
(G) BATF, (H) CXCR3, (I) GIMAP5, (J) GPR18, (K) ISG20, (L) IGHM; Test dataset GSE16476: (M) BATF, (N) CXCR3, (O) GIMAP5, (P) GPR18, (Q) ISG20,
(R) IGHM.
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signaling pathway; GPR18: ie. antigen receptor−mediated

signaling pathway; CXCR3: ie.immune response−activating cell

surface receptor signaling pathway; ISG20: ie. antigen receptor

−mediated signaling pathway; GIMAP5: ie. antigen processing

and presentation; BATF: ie. antigen receptor−mediated signaling

pathway Figure 9).
3.9 The effect of characteristic genes on
clinical features

We first analyzed the effect of five characteristic genes on the

prognosis of NBL patients (There was no expression information for

the IGHM gene in GSE85047 dataset). The Kaplan-Meier curve

demonstrated that increased expression of the ISG20 gene was

negatively associated with the prognosis of NBL patients (OS:

P=0.036, PFS: P=0.022). There is no association between the

expression of five other characterized genes and the survival of

NBL patients (Supplementary Figure S1). In addition, we analyzed

the correlation between immune-related characteristic genes and

clinicopathological features of NBL based on training dataset

(GSE49710). The results indicated that IGHM was highly expressed

in female patients (Supplementary Figure S2A), while CXCR3 and

GPR18 were highly expressed in patients younger than 1.5 years

(Supplementary Figure S2B). We subsequently investigated the

relationship between the state of MYCN, an independent

prognosticator of NBL, and the expression of characteristic genes.

The results showed that all the characteristic genes were

downregulated in NBL patients with MYCN amplification

(Supplementary Figure S2C). BATF, CXCR3, GIMAP5, GPR18,

IGHM have lower expression in high-risk neuroblastoma patients
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(Supplementary Figure S2D). Except for IGHM and ISG20, the other

characteristic genes were associated with NBL INSS stage, and class

label (Supplementary Figures S2E, F). We also found that CXCR3 and

GPR18 were downregulated in NBL patients with progression

(Supplementary Figure S2G).
4 Discussion

The relationship between NBL and immunity is a complex and

intricate one, due to the unique challenges posed by the cold tumor

microenvironment of NBL (42). Although considered cold tumors,

certain subgroups of NBL exhibit high immune infiltration, possibly

due to variations in genetic or epigenetic factors, immune cell

composition, and tumor microenvironment (43). These

differences underscore the importance of identifying diagnostic

biomarkers for effective patient stratification and personalized

treatment strategies. Immunotherapy, which leverages the

immune system to recognize and destroy cancer cells, has

emerged as a promising treatment option for various cancers

(44). However, its efficacy in NBL remains suboptimal,

necessitating further investigation into the underlying

mechanisms and potential therapeutic targets (45).

In this study, we analyzed data from the GEO database and

performed immunophenotyping using the ssGSEA method to gain

insights into the immune landscape of NBL. We employed machine

learning algorithms to screen six genes, BATF, CXCR3, GIMAP5,

GPR8, IGHM, and ISG20, that have been extensively investigated in

other cancers, including lymphoma, melanoma, leukemia, breast

cancer, multiple myeloma, hepatocellular carcinoma, and lung

cancer. Despite their diagnostic value and clinical significance in
FIGURE 9

GSEA_GO analysis results. (A) IGHM, (B) GPR18, (C) CXCR3, (D) ISG20, (E) GIMAP5, (F) BATF.
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other cancers, the roles of these biomarkers in NBL remain

largely unexplored.

Our study delved into the functions and associations of these

biomarkers with specific immune cell populations in NBL. We found

that these biomarkers were mainly positively correlated with tumor-

resistant immune cells (e.g., T cells, macrophages M1, etc.) and

negatively correlated with tumor-promoting immune cells (e.g.,

macrophages M2, etc.) (46). This suggests that these biomarkers

may play a crucial role in shaping the immune landscape in NBL,

ultimately influencing the balance between antitumor immunity and

immune evasion. For instance, BATF has been studied extensively in

lymphoma andmelanoma and is known to regulate T helper (Th) cell

differentiation and immune responses (47, 48). In NBL, BATF might

regulate Th cell differentiation, thereby shaping the immune

landscape and influencing the immune response against tumor

cells. CXCR3, which has been investigated in various cancers,

including colorectal cancer, melanoma, and renal cell carcinoma,

directs the migration of immune cells to the tumor site and has been

associated with prognosis (49, 50). CXCR3 might contribute to

recruiting cytotoxic T cells and natural killer cells to the tumor

microenvironment, thus enhancing the immune response against

NBL cells and affecting tumor growth and metastasis (51). GIMAP5

has been linked to the survival and homeostasis of lymphocytes and

may influence the clinical outcome in leukemia (52). GIMAP5 might

regulate T cell development and function within the tumor

microenvironment, possibly affecting the survival and function of

immune cells and the overall immune response against NBL cells

(53). GPR8, which has been linked to the regulation of cell growth

and proliferation in breast cancer, might regulate signaling pathways

crucial for cancer cell survival and metastasis, as well as influence the

immune microenvironment by modulating immune cell recruitment

and activation in NBL (54, 55). IGHM, associated with B-cell receptor

signaling, might modulate the immune response by promoting B cell

activation and antibody production in NBL, which could influence

tumor progression and response to therapy (56, 57). Lastly, ISG20,

which has been studied in hepatocellular carcinoma and lung cancer,

may play a role in modulating the type I interferon response and

activating immune cells crucial for antitumor immunity in NBL

(58, 59).

Current treatment options for NBL, such as chemotherapy,

radiation therapy, and immunotherapy, often result in suboptimal

prognosis (60). Precision medicine and effective patient

stratification are essential for improving therapeutic outcomes.

Our study found that treatment effectiveness in NBL patients was

highly correlated with the level of immune infiltration, emphasizing

the importance of understanding the immune landscape in NBL for

better patient management. Moreover, we conducted drug

sensitization analyses that could potentially inform personalized

treatment strategies for patients. In addition to conventional

chemotherapy, immunotherapy has shown promise in other solid

tumors. For example, pembrolizumab, a PD-1 inhibitor, has

significantly prolonged survival in non-small cell lung cancer

(60). This success has been attributed to the targeting of immune

checkpoint molecules, such as PD-1, which play a crucial role in

regulating immune responses and maintaining self-tolerance (61).

Pembrolizumab has become a mature second-line drug in clinical
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guidelines for non-small cell lung cancer, and numerous meta-

analyses and systematic reviews have shown clear evidence of its

ability to prolong survival compared to other treatments (62).

However, the development of immunotherapy in NBL is less

advanced compared to other solid tumors, such as gastric cancer

and lung cancer. The identification of novel immunotherapeutic

targets and strategies is crucial for improving treatment outcomes

in NBL. Our study contributes to the growing body of evidence

supporting the potential of immunotherapy in NBL by exploring

the immune landscape and identifying potential diagnostic

biomarkers. These findings provide a foundation for future

research and the development of more effective and targeted

treatments for this devastating pediatric cancer.
5 Conclusion

In conclusion, this study underscores the importance of

understanding the relationship between NBL and immunity, and

the potential role of immunotherapy as a treatment option. By

analyzing the immune landscape of NBL, we identified six genes -

BATF, CXCR3, GIMAP5, GPR8, IGHM, and ISG20-with

diagnostic and clinical significance in other cancers, but whose

roles in NBL remain largely unexplored. Our research delved into

the functions and associations of these biomarkers with specific

immune cell populations in NBL, uncovering positive correlations

with immune-positive cells and negative correlations with immune-

negative cells. Furthermore, our findings suggest that the level of

immune infiltration is crucial for treatment effectiveness in NBL

patients, and drug sensitization analyses may aid in developing

personalized treatment strategies.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

Ethical review and approval was not required for the study on

human participants in accordance with the local legislation and

institutional requirements. Written informed consent from the

patients/participants OR patients/participants legal guardian/next

of kin was not required to participate in this study in accordance

with the national legislation and the institutional requirements.
Author contributions

LZ: Writing – original draft. HL: Writing – original draft. FS:

Writing – review & editing. QW: Writing – original draft.

LJ: Writing – review & editing. AX: Writing – review & editing.

JC: Writing – review & editing. RY: Writing – review & editing.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1446273
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1446273
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by Hong Kong Research Grants Council/Area of

Excellence (AoE/M/707-18), Shenzhen-Hong Kong-Macau Science

and Technology Program Category C (SGDX20210823103537031),

General Research Fund (17125022) and National Natural Science

Foundation of China (81800754).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
Frontiers in Immunology 14
reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.

1446273/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Effects of characteristic gene expression on survival in NBL patients using

Kaplan-Meier curve analysis. OS: (A) BATF, (B)CXCR3, (C)GIMAP5, (D)GPR18,

(E) ISG20. PFS: (F) BATF, (G) CXCR3, (H) GIMAP5, (I) GPR18, (J) ISG2.

SUPPLEMENTARY FIGURE 2

Relationship between the expression of characteristic genes and

clinicopathologic features of NBL. (A) Sex, (B) Age, (C) MYCN status, (D)
High risk, (E) INSS stage, (F) Class label, (G) Progression. (Note: High risk:

Clinically considered as high-risk neuroblastoma. INSS stage: disease stage
according to INSS. Class label: Maximally divergent disease courses -

Favorable: patient survived without chemotharapy for at least 1000 days

post diagnosis; Unfavorable: patient died despite intensive chemotherapy.
Progression: Occurrence of a tumor progression event).
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