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and Peter J. Darlington1,2*
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Introduction: Adrenergic receptors regulate metabolic, cardiovascular, and

immunological functions in response to the sympathetic nervous system. The

effect of b2-adrenergic receptor (AR) as a high expression receptor on different

subpopulations of T cells is complex and varies depending on the type of ligand

and context. While traditional b2-AR agonists generally suppress T cells, they

potentially enhance IL-17A production by Th17 cells. The effects of

pharmacological drugs that count as biased agonists of AR like nebivolol are

not completely understood. We investigated the impact of nebivolol on human

memory CD4+ T (Th1, Th2, Th17) cells and polarized naive Th17 cells, highlighting

its potential for IL-17A suppression via a non-canonical b2-AR cell

signaling pathway.

Methods: The effects of nebivolol were tested on healthy human peripheral blood

mononuclear cells, purified memory Th cells, and polarized naive Th17 cells

activated with anti-CD3/anti-CD28/anti-CD2 ImmunoCult reagent. IFN-g, IL-4,
and IL-17A, which are primarily derived from Th1, Th2, and Th17 cells, respectively,

were quantified by ELISA and flow cytometry. IL-10 was measured by ELISA. Gene

expression of RORC, ADRB1, ADRB2, and ADRB3 was evaluated by qPCR. The

ADRB2 gene was knocked out in memory Th cells using CRISPR/Cas9. Protein

expression of phosphorylated serine133-CREB and phosphorylated NF-kB p65

was assessed by Western blot. Proliferation was assessed by fluorescent dye

loading and flow cytometry.

Results: Nebivolol treatment decreased IL-17A and IFN-g secretion by activated

memory Th cells and elevated IL-4 levels. Nebivolol reduced the proportion of

IL-17A+ Th cells and downregulated RORC expression. Unlike the b2-AR agonist

terbutaline, nebivolol inhibited the shift of naive CD4+ T cells toward the Th17

phenotype. IL-10 and the proliferation index remained unchanged. Nebivolol-

treated b2-knockout memory Th cells showed significant inhibition of b2-AR-
mediated signaling, evidenced by the absence of IL-17A suppression compared
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to controls. Phosphorylation of the NF-kB p65 subunit was inhibited by nebivolol,

but CREB phosphorylation was not changed, suggesting a selective

transcriptional control.

Conclusions: The findings demonstrate that nebivolol acts through a b2-AR-
mediated signaling pathway, as a distinctive anti-inflammatory agent capable of

selectively shifting Th17 cells and suppressing the phosphorylation of NF-kB. This
highlights nebivolol’s potential for therapeutic interventions in chronic

autoimmune conditions with elevated IL-17A levels.
KEYWORDS

nebivolol, Th17 cells, IL-17A, biased agonist, beta-adrenergic receptor, anti-inflammatory
response, NF-kB activation
1 Introduction

The sympathetic nervous system (SNS) is best known for its role

in the fight or flight response where the catecholamines epinephrine

and norepinephrine (NE) modulate metabolic, cardiovascular, and

immune systems (1–3). Complex interactions regulate adaptive

immune functions through neuroendocrine mechanisms (4). In

the spleen and lymph nodes, sympathetic nerve fibers run alongside

the location where T cells and dendritic cells (DCs) reside,

indicating the potential neural modulation of T-cell functions (5–

7). NE acts on T cells through adrenergic receptors (ARs). Several of

the AR family members are classical G protein-coupled receptors

(GPCRs). Upon stimulation, b2-AR initiates a canonical pathway

involving Gs proteins, leading to adenylyl cyclase (AC) activation,

an increase in cAMP production, and phosphorylation of cAMP

response element-binding protein (CREB) on Ser133 by protein

kinase A (PKA)(8, 9). These processes modulate T cell activation,

proliferation, and production of certain cytokines including IL-2

and IFN-g (10, 11). Receptor desensitization and signal termination

occur through phosphorylation by regulatory kinases, such as

GPCR kinases (GRKs), followed by b-arrestin 1 activation at

Ser412 (8, 12). b2-ARs also engage in non-canonical, G protein-

independent signaling via b-arrestin 2 which leads to sustained

ERK1/2 activation (13). These pathways could regulate immune

responses during chronic sympathetic tone by distinct downstream

effects, including modulation of gene expression and inhibition of

NF-kB activation (14). NF-kB is widely considered to be a

proinflammatory transcription factor that drives the expression of

IFN-g and IL-17A in T cells, and its activity can be measured by

assessing the phosphorylation of NF-kB p65 subunit at position

Ser529 (15, 16).

Accumulating evidence supports a role for the b2-AR subtype in

regulating T cells. Human CD4+ T (T helper) cells and CD8+ T (T

cytotoxic) cells exhibit a predominant expression of b2-ARs (17).

Memory T cells, crucial for faster and more effective immune

responses upon antigen re-exposure, exhibit increased b2-AR
02
expression compared to naive T cells, suggesting heightened

responsiveness to immune and gene expression changes induced by

the SNS (18, 19). T helper 1 (Th1) cells produce IFN-g and express

the transcription factor TBX21; Th17 cells produce IL-17A, among

other cytokines, and express the transcription factor RORg (RORC);
and Th2 cells express IL-4, IL-5, and the transcription factor GATA3

(20). Activation of naive CD4+ T cells in the presence of NE and IL-

12 in vivo induced more IFN-g and polarized the response toward

Th1 (21). b2-ARs are also expressed on dendritic cells, and NE

treatment reduced IL-12 secretion, altering the IL-12/IL-23 balance.

As a result, stimulated DCs promoted T helper cells to produce high

IL-17A and lower IFN-g (22). Consistent findings were observed by

stimulating b2-AR with salbutamol in murine bone marrow-derived

DC, which secreted IL-6 and IL-23, and upregulated the Th17

response (23). Similarly, salbutamol-treated DCs reduced the

secretion of Th2 cytokine IL-4 (24). Our reports demonstrated that

a specific b2-agonist drug (terbutaline) significantly increased IL-17A
levels in a PKA-dependent manner in human memory Th cells (25,

26). Therefore, agonists of the b2-ARs may shift the balance of Th1,

Th2, and Th17 cells by promoting a Th1 and/or Th17 bias inmemory

Th cells. Furthermore, they may alter the polarization of naive T cells

as they shift to Th17 effector cells.

Emerging studies on b2 biased agonist drugs showed anti-

inflammatory properties (27) by increasing the serum levels of IL-

10, which is mainly produced by regulatory T cells (Tregs) (28), and

inhibiting IL-2 production in activated human T cells (29). Biased

agonists are ligands that preferentially activate one pathway over

another, leading to distinct signaling outcomes compared to

traditional agonists. Nebivolol is a third-generation b-blocker that

is highly selective for b1-AR (30). Moreover, it can induce nitric oxide

through the b3-AR (31). Nebivolol has a prominent pharmacological

mechanism involving a b-arrestin biased agonist at the b2-AR (32),

and it is FDA-approved to treat hypertension and heart failure (33,

34), but its impact on the immune system is not completely

understood. We tested nebivolol on human memory Th1, Th2,

Th17, and IL-10 and differentiated naive Th cells into Th17 cells,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1446424
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hajiaghayi et al. 10.3389/fimmu.2024.1446424
to determine if it shifted the immune response toward an anti-

inflammatory response through the b2-AR cell signaling pathways.
2 Materials and methods

2.1 Isolation of human peripheral blood
mononuclear cells

Blood was collected from healthy participants after an informed,

signed consent had been provided. The Concordia University Human

Research Ethics Committee, which follows the Declaration of

Helsinki guidelines, approved the study (certificate 30009292).

Health was determined by self-reporting during a semistructured

interview. The exclusion criteria included those under 18 years of age,

those having specific medical conditions, or those taking ineligible

medications. If a participant took recreational drugs or was

vaccinated in the past 2 weeks, their blood draw was rescheduled.

PBS (1×) was used to dilute heparinized peripheral blood at a 1:1 v/v.

In 50-ml conical tubes, 30 ml of diluted blood was layered over 15 ml

of lymphocyte separation solution (Wisent Bioproducts, CA). The

sample was centrifuged at 624×g for 30 min at room temperature

(RT). In a separate 50-ml tube, mononuclear cells were collected and

centrifuged at 433×g for 15 min with 25 ml of PBS. The supernatant

was discarded, and the pellet was resuspended in 25 ml of PBS and

centrifuged at 400×g for 12 min again. In order to isolate the T cells

from the cell pellet, PBS containing 2% heat-inactivated fetal bovine

serum (FBS) was used as a resuspension solution.
2.2 Isolation and purification check of
CD4+ naive and memory T cells

Naive (CD3+CD4+CD45RA+CD45RO−) and memory

(CD3+CD4+CD45RA−CD45RO+) T cells were isolated from

peripheral blood mononuclear cel ls (PBMCs) in the

recommended medium (PBS containing 2% FBS and 1 mM of

EDTA) by using EasySep®Human Naive CD4+ T Cell Isolation Kit

II and human memory CD4+ T-cell enrichment kit, respectively

(StemCell Technologies, Vancouver, Canada), according to the

manufacturer’s instructions. Purity was analyzed by flow

cytometry (FACSVerse, BD Biosciences, CA) using anti-CD3-

Peridinin-Chlorophyll-Cyanine5.5 (BD Biosciences, clone OKT3),

anti-CD4-allophycocyanin (BD Biosciences, clone RPA-t4), anti-

CD45RA-fluorescein isothiocyanate (BD Biosciences, clone HI100),

and anti-CD45RO-phycoerythrin (BD Biosciences, clone UCHL1)

mAbs. Purity was found to be >90% (Supplementary Figures).
2.3 Stimulation, culture, and drug
treatment of memory Th cells

Purified memory Th cells were suspended in RPMI 1640

medium (Wisent Bioproducts) containing 10% heat-inactivated

FBS, 1% penicillin and streptomycin, and 1% Glutaplus (Wisent

Bioproducts) at the final concentration of 0.3 × 106 cells/ml and
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activator (StemCell Technologies). In the next step, nebivolol

hydrochloride (Sigma-Aldrich, CA, Vancouver, Canada) dissolved

in glycerol was added to the purified memory Th cells and

incubated for 5 days in 96-well U-bottom plates at a final

concentration of 10 mM. Since nebivolol was dissolved in glycerol,

we included vehicle control groups with only glycerol added at an

equivalent dilution. The activated memory Th cells were also

treated with another b2-biased agonist carvedilol (10 mM, Sigma-

Aldrich, CA) or combined with a selective b1-AR antagonist

metoprolol tartrate (10 mM, Sigma-Aldrich, CA) or a non-

selective b-AR antagonists bupranolol (10 mM, Cayman

Chemical, CA) and H89 as a PKA inhibitor (2 mM, Sigma-

Aldrich, CA) 30 min before adding the activator.
2.4 In vitro Th17 cell polarization and
treatment of CD4+ naive T cells

Naive CD4+ T cells were cultured at 0.3 × 106 cells/well in X-

VIVO™ 15 serum-free hematopoietic cell medium (Lonza, USA).

Cells were expanded with ImmunoCult™ human CD2/CD3/CD28 T-

cell activator (StemCell Technologies, Vancouver, Canada). Four types

of cultures were established: 1) non-polarizing conditions as a control;

2) Th17-polarizing conditions in the presence of human recombinant

TGF-b (1 ng/ml; Cedarlane, CA), human recombinant IL-21 (25 ng/

ml; Cedarlane, CA), human recombinant IL-23 (25 ng/ml; Cedarlane,

CA), anti-IL-4 (10 mg/ml; Abcepta, CA), and anti-IFN-g (10 mg/ml;

Abcepta, CA); 3) Th17-polarizing conditions as above plus 10 mM of

nebivolol; and 4) Th17-polarizing conditions with 10 mM of

terbutaline. After 7 days of culture, the following procedures

were performed.
2.5 Cytokine analysis using ELISA

The culture supernatants of either PBMCs, memory Th cells, or

polarized Th17 cells were collected after incubation by centrifugation

of the 96-well culture plate at 100×g for 6 min to remove any debris.

The supernatant was analyzed for IL-4, IFN-g, IL-10 (BD Biosciences),

and IL-17A (Thermo Fisher Scientific, Burlington, Canada) with

ELISA kits following the manufacturer’s instructions. A standard

curve was generated for each assay, with limits of detection of 500

pg/ml for IL-17A, IL-4, and IL-10 and 300 pg/ml for IFN-g. The
supernatants were diluted accordingly with assay diluent. Two

technical ELISA replicates of the standard curve and each

experimental group were done. Data were acquired on a

spectrophotometer at 450 nm with a 570 nm correction factor

(BioTek Agilent, Santa Clara, USA, Fisher Scientific).
2.6 Flow cytometry

Intracellular IL-17A and IFN-g were measured using established

intracellular cytokine staining (ICS) procedures (35). In brief, after

the cell culture was complete, the cells were incubated with 0.5 mg/ml
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of ionomycin, 10 mg/ml of brefeldin A, and 0.05 mg/ml of phorbol 12-

myristate 13-acetate (Sigma-Aldrich Millipore, Oakville, Canada) for

four hours at 37°C with 5% CO2. The cells were fixed and

permeabilized with a kit following the manufacturer’s instructions

(BD Biosciences). Cells were incubated with saturating

concentrations of fluorochrome-labeled Abs. The antibodies were

CD4-allophycocyanin (BD Biosciences, clone RPA-t4), IL-17A-

phycoerythrin (R&D Systems, Minneapolis, USA, clone 41802),

INF-g-Brilliant Violet 421 (BD Biosciences, clone B27), and IL-4-

phycoerythrin-Cyanine7 (BD Biosciences, clone 8D4-8). Samples

were incubated for 45 min on ice in the dark. Two washes (493×g,

5 min) with a staining buffer (1% FBS in 1× phosphate buffered

saline) were done, and the samples were resuspended in a 500-ml
staining buffer in microcentrifuge tubes. Each set of runs consisted of

three technical replicates of each experimental group. At least 50,000

events were obtained on the flow cytometer (FACSVerse, BD

Biosciences) and analyzed with FlowJo software (BD Biosciences).
2.7 Cell proliferation and viability
assessment by using CFDASE and
7AAD staining

According to a published protocol (26), the tracking dye 5(6)-

carboxyfluorescein diacetate N-succinimidyl ester (CFDASE) was used

to measure proliferation. Memory Th cells were labeled with CFDASE,

incubated in the specified activation conditions for 5 days, and then

stained for a surface marker with CD4-APC. After 30 min, cells were

washed and 5 ml of 7AAD-Peridinin-Chlorophyll-Protein reagent (BD

Biosciences) was added to the cell suspension and incubated in the dark

for 15 min at room temperature. In each group, at least 50,000 cells in

three replicates were analyzed with a flow cytometer (BD Biosciences,

CA, FACSVerse). The division index, proliferation index, and viability

were determined in CD4-gated cells using the cell proliferation tool

(BD Biosciences).
2.8 mRNA extraction and quantitative real-
time PCR

The qPCR analysis was done according to published protocols

(26). Briefly, memory Th cells or polarized naive Th17 cells were

cultured with activating and drug conditions. At least 2 × 106 cells were

collected from each experimental group, and total RNA was extracted

using the PureLink™ RNA Mini Kit (BD Biosciences). The RNA

concentration and purity were measured using a spectrophotometer

(NanoDrop™ 2000c, Thermo Scientific). The RNA samples were then

converted to cDNA using iScript™ Reverse Transcription Supermix

for RT-qPCR (Bio-Rad Laboratories, USA). At least two technical

replicates of each independent sample were used for real-time

quantitative polymerase chain reaction (qPCR) using TaqMan™

gene probes from Thermo Fisher Scientific to measure ADRB1

(Hs02330048), ADRB2 (Hs00240532), ADRB3 (Hs_00609046_m1),

RORC (Hs01076112), and the housekeeping gene PPIA

(Hs99999904_m1). The housekeeping gene was normalized to the

average of its expression and shown as a fold increase in relative
Frontiers in Immunology 04
expression 2−DDCT. Fold change is calculated as the ratio of the

normalized expression level of the target gene in the treated sample

to that in the activated control group which is set to 1.
2.9 Knocking out the ADRB2 gene in
memory Th cells using CRISPR/Cas9-based
gene editing

Memory Th cells were activated at a concentration of 1 × 106

cells/ml using Dynabeads™ Human T-Activator CD3/CD28

(Fisher Scientific Ottawa, ON, #11131D) at a 1:1 cell to bead ratio

in RPMI 1640 medium supplemented with 10% FBS, 100 U/ml of

penicillin/streptomycin, and 100 IU/ml of recombinant human IL-2

(Fisher Scientific Ottawa, ON). Cells were cultured at 37°C with 5%

CO2 for 2 days. After incubation, activator beads were removed by

pipetting gently using a magnetic tube rack for 1–2 min to separate

cells from the beads. The supernatant containing the cells was

transferred to a fresh tube and maintained at 1 × 106 cells/ml with

daily addition of complete culture media.

According to published protocols (36, 37), before electroporation

briefly, 100 pmol of optimized multi single-guide RNA (sgRNA)

(payload sequences attached in Supplementary Table 1) (Synthego,

USA) and 50 pmol of Cas9 (Thermo Fisher, CA) per 1 million cells

were mixed in 5 ml of Resuspension Buffer R and incubated at room

temperature for 10 min to form the Cas9-ribonucleoprotein (RNP)

complex. T cells (2 × 106) were washed with PBS, resuspended in Buffer

R, and mixed with Cas9/gRNA complex. Electroporation was

performed using the Neon™ 100-ml tip and program #24 (1,600 V,

10 ms, 3 pulses). Post-electroporation, the cells were incubated in a

recovery buffer containing 10% FBS, 100 U/ml of penicillin/

streptomycin, 400 IU/ml of recombinant human IL-2 at 37°C, and

5% CO2 for 72 h. Editing efficiency was assessed using ADRB2mRNA

expression levels via RT-qPCR in non-electroporated, non-targeting

gRNA (nt-gRNA), T cell receptor-a constant (TRAC) multi-sgRNA

(positive control), andADRB2multi-sgRNA electroporated conditions.

Then, cells were treated with nebivolol at a final concentration of 10

mM for 5 days to assess the impact of b2-AR gene depletion on IL-

17A production.
2.10 Western blot

A published protocol was followed to prepare whole-cell lysates

after treatment of activated memory Th cells with nebivolol for 15 min

(26). Protein concentrations were determined with a Bradford assay kit

(Bio-Rad). For separation by electrophoresis, 15 mg of total protein in

two technical replicates of each sample was loaded onto SDS-

polyacrylamide gels according to standard protocols (SDS-PAGE) and

then transferred to nitrocellulose. Membranes were blocked with 5%

(wt/vol) non-fat milk (Anatol Spices, Montreal, Canada) in Tris-

buffered saline with 0.1% Tween-20 (TBST) overnight at 4°C and

then again incubated overnight at 4°C with recommended dilutions

of primary antibodies. Antibodies were against human phospho-ser529

NF-kB p65 (1/500, clone A21012B, BioLegend, San Diego, USA), NF-

kB p65 antibody (1/1,000, clone 14G10A21, BioLegend, San Diego,
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USA), phospho-Ser133 CREB1 (1/700, rabbit polyclonal, Cusabio,

Cedarlane), phospho-Ser412-b-arrestin 1 (1/1,000, clone mAb #2416,

Cell Signaling Technology, Danvers, USA), b2-AR (1/500, clone 4A6C9,

Novusbio, Cedarlane), GAPDH (1/15,000, 10B4E3, MA000071M1m,

Cusabio, Cedarlane), and a‐tubulin (1/1,000, Santa Cruz Biotechnology

Inc., USA). Subsequently, membranes were repeatedly washed with

TBST and incubated for 2 h with the appropriate HRP-conjugated

secondary mouse antibody (1/1,500, Bio-Rad Laboratories) or

secondary goat anti‐rabbit IgG HRP (1/5,000, Cusabio, Cedarlane) in

5% skim milk. Immunoreactivity was detected using the ECL prime

reagent (GE Healthcare, Chicago, USA), and then the

chemiluminescence signal was recorded in the Image Lab (Bio-Rad

Laboratories). Data were analyzed with Image Lab software (Bio-Rad

Laboratories). Total a-tubulin levels were used as a loading control.
2.11 Statistical analysis

Statistical analyses were conducted using ANOVA with Tukey’s

multiple comparison tests to assess the effects of treatment and culturing

conditions on the studied parameters. All data are presented as mean ±

SEM. Statistical significance was determined using p-value thresholds:

*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. The number of

independent biological experiments and technical replicates for each

experimental condition is detailed in the legend of each figure. All

analyses were performed using GraphPad Prism 9 software.
3 Results

3.1 Nebivolol promotes an anti-
inflammatory shift in T helper cells,
effectively suppressing Th1 and Th17 cells

To test the effects of nebivolol on Th1, Th2, and Th17 cytokines,

activated human PBMCs were used in cell culture experiments.
Frontiers in Immunology 05
Nebivolol had a trend of decreasing IFN-g, showed a trend of

increasing IL-4, and significantly decreased IL-17A when compared to

the control group without treatment and the vehicle control

(Figures 1A–C). In contrast, our findings indicate that carvedilol,

another b2 biased agonist, did not significantly alter cytokine

production (Figures 1A–C). Measurements from PBMC experiments

confirmed that nebivolol at the concentration of 10 mM did not cause

cellular cytotoxicity (Figure 1D). In the next step, purified memory

CD3+CD4+CD45RA−CD45RO+ T cells were extracted from PBMCs to

a high degree of purity (Supplementary Figure). Memory Th cells were

activated for 5 days with anti-CD3/anti-CD28/anti-CD2, with or

without nebivolol treatment. Nebivolol-treated cells showed a

significant decrease in IFN-g and IL-17A production while increasing

IL-4 levels compared to the activated control group without treatment.

There was no significant change in IL-10 levels between the treated and

untreated groups after activation (Figures 2A–D). To underscore

nebivolol’s ability to shift cytokine secretion, intracellular cytokine

staining was conducted on memory Th cells (Figures 3A–D).

Nebivolol exhibited a decreasing trend in the proportion of IFN-g+, an
increasing trend in the proportion of IL-4+, and a significant decrease in

the proportion of IL-17A+memoryTh cells (Figures 3E–G).Despite the

changes in cytokines IFN-g and IL-4, there were no changes in TBX21

and GATA3 as the main transcription factors of Th1 and Th2,

respectively, in response to nebivolol (Figures 3H, I). However, the

inhibition of IL-17A was concurrent with mRNA levels since nebivolol

inhibited the expressionofRORC, which is amain transcription factor of

Th17 cells (Figure 3J). Together, the data indicate that nebivolol causes

an anti-inflammatory shift, suggesting that it inhibits the Th17

development pathway.
3.2 Nebivolol inhibits naive CD4+ T-cell
shift toward the Th17 phenotype when
compared to terbutaline

To further illustrate the impact of the b2-AR biased agonist on

the polarization shift of naive CD4+ T cells in the context of Th17
FIGURE 1

IFN-g, IL-4, and IL-17A secretion by PBMCs treated with nebivolol or carvedilol. PBMC samples were not activated or activated with anti-CD3/anti-
CD28/anti-CD2(Act) for 4 days with nebivolol (Neb) or carvedilol (Carv) in the concentration of 10 mM as compared to the equivalent dilution of
vehicle control (VC). The (A) IFN- g, (B) IL-4, and (C) IL-17A levels in cell culture supernatants were measured by ELISA. (D) The cell viability of the
cells was measured by trypan blue. Pooled data are expressed as mean ± SEM of seven to nine independent biological experiments. One-way
ANOVA followed by Tukey’s multiple comparison tests was performed. *<0.05, **<0.01, ***p<0.001, and ****p<0.0001. ns, non-significant.
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cell development, we initially examined the expression levels of

ADRB1, ADRB2, and ADRB3 in RNA extracted from naive Th cells.

Naive T cells expressed ADRB1 and ADRB2; however, ADRB3 was

notably absent (Figure 4A). Subsequently, nebivolol or terbutaline

was administered to naive CD4+ T cells that were activated with

Th17-polarizing cytokines and blocking antibodies. Nebivolol

demonstrates a significant reduction in IL-17A levels within cell

culture supernatants, accompanied by a suppression of RORC

expression in Th17-polarized naive Th cells (Figures 4B, C).

Moreover, it effectively decreases the percentage of CD4+IL-17A+

cells (Figures 4D, E). Conversely, terbutaline exhibits an opposing

effect, elevating IL-17A levels, enhancing RORC expression, and

increasing the proportion of CD4+IL-17A+ cells (Figures 4B–E).

These findings confirm that b2-AR activation by a biased agonist

hinders the shift of human naive Th cells toward a Th17 phenotype,

whereas b2-AR agonist promotes such a shift.
3.3 No significant proliferation and viability
effects under nebivolol treatment in
memory Th cells

The changes in cytokines and percentages suggested that

nebivolol could influence proliferation. However, nebivolol did

not change the proliferation index and division index of memory

Th cells significantly after treatment (Figures 5A–E). Nebivolol did

not change cell viability when compared to activation conditions, as

measured by the percentage of necrotic or late apoptotic memory

CD4+ T cells with 7AAD after 5 days of cell culture (Figure 5F).
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3.4 Nebivolol’s effect on IL-17A is b2-
AR-dependent

To investigate receptor involvement, we measured the

expression of ADRB1, ADRB2, and ADRB3 in memory Th cells.

Similar to observations in naive Th cells, the freshly isolated resting

memory Th cells expressed ADRB1 and ADRB2, but not ADRB3

(Figure 6A). Next, the expression of ADRB2 in memory Th cells was

evaluated after a 5-day activation with or without drug treatment.

ADRB2 levels were higher in the non-activated control condition as

compared to the activation or activation with nebivolol conditions

(Figure 6B). The expression level of the b2AR protein had a trend to

be diminished at the 5-day timepoint which resembles the 5-day

mRNA expression data (Figures 6C, D).

Next, we used a pharmacological approach to block receptors in

cell culture experiments. The b1-AR antagonist (metoprolol) and

the pan-b1,2,3-AR antagonist (bupranolol) were applied to cell

cultures of activated memory Th cells. Metoprolol did not prevent

nebivolol from inhibiting IL-17A; in contrast, bupranolol prevented

nebivolol from inhibiting IL-17A (Figures 7A, B). To confirm the

specific receptor involved in nebivolol’s function, we used

electroporation with b2-AR-specific multi-sgRNA which

significantly reduced b2-AR mRNA levels compared to the non-

targeting and non-electroporated cells (control). The viability of

cells before and after electroporation was maintained, and the

CRISPR/Cas9-mediated knockout of TRAC as a positive control

demonstrated over 90% efficiency in mRNA level reduction

(Supplementary Figures). Quantitative RT-PCR analysis revealed

a knockout efficiency of approximately 80%, confirming the
FIGURE 2

IFN-g, IL-4, IL-17A, and IL-10 secretion by memory Th cells treated with nebivolol. Memory Th cells were not activated or activated with anti-CD3/
anti-CD28/anti-CD2 for 5 days, and the (A) IFN-g, (B) IL-4, (C) IL-17A, and (D) IL-10 levels in cell culture supernatants were measured by ELISA and
expressed as fold change compared to the Act group, which was set to 1.0 (dotted line). Pooled data are expressed as mean ± SEM of 10
independent biological experiments. One-way ANOVA followed by Tukey’s multiple comparison tests. *<0.05 and ****p<0.0001. ns, non-significant.
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successful targeting of the b2-AR gene (Figure 7C). Subsequent

nebivolol treatment significantly inhibited the b2-AR-mediated

signaling pathways in b2-AR knockout memory Th cells, as

indicated by the lack of suppression of IL-17A production

compared to the control (Figure 7D). These findings suggest that

nebivolol acts in a b2-AR-dependent manner, with ADRB3 not

being expressed in the cells, ruling it out as a potential ligand

for nebivolol.
3.5 Under non-canonical signaling,
nebivolol does not change CREB
phosphorylation but inhibits the
phosphorylation of NF-kB p65

As previously mentioned, our findings indicate that the b2-AR
agonist terbutaline enhances IL-17A production through a mechanism

dependent on PKA and CREB pathways (26). Hypothesizing that

nebivolol, acting as a biased agonist, might diverge from this pathway,

we investigated its effects on CREB phosphorylation. Memory Th cells

were activated and treated with nebivolol or terbutaline. Nebivolol did
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not change the phosphorylation levels of CREB after 15 min although

terbutaline showed a significant increase as was expected (Figures 8A,

B).Whenmemory Th cells were co-treated with H89 (a PKA inhibitor)

and nebivolol, it did not abrogate the effects of nebivolol on IL-17A

(Figure 8C). Thus, the canonical G-protein cAMP–PKA–CREB axis

does not appear to be part of nebivolol’s signaling pathway. Given the

potential involvement of the NF-kB signaling pathway, we further

examined the phosphorylation of NF-kB p65 in activated memory Th

cells. Nebivolol inhibited the phosphorylation of the NF-kB p65

subunit at position Ser529 (Figures 9A, B). Moreover, there was no

significant change in phosphorylation of the b-arrestin 1-mediated

desensitization after 15 min of treatment (Supplementary Figures).

Thus, nebivolol exerts its anti-inflammatory shift by suppressing NF-

kB activity possibly through an alternative pathway in memory

Th cells.
4 Discussion

T cells express AR and respond to adrenergic ligands, but how

this impacts pro- or anti-inflammatory cytokine expression is not
FIGURE 3

Intracellular cytokine staining and expression of transcription factor genes associated with Th1, Th2, and Th17 in memory Th cells treated with
nebivolol. Memory Th cells were not activated or activated with anti-CD3/anti-CD28/anti-CD2 for 5 days, and the samples were stained for
intracellular cytokines with or without nebivolol treatment and analyzed by flow cytometry. Representative dot plots are shown for CD4 and each of
IFN-g, IL-4, and IL-17A antibodies on memory Th lymphocytes. (A) Non-activated cells, (B) activated cells, (C) activated cells plus nebivolol, (D)
vehicle control. (E) The proportion of memory Th cells expressing IFN-g is shown as the percentage of IFN-g+CD4+ T cells. (F) The proportion of
CD4+ T cells expressing IL-4 is shown as the percentage of IL-4+CD4+ T cells. (G) The proportion of CD4+ T cells expressing IL-17A is shown as the
percentage of IL-17A+CD4+ T cells. Expression of (H) TBX21, (I) GATA3, and (J) RORC in RNA extracted from memory Th cells, shown as the relative
amounts normalized to housekeeping RNA and compared to the Act group, which was set to 1.0 (dotted line). Pooled data are expressed as mean ±
SEM of five independent biological experiments. One-way ANOVA followed by Tukey’s multiple comparison tests. *<0.05, **<0.01, and
****p<0.0001. ns, non-significant.
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completely understood. This study demonstrated that nebivolol

exerts a notable inhibitory effect on activated naive and memory

Th17 cells, impacting IL-17A secretion levels and the expression of

the transcription factor (RORC). The data indicate the involvement

of a non-canonical NF-kB signaling pathway.

Our initial experiments on PBMCs revealed that nebivolol

exhibits anti-inflammatory effects by reducing IFN-g and IL-17A

levels while inducing IL-4 production. In contrast, carvedilol did

not demonstrate these effects, highlighting the biased and drug-

specific nature of nebivolol’s immunomodulatory properties. Since

PBMCs are a mixed population, we directed further studies on

purified memory and naive Th cells. Consistent with an anti-

inflammatory profile, nebivolol inhibited IFN-g and augmented

IL-4 in memory Th cells although the proportions of Th1 and Th2

and the respective transcription factors TBX21 and GATA3 did not
Frontiers in Immunology 08
show significant alterations. This discrepancy between cytokine

levels and mRNA expression of transcription factors suggests that

potential post-transcriptional or post-translational regulatory

mechanisms are at play (38). The drug treatment may influence

protein stability, translation efficiency, or cytokine secretion

pathways, rather than directly impacting mRNA expression of

TBX21 and GATA3 which needs further investigation. When

examining the levels of IL-10, there was no significant effect of

nebivolol. IL-10 is primarily produced by Tregs (28) and has a

general anti-inflammatory profile. This lack of effect may stem from

a selective impact on certain T-cell subsets or signaling pathways.

Moreover, we did not assess the proportion of Tregs present in

memory Th cell preparations. Our findings demonstrated that

nebivolol mitigated a shift of naive Th cells toward the Th17

phenotype, whereas terbutaline, acting as a b2-AR agonist,
FIGURE 4

Nebivolol inhibits naive Th cell shift toward the Th17 phenotype, in contrast to terbutaline which augments the shift. (A) Expression of ADRB1–3 in
RNA extracted from naive CD4+ T cells shown as the relative amounts normalized to housekeeping RNA. (B) Naive Th cells were activated with
polarizing cytokines and blocking antibodies (Th17) with treatment with nebivolol (Neb) or terbutaline (Terb) for 7 days, and a representative of IL-
17A levels in cell culture supernatants was shown. (C) RNA expression of the Th17 cell-specific transcriptional factor RORC differentiated Th17 cells
shown as the relative amounts normalized to housekeeping RNA and compared to shifted Th17 cells, which was set to 1.0 (dotted line). (D) A
representative of overlapping histogram and (E) pooled data of intracellular cytokine staining shown for CD4+IL-17A+ cell percentage in polarized
Th17 cells after treatment with nebivolol or terbutaline. Pooled data are expressed as mean ± SEM of five independent biological experiments. One-
way ANOVA followed by Tukey’s multiple comparison tests. *<0.05, **<0.01, ***p<0.001, and ****p<0.0001.
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promoted the shift toward Th17 cells. These results imply that

nebivolol inhibits Th17 differentiation and function through a

distinct mechanism of action, activating b2-AR on CD4+ T cells

in a manner different from that of a traditional agonist. Overall,

nebivolol has the profile of being anti-inflammatory by lowering

Th1 and Th17 while augmenting Th2 cell responses.

The study further probed the expression patterns of ADRB1–3

in isolated naive and memory human Th cells, shedding light on the

receptors’ differential presence in these subsets. Naive and memory

Th cells were devoid of ADRB3 but expressed ADRB1 and ADRB2.

These findings are novel since previous research reported that

immune cells express b2-AR predominantly; however, memory

Th cells were not assessed previously (39). Given nebivolol’s

higher affinity for b1-AR as a blocker (30), we introduced the AR
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antagonists into the experimental setup to determine which

receptor was mediating the effect. The distinct responses observed

with the b1-AR antagonist and non-selective b-AR antagonist

emphasize the unique anti-inflammatory effects of nebivolol,

consistent with previous findings (40). Using a CRISPR/cas9

method of genome targeting ADRB2 which enables rapid and

flexible experimental manipulation (41), we achieved an 80%

knockout efficiency in human memory Th cells . This

demonstrated that nebivolol’s inhibitory function on IL-17A

production is mediated through the b2-AR pathway.

Our investigation into the expression of b2-AR following

activation and treatment over 5 days at both the mRNA and

protein levels revealed a notable reduction in receptor expression

in memory Th cells treated with or without nebivolol compared to
FIGURE 5

T-cell proliferation and viability were measured by flow cytometry assay. Memory Th cells were not activated or activated with anti-CD3/anti-CD28/
anti-CD2 for 5 days. Representative histograms of the proliferation of memory Th cells in cultures with different groups including (A) activated cells
overlayed with non-activated cells, (B) activated cells plus nebivolol overlayed with activation-only condition, and (C) activated vehicle control
overlayed with activation-only cells. (D) The proliferation index of memory Th cells in culture with activation and nebivolol. (E) The division index of
pooled data. (F) The percentage of alive memory CD4+, 7AAD− T cells with or without treatment for 5 days gated on all cells in a dot plot by staining
with 7AAD in cultures with different groups. Pooled data are expressed as mean ± SEM of four independent biological experiments. One-way
ANOVA followed by Tukey’s multiple comparison tests. ****p<0.0001. ns, non-significant.
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the non-activation group. This decrease in b2-AR expression may

be attributed to receptor desensitization induced by stimulation of

the T-cell receptor (TCR) and b2-AR signaling pathways. This

feedback loop involves several steps leading to a decrease in

receptor quantity on both the cell surface and intracellular

compartments. These steps include the degradation of

internalized receptors and the promotion of mRNA decay (42,

43), indicating the involvement of transcriptional control

mechanisms (44).

The significant inhibition of NF-kB p65 activation by nebivolol,

while CREB phosphorylation remained unaffected, suggests a

divergence from the canonical b2-AR signaling pathway. In
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canonical signaling, activation of PKA typically facilitates CREB

phosphorylation, competing with NF-kB activation and impeding

its transcriptional activity (45). However, PKA activation of

cytoplasmic kinases, such as p38 mitogen-activated protein kinase

(MAPK), enhances IkBa degradation, thereby activating NF-kB-
driven transcription (46). Notably, our results indicate that the b2-
AR agonist drug terbutaline, unlike nebivolol, facilitated CREB

phosphorylation along with NF-kB activation, consistent with

prior research on other types of T cells (47, 48). These nuanced

differences underscore the complexity of b2-AR-mediated

pathways and suggest that nebivolol may act through a non-

canonical pathway.
FIGURE 6

Expression of ADRB1–3 in RNA extracted from enrichment memory Th cells after 5 days with or without treatment. Memory Th cells were not
activated or activated with anti-CD3/anti-CD28/anti-CD2 for 5 days. (A) Expression of ADRB1–3 in RNA extracted from enrichment memory Th cells
shown as the relative amounts normalized to housekeeping RNA. Pooled data are expressed as mean ± SEM of 10 independent biological
experiments. (B) Expression of ADRB2 at mRNA levels from memory Th cells with or without treatment after 5 days of culture, shown as the relative
amounts normalized to housekeeping RNA and compared to the Act group. The data of this figure are representative of three experiments. (C)
Representative Western blot data of equal amounts of protein from the cell lysates were shown for b2-AR and GAPDH as a loading control. (D) A
representative band intensity of five biological experiments was quantified and shown corrected to the loading control as a ratio. The bars show the
mean ± SEM. ANOVA followed by Tukey’s multiple comparison tests. *<0.05 and ****p<0.0001. ns, non-significant.
FIGURE 7

Effect of b-AR antagonists and CRISPR/Cas9-mediated knockout on IL-17A production. Effect of (A) b1-AR antagonist (metoprolol) and (B) non-
selective b-AR antagonist (bupranolol) on the production of IL-17A on memory Th cells. Activated memory Th cells were blocked for 30 min with
metoprolol or bupranolol before treatment with nebivolol and incubated for 5 days. IL-17A was measured in cell culture supernatants. Pooled data
are expressed as the mean ± SEM of four independent biological experiments. Effect of CRISPR/Cas9-mediated knockout of b2AR on nebivolol
treatment in activated memory Th cells. Stimulated memory Th cells were electroporated with a CRISPR/Cas9 system targeted by multi-sgRNA
against b2-AR or non-targeting genes. (C) The expression of ADRB2 at mRNA levels as verification in non-electroporated, non-targeting and b2
multi-sgRNA conditions has shown as the relative amounts normalized to housekeeping RNA and compared to a control set to 1.0 (dotted line). The
data of this figure are representative of three independent biological experiments. Three days after electroporation, memory Th cells were cultured
with or without nebivolol for another 5 days and (D) A representative of IL-17A levels in cell culture supernatants in both control and knock-out b2-
AR conditions was shown. ANOVA was followed by Tukey’s multiple comparison tests. *<0.05, **<0.01, ***p<0.001, and****p<0.0001. ns,
non-significant.
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While we measured b-arrestin 1, our study did not measure b-
arrestin 2 activation or its potential involvement in nebivolol’s

effects. b-Arrestin 2 is known to inhibit NF-kB activation and the

expression of its target genes by binding to and inhibiting the

degradation of IkBa (14). Our findings provide insight into

nebivolol’s mechanism of action, suggesting a b-arrestin biased

agonism that selectively modulates downstream signaling

molecules. This may explain nebivolol’s suppressive impact on IL-

17A, independent of alterations in T-cell proliferation or viability.

Thus, nebivolol appears to modulate cell signaling pathways
Frontiers in Immunology 11
relevant to cytokine expression without affecting the cell cycle or

causing cellular cytotoxicity.

The observed outcomes align with established knowledge about

adrenergic signaling in immune cells, emphasizing the role of AR in

regulating T-cell function. b2-ARs, expressed widely throughout the
body, including immune and non-immune cells, play a bystander

role in immune responses, making them an optimal focal point for

studying immune control. While b2-AR agonists have been

recognized as modulators of inflammatory responses, b2-AR
biased agonists (49), like nebivolol, selectively stimulate specific
FIGURE 8

Nebivolol did not stimulate phospho-Ser133-CREB (p-CREB) in memory Th cells. Blasted memory Th cells activated with anti-CD3/anti-CD28/anti-CD2
for 15 min in conditions of non-activated cells, activated cells, activated cells plus nebivolol, and activated cells plus terbutaline. (A) Representative
Western blot data of equal amounts of protein from the cell lysates were shown for p-CREB and a-tubulin as a loading control. (B) Band intensity was
quantified and shown corrected to the loading control as a ratio, with data pooled from three independent biological experiments. (C) Memory Th cells
were activated for 5 days, with nebivolol plus or minus H89. Representative IL-17A ELISA data for the effect of PKA in nebivolol’s signaling pathway by
using H89 as a PKA inhibitor. ANOVA was followed by Tukey’s multiple comparison tests. *<0.05, **<0.01, and ****p<0.0001. ns, non-significant.
FIGURE 9

Nebivolol inhibited the phosphorylation of NF-kB p65 in memory Th cells. Blasted memory Th cells were activated with anti-CD3/anti-CD28/anti-
CD2 for 15 min in conditions of non-activated cells, activated cells, and activated cells plus nebivolol. (A) Representative Western blot data of equal
amounts of protein from the cell lysates were shown for p-NF-kB p65 and total NF-kB p65 as a loading control. (B) Band intensity was quantified
and shown corrected to the loading control as a ratio, with data pooled from four independent biological experiments. ANOVA was followed by
Tukey’s multiple comparison tests. *<0.05. ns, non-significant.
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pathways, offering a more targeted approach to modulating

immune cell function and treating disease(50). Nebivolol,

identified as a notable b2 biased agonist in this study, emerges as

a promising therapeutic target for chronic inflammation. Recent

findings indicate its efficacy in reducing inflammatory signs of

psoriatic lesions, inhibiting serum inflammatory biomarkers like IL-

17A and TNF-a which were independent of b1-blockade activity

(51, 52). The significance of nebivolol lies in its antioxidant and

anti-inflammatory potential, providing a promising avenue for

addressing persistent health concerns through the modulation of

immune responses and cytokine production.

The immunomodulatory properties of nebivolol, particularly its

ability to inhibit proinflammatory Th17 cell responses and promote

anti-inflammatory Th2 responses, suggest promising therapeutic

applications in autoimmune and inflammatory diseases such as

multiple sclerosis, rheumatoid arthritis, and psoriasis characterized

by elevated Th17 response (53, 54). Moreover, memory Th cells

hold significant relevance in autoimmune diseases due to their

enduring nature and ability to orchestrate recurrent autoimmune

reactions (18). Memory Th17 and Th1 cells in the blood of MS

patients correlate with disease severity (55). The established safety

profile of nebivolol as a cardiovascular drug enhances its potential

for repurposing, offering a well-tolerated option that could

complement existing therapies. Future research should focus on

elucidating the mechanisms underlying nebivolol’s biased agonism

and assessing its long-term efficacy and safety in chronic

inflammation, which could pave the way for innovative treatment

strategies in immune modulation.

Our study acknowledges several limitations. The small sample

size may limit the generalizability of our findings, necessitating

larger cohorts in future research. Assessing specific molecules

within the b-arrestin signaling pathway could confirm nebivolol’s

biased agonist properties. Additionally, evaluating nebivolol’s

effects in vivo in inflammatory situations would provide valuable

insights into its therapeutic potential. The lack of transcriptomic

analyses such as RNA sequencing is a limitation that could be

addressed in future studies to explore the broader molecular effects

of nebivolol. Addressing these limitations will build on our findings

and deepen our understanding of nebivolol ’s role in

immune modulation.

In conclusion, this study advances our understanding of

nebivolol ’s immunomodulatory potential by specifically

elucidating its impact on IL-17A secretion in Th17 cells and the

underlying mechanisms. Nebivolol emerges as a promising

candidate for further exploration in immunopharmacology,

leveraging its established safety profile through drug repurposing.

These findings offer avenues for targeted therapeutic interventions

in chronic inflammation management, potentially reshaping

treatment approaches with a familiar and accessible tool.
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