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association between the
MFAP5-fibroblast subset
and immunotherapy
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Backgrounds: Gastric cancer (GC) remains a global health threat due to frequent

treatment failures caused by primary or acquired resistance. Although cancer-

associated fibroblasts (CAFs) have been implicated in this process, it is still unclear

which specific subtype(s) of CAFs hinder T-cell infiltration and promote

resistance to immunotherapy.

Methods: We analyzed the GC fibroblast atlas in detail by combining 63,955

single cells from 14 scRNA-seq datasets. We also performed RNA-seq data in a

local GC cohort and examined 13 bulk RNA-seq datasets to understand the

biological and clinical roles of different CAF subsets. Additionally, we conducted

in vitro experiments to study the role of specific proteins in GC development.

Results: We identified a total of 17 fibroblast subsets in gastric cancer, nine of

which did not fit into the existing CAFs classification. These subsets exhibited

significant heterogeneity in distribution and biological characteristics

(metabolism, cell-cell interactions, differentiation state), as well as clinical

functions such as prognosis and response to immunotherapy. In particular,

cluster 6 stood out for its high expression of MFAP5, CFD, and PI16; it was

found to be negatively associated with both overall survival and response to

immunotherapy in GC. This association was linked to an immunosuppressive

microenvironment characterized by an increase in M2 macrophages but higher

levels of T cell dysfunction and exclusion—a feature shared by tumors expressing

MFAP5. Furthermore, the addition of human recombinant MFAP5 promoted

proliferation and migration of HGC-27 cells by inducing the MFAP5/NOTCH1/

HEY1 signaling pathway.
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Conclusion:We introduce a high-resolution GC fibroblast atlas. The 17 identified

fibroblast clusters provide valuable opportunities for gaining deeper biological

insights into the relationship between fibroblasts and GC development.

Particularly, cluster 6 and its specific marker MFAP5 could serve as prognostic

factors in GC and form a foundation for personalized therapeutic combinations

to address primary resistance to ICIs.
KEYWORDS
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Introduction

Gastric cancer (GC) ranks as the fifth most prevalent malignant

tumor globally and as the third leading cause of cancer-related

mortality in China, which presents a formidable health challenge

(1). Although significant advancements have been achieved in

unraveling the molecular mechanisms underlying GC and great

strides in cancer treatment, the overall survival of GC patients is still

poor (2). Chemotherapy is still the standard treatment in GC,

though treatment failure frequently occurs due to intrinsic or

acquired resistance (3). Over the past decades, immune

checkpoint inhibitors have revolutionized the management of lots

of types of cancers. However, only a small set of GC patients are

sensitive to the ICI and the responders with GC were mainly limited

in those with deficient mismatch repair (dMMR)/microsatellite

high (MSI-H) (4). Hence, there is a pressing demand for

understand the biological mechanism and developing innovative

and efficacious cancer treatments to solve the therapeutic resistance.

GC cells growth and metastasis to distant organs rely on the

support of the tumor microenvironment (TME), which consists of

extracellular matrix (ECM), immune cells, endothelial cells, and

fibroblasts (5). These TME components engage in extensive

bidirectional communication through cell-to-cell interactions and

secreted molecules. Among the components of GC TME, Cancer-

associated fibroblasts (CAFs) were one of the most prevalent cell

types, primarily originating from resident tissue fibroblasts in

response to signals from tumors (6). CAF activation is induced by

factors like ECM rigidity, metabolic stress, and signaling molecules

such as TGF-b, IL-1, IL-6, and TNF released by both tumor cells

and infiltrating immune cells. Upon activation, CAFs increase

expression of functional markers, including PDGFRb and S100A4

and undergo metabolic changes that boost aerobic glycolysis

supporting their proliferative and secretory functions. In the

meantime, CAFs could also induce anti-tumor drug resistance

development by secreting functional proteins and cellular

components, such as metalloproteinases and exosomes (7). More

importantly, as an important regulator in shaping the TME and
02
tumor-infiltrated immune cells (TIICs), CAFs also contributed to

immunotherapy resistance (8).

The inter- and intra-tumoral molecular heterogeneity of GC

cancer cells has been extensively studied (9, 10). Rogers et al.

discovered that cancer-associated fibroblasts (CAFs) can transfer

theWnt receptor ROR2 to GC cells via cytoneme, promoting tumor

survival (11). However, the heterogeneity of CAFs in GC has not

been fully explored. Previous studies on breast or pancreatic cancer

have identified various subtypes of CAFs, such as vascular CAFs

(vCAFs), matrix CAFs (mCAFs), and myofibroblastic CAFs

(myCAFs) (12, 13). These subtypes display unique transcriptional

profiles, functions, and spatial distribution within the tumor mass.

For example, inflammatory CAFs (iCAFs) primarily express

inflammatory cytokines such as IL-6, LIF, and CXCL12. This

could lead to the recruitment of regulatory T cells (Tregs),

increased secretion of TGF-b, and the promotion of an

immunosuppressive TME (14). myCAFs are linked to focal

adhesion and interactions with the extracellular matrix, showing

evidence in enhancing the stemness of tumor cells by secreting

senescence-associated secretory phenotype factors IL-6 and IL-8 to

resist chemotherapy (15). While antigen-presenting CAFs

(apCAFs) are enriched in pathways related to antigen processing

and presentation, they can directly interact with and convert naive

CD4+ T cells into Tregs in an antigen-specific manner (16). It is

important to note that there is evidence revealing further

heterogeneity within the existing classification of CAFs,

highlighting the need for a more concise classification (17, 18).

On the other hand, it is still unclear which specific subtype(s) of

CAFs restricts T-cell infiltration into the TME. This restriction

could reduce the sensitivity to ICIs, leading to a lack of

understanding in how CAFs affect response to ICIs in GC.

While some studies have conducted single-cell RNA sequencing

(scRNA-seq) in GC to elucidate specific biological functions of CAF

subtypes, discrepancies in their results remain. To address this gap,

we integrated major publicly available scRNA-seq datasets to create

a comprehensive atlas of GC fibroblasts comprising of 63,955 cells

and analyzed their biological diversity.
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Materials and methods

Integration of scRNA-seq datasets and
unsupervised clustering

The design of this study was shown in the schematic diagram in

Supplementary Figure 1. Initially, we downloaded fourteen 10x

single-cell datasets from public databases (Supplementary Table 1).

For datasets lacking raw count data, we obtained fastq data and

processed it to derive count data. Subsequently, these scRNA-seq

data was analyzed using Seurat (v4.4.0) in R (v4.1.3). Gene names in

the raw count matrix were converted based on information from

HGNC (2023-10-01), prioritizing gene names with higher

expression levels when duplicates occurred. To create the final

expression matrix, only gene names present in at least 10 datasets

were retained. Each expression matrix was used to generate a Seurat

object for analysis after applying uniform preprocessing criteria:

cells with features between 200 and 7000 were retained, while those

with mitochondrial gene expression exceeding 20% were removed

using a cutoff of 20%. Log normalization was conducted via the

NormalizeData method with scale.factors set to 1e4. The top 3000

variable features of the single-cell data were identified using

FindVariableFeatures with the vst parameter and their

expressions scaled through ScaleData method. Distinct cell

clusters were identified by employing FindNeighbors and

FindClusters methods at a resolution of 0.5. Dimensionality

reduction for visualization purposes was achieved using

RunUMAP method. To annotate cell clusters, we utilized the

FindAllMarkers method employing Wilcoxon test with

logfc.threshold set at 0.25 followed by manual annotation of cell

clusters. Default parameters from the Seurat package were used for

all methods unless specified otherwise. Fibroblast/CAF clusters

were filtered using DCN, ACTA2, and COL1A1 as markers. The

selected clusters were merged and batch effects removed with

Harmony (v1.2.0). The aggregated single-cell expression matrix of

Fibroblast/CAF was analyzed using standard pipelines. PCA

coordinates of fibroblast cells were then input into Harmony to

correct patient-level batch effects through the RunHarmony

method iteratively. After obtaining Harmony embeddings,

RunUMAP and FindNeighbors methods with Harmony

reductions were applied (19). Final fibroblast/CAF subtypes were

identified using the FindClusters method at a resolution of 0.5.
Gene expression feature and biological
pathway enrichment

We conducted enrichment analysis on the differentially

expressed genes in each cluster by identifying the top 50

upregulated genes. Using the msigdbr (v7.5.1) package in R, we

retrieved KEGG, GO, and HALLMARK gene sets from MSigDB.

Subsequently, over-representation analysis (ORA) was performed

with the ClusterProfiler (v4.2.2) package to identify enriched

pathways for each cluster. Each cluster showed distinct enriched

pathways; therefore, we selected the top 2 KEGG pathways for
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visualization and created a corresponding figure. To assess the

metabolic activity at the single-cell level, we utilized scMetabolism

(v0.2.1). By employing the FindMarkers function in Seurat, we

identified the predominant metabolic pathways within each cluster.

The figure below illustrates the two most active metabolic pathways

chosen from every cluster. To obtain single-cell transcription factor

levels, first download the CollecTF transcription factor database

using decoupleR (v2.9.6) and OmnipathR (v3.11.10). Next, infer the

activity of transcription factors in single-cell data with viper

(v1.28.0). We utilize the FindMarkers method in Seurat to

identify highly active transcription factors within each cluster.
Cell trajectory and differentiation analysis

We validated the trajectory using monocle3 (20), CytoTRACE

(21), and Slingshot (22). We obtained the raw count matrix of

fibroblast cells and processed it using the Monocle3 pipeline with

default parameters following official guidelines. Trajectories were

learned using the learn_graph method, and pseudotime was

estimated with the order_cells method. Slingshot objects were

created based on UMAP embeddings, and pseudotime was

determined using slingPseudotime. The single-cell expression

matrix was then analyzed with CytoTRACE to predict cell

ordering. The unprocessed count matrix of fibroblasts was used

for Monocle3 analysis with default parameters. Trajectories were

learned and pseudotime estimated through specific methods in each

tool. UMAP embeddings were utilized to construct Slingshot

objects and infer pseudotime. Additionally, CytoTRACE (v0.3.3)

was applied to predict cell ordering based on single-cell data for

differentiation trajectories of fibroblast cells. After determining the

differentiation status and trajectories with CytoTRACE, we

confirmed pseudotime using monocle3 (v 1.3.6) and Slingshot (v

2.2.1). To ensure consistency across tools, CytroRACE values were

scaled and negated before analyzing CAF subclusters based on cell

infiltration levels relative to expected numbers; higher values

indicated greater infiltration.
Cell contact analysis

We studied interactions of cluster 6 fibroblasts with other cells by

selecting datasets GSE249874, Li_2022, Sathe_2020, and Zhao_2023

known for their high abundance of cls_6 fibroblasts. Cell types in each

dataset were identified and analyzed using CellChat (v 2.1.2) (23) to

explore interactions like Cell-Cell contact, ECM-receptor signaling, and

Secreted pathways. The CellChat package utilized the human ligand-

receptor interaction database. Initially, we preprocess the expression

data using identifyOverExpressedGenes and identifyOverExpressed

Interactions methods. Subsequently, we deduce the cell-cell

communication network through computeCommunProb and

computeCommunProbPathway functions. Finally, we consolidate the

cell-cell communication network with the aggregateNet method.

Significant interactions had a p-value < 0.01; those present in all

datasets were considered promising.
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Analysis the biological and clinical function
of identified CAFs cluster in bulk-RNA data

We generated a signature matrix for fibroblasts from scRNA

data, similar to the method used in CIBERSORT (24). Using Seurat

(4.4.0)’s FindAllMarkers function, we identified markers for all CAF

clusters and selected the most significant ones based on p_val_adj <

0.05 and log2FC > 0.5 criteria. From these markers, we created 100

candidate matrices and assessed their stability by calculating the

condition number using R’s kappa method; a lower condition

number indicates better stability. The matrix with the smallest

condition number was chosen as our final signature matrix.

Finally, we evaluated CAF cluster infiltration levels in tissue

transcriptomes using the CIBERSORT method. All the detail of

utilized thirteen public GC bulk RNAsq datasets were presented in

Supplementary Table 2.
SCISSOR analysis

We utilized SCISSOR (25) (v 2.0.0) to pinpoint fibroblast cells

linked to survival outcomes by analyzing TCGA RNA-seq data and

survival details. A grid search was conducted for the alpha

parameter, using the default value and a cutoff of 0.20 as

suggested by the author. The cutoff of 0.20 indicates that no more

than 20% of cells should be selected. Ultimately, we identified 6160

cells correlated with poorer prognosis.
Patient enrollment and RNA sequencing

This trial was approved by Shanghai Changhai hospital ethics

committee and all enrolled patients have provided written informed

consent previously by themselves or their legal representatives. We

firstly enrolled 95 GC patients who performed surgery in our

hospital between 2012 and 2015. For all the archived FFPE tumor

tissue samples collected, a tumor cell content greater than 50% was

required. Then, RNA was extracted from the tumor samples by

using Biozol RNA extraction kit (BW-R7311, Beiwo.co, China)

according to the manufacture’s instruction. Then, Qubit RNA

Assay kits (Quant-iT™ PicoGreen® dsDNA Assay Kit, Life

Technologies) and Agilent 2100 Bioanalyzer were used to

measure RNA concentration and RNA integrity number (RIN),

respectively. A total of 50 samples were failed to pass the quality

control or loss the follow up, and finally 45 samples had sufficient

RNA quality to comprise the final local validation cohort. For

depletion of ribosomal RNA and library construction, VAHTS®

Universal V6 RNA-seq Library Prep Kit for Illumina with Ribo-off

rRNA Depletion Kit (Vazyme.co, China) was used. Library

concentrations were measured using the Qubit dsDNA HS Assay

kit (Life Technologies) and Agilent TapeStation (Agilent). RNA

sequencing was performed at the Xuran laboratory, using Illumina

NovaSeq 6000 equipment for double-end sequencing. The clinical

information of enrolled GC patients in the local cohort was listed in

Supplementary Table 3.
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Cell culture

HGC-27 cells were purchased from the Cell Bank of the Chinese

Academy of Sciences (Shanghai, China) and tested negative for

mycoplasma. Cells were grown in an incubator at 5% CO2 and

37°C. The cell lines were cultured in DMEM (Gibco, USA) containing

L-glutamine, 4.5 g/L D-glucose, and 110 mg/L pyruvate nano,

together with 1% penicillinstreptomycin (HYClone, USA) and 10%

fetal bovine serum (FBS, Gibco).
Cell viability assay

Cell viability was assessed using Cell Counting Kit 8 (CCK-8)

from Yeasen, China, following the manufacturer’s instructions.

HGC-27 cells were seeded in 96-well plates at a density of 5000

cells per well. Then, they were treated with 10 µg/mL human

recombinant MFAP5 (hr MFAP5, TargetMol, USA) for 24 hours.

Subsequently, 10 mL of CCK-8 reagent was added to each well,

mixed gently, and incubated for 4 hours under standard conditions.

The absorbance at 450 nm was then measured for each well.
Transwell assay

Cell migration of HGC-27 cells was assessed using the

Transwell assay. Briefly, cells were cultured in a 24-well Boyden

Chamber (1×105 cells per well, 8 mm pore size, NEST, China). After

24 hours’ treatment with 10 µg/mL hr MFAP5, migrated cells on the

inserts were stained with crystal violet and quantified under an

optical microscope (Leica, Germany).
Western blotting

The cells were lysed in RIPA buffer (Solarbio, China) with

protease inhibitors (MCE, USA) to extract total protein content.

The proteins were boiled in SDS sample buffer, separated on SDS-

PAGE, and transferred to PVDF membranes (Millipore, USA).

After blocking with 5% skim milk, the membranes were incubated

overnight at 4°C with primary antibodies against anti- anti-Notch2

(ab245325, Abcam, UK), and anti-HEY1 (DF12076, Affinity,

China). Subsequently, secondary antibodies were applied for 2

hours before visualizing the bands using ECL detection reagent

(Vazyme, China).
Statistical analysis

All the detailed information on applied software or packages is

listed in Supplementary Table 4. The statistical data analyzed in this

study were all performed in R studio (4.1.3). The log-rank test was

used to assess the significance of Kaplan-Meier survival curves.

Group comparisons were made using Student’s t-test, Wilcoxon

rank-sum test, and Kruskal-Wallis test. Additionally, Fisher’s exact
frontiersin.org
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test and the Chi-square test were employed to evaluate associations

among categorical variables. For visualization purposes, we utilized

the following packages: Seurat, ggplot2, ggrepel, ggpubr,

ComplexHeatmap, CellChat, corrplot, and survminer. The

(adjust) p-value<0.05 was considered as statistically significant.
Results

Landscape of fibroblast phenotypes in
gastric cancer

We analyzed fibroblast diversity in gastric cancer by compiling

and standardizing data from fourteen datasets, identifying 63,955

fibroblast cells grouped into 17 subsets (named clusters 0-16,

Figure 1A). Cluster 0-9 were the predominant fibroblasts in GC,

with cluster 10-16 showing relative lower prevalence (Figure 1B).

These fibroblast clusters were found in both tumor and non-tumor

tissues but with varying ratios among normal, metaplasia/dysplasia,

and tumoral tissues (Figures 1B, C). Notably, GC exhibited a distinct

composition of fibroblasts compared to normal and metaplasia/

dysplasia tissues, with increased levels of clusters 0, 8, 13, and 15

(Figures 1B, C). Specific fibroblast subsets correlated with histological

and molecular classifications in tumor samples (Figures 1D, E); for

instance, metastatic subtype had lower levels of clusters 5, 10, but

higher levels of cluster 11. The dMMR subtype showed reduced

prevalence of clusters 0 and 5 but increased levels of clusters 3 and 11.

Variations were also observed in the abundance of clusters 0,3,6 and

11 among TCGA-CIN, GS and MSI subtypes (Figure 1E).
Correlation between identified and
previously-defined fibroblast subsets

We compared our identified clusters with previously classified

fibroblast subsets and found distinct features in our subsets compared

to known CAF subsets, such as iCAF and mCAF (Figure 2A). While

some of our subsets showed associations with previously identified

subpopulations, others exhibited unique characteristics. For instance,

cluster 12 and 16 both expressed apCAF-related markers like CD74,

HLA-DRA, HLA-DRB1, and HLA-DMA. However, cluster 12 also

exhibited elevated expression of CXCL2 and APOC1, which markers

associated with iCAF and nCAF, respectively. Additionally, several

clusters, such as cluster 6, showed high expression levels of iCAF-

associated markers, but also overexpressed markers from other CAF

subpopulations. Despite most clusters showing overexpression of

known CAF markers, a subset of fibroblasts (clusters 1, 3, 9, 10,

and 13) could not be classified into any known CAF subsets. Cluster

13 also exhibited Endothelial-related marker expression. We

successfully distinguished endothelial cells from endo-fibroblasts

(cluster 13) and other fibroblasts in GSE249874 (Supplementary

Figure 2), suggesting they may have undergone endothelial-to-

mesenchymal transition (EndMT) (26). These discrepancies

underscore the need for more refined fibroblast subsets in GC.
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The fibroblast clusters in Figure 2B showed varying

relationships of coexistence and exclusion. For instance, cluster 10

had a significant exclusion correlation with clusters 1 and 4, while

cluster 6 was strongly correlated with clusters 14, 0, and 7 but

excluded from cluster 15. A comparison of the expression levels of

fibroblast subsets was conducted based on genes associated with

prognostic, phenotypic, functional, secretory, and inflammatory

CAF signatures (Figure 2C). These subsets displayed notable

heterogeneity in these signatures. Some subtypes like clusters 0, 1,

and 10 showed weak correlations to these features. In contrast,

clusters 3,6,9,12 and16 exhibited strong associations with these CAF

signatures. Notably among them were clusters3, 6 and9 which are

relevant for prognosis in GC patients.

Biological features such as cell cycle were then analyzed for the

identified fibroblast subsets (Figures 2D–G). Cluster15 showed

significantly higher expression of cell cycle genes (incluging MI67,

UBB4B, TOP2A, and CDK1) compared to all other subsets indicating

increased proliferation activity (Figure 2D), aligning with its similarity

to pCAF. On the other hand, Custer 11 had low expression levels of

interferon-related genes especially ISG15 and STAT1 whereas

Cluster12 demonstrated significantly higher activity in interferon-

related pathways notably having the highest IL-1B expression level

(Figure 2E). Additionally Clusters12 along with Clusters16,8, 5 and 0

also exhibited significantly higher expressions levels in both cytokines

(Figure 2F) and MHC class II molecules (Figure 2G).
Biological and metabolism feature of
fibroblast subsets

To uncover the biological significance of each cluster, we

performed enrichment analysis on their DEGs (Figure 3A). Then,

the top 50 upregulated genes in each cluster were utilized to analyze

the biological pathways. As illustrated in the Figure 3B, all identified

fibroblasts had unique enrichment of biological pathways. For

instance, cluster 1 showed a significant association with ribosome

and cluster 12 showed correlation with immune-related disease.

Similarly, these fibroblast subsets showed great heterogeneity in

metabolism (Figure 3C). For example, cluster 11 had the highest

activity in the majority of metabolism pathways, and cluster 6, 13

had the most down-regulated metabolism pathways. On the other

hand, oxidative phosphorylation, and D glutamine/glutamate

metabolism pathways were the most altered in those subsets. The

results revealed significant heterogeneity in various metabolic

pathways, such as amino acid, energy, and lipid metabolism

(Figure 3D), suggesting potential metabolic coordination among

tumor fibroblasts. Additionally, we examined the differences in

transcription factor (TF) expression across these fibroblast clusters

and observed distinct upregulation of TFs in each cluster

(Figure 3E). Notably, Cluster 1 exhibited downregulation of most

TFs except for POUSF4, HDAC1, and PAWR. Cluster 12 showed

an increase in SPI1, SPIC, and NFKB1B expression, and cluster 8

upregulated IKZF2, STAT4, and TBX21.
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FIGURE 1

Landscape of fibroblast phenotypes in gastric cancer (GC). (A) UMAP projections of 63,955 fibroblasts in non-tumor (left) and GC tumor tissues
(right), colored by cluster identify. (B) Distribution of each fibroblast cluster among samples from 14 single-cell RNA-seq datasets. Ds, datasets (C)
Bar plots showing the ratio of each fibroblast cluster in normal, metaplasia/dysplasia, and tumor tissues. (D) Characterization of the prevalence of
fibroblast clusters in GC samples from the GSE183904 dataset. (E) Bar plot displaying differences in prevalence of various fibroblast clusters among
different Lauren’s, MMR, and TCGA subtypes in GSE183904 dataset. The classification information was adapted from the original study. MMR,
mismatch repair; CIN, chromosomal instability; GS, genomically stable; MSI, microsatellite instability; TCGA, The Cancer Genome Atlas.
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FIGURE 2

Correlation between identified and previously-defined fibroblast subsets. (A) Analyzing the expression of hallmark genes for previously defined
fibroblast subsets in identified clusters. Dot color and size indicate average expression level and percentage, respectively. apCAF, antigen-presenting
CAF; dCAF, divergent CAF; iCAF, inflammatory CAF; myCAF, Myofibroblastic CAF; nCAF, normal fibroblast; pCAF, proliferatory CAF; vCAF, vascular
CAFs. (B) Exploring the correlation among identified fibroblast clusters. The red dot shows a positive correlation between two clusters, while the
blue dot indicates a negative correlation. The dot with color indicates a p value below 0.05. (C) Evaluation the expression of hallmark genes
associated with known prognostic, phenotypic, functional, secretory, and inflammatory CAFs signatures. (D–G) The difference in the expression of
proliferation-related (D), interferon-related genes (E), cytokines (F), and MHC class II molecules (G) among different CAFs fibroblasts. Dot color and
size indicate average expression level and percentage, respectively. CAFs, cancer-associated fibroblast.
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Differentiation state of fibroblast subsets

We used monocle3, CytoTRACE, and Slingshot separately to

analyze fibroblast trajectories based on pseudotime (Figure 4A).
Frontiers in Immunology 08
Cluster 3 may have persisted at the endpoint due to its specificity to

tumors and pseudotime values (Figure 4B). To understand the

maturation state divergence of identified fibroblast subsets, we

examined their branching patterns using a tree structure
FIGURE 3

Biological and metabolism feature associated with fibroblast clusters. (A) Heatmap showing the expression level of top three DEGs in each fibroblast
cluster. (B) Enrichment of biological pathways of DEGs of each fibroblast cluster. The size of dot indicates the count of enriched DEGs and its color
shows the statistical significance. (C) ScMetablism analysis showing the activity of different metabolism pathways in each fibroblast cluster. The red
dot represents upregulation, and the blue dot signifies downregulation. The dot size shows the statistical significance. (D) Metabolism pathway
activity of fibroblast subsets. (E) Transcription factor expression heatmap in each fibroblast subset. DEG, differentially-expressed gene.
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(Figure 4C), revealing a continuous differentiation state with cluster

7 having the highest pseudotime value. These subsets were

distributed differently between tumor and normal gastric tissues:

clusters 0, 3, 11, 12, and 15 were more abundant in tumors while

clusters 4, 5, and 15 were prevalent in normal tissues (Figure 4D).

Analyzing changes over pseudotime showed that as it increased,

clusters 3, 12, 13 and 1 became enriched in tumor tissues while
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cluster4 was more prevalent in normal tissues. We also investigated

how these subsets differentiated by analyzing the correlation

between transcription factors and pseudotime. The results

indicated that multiple TFs played a role; particularly MYC

ONECUT1 POU3F4 influenced the differentiation state of

fibroblast subsets (Figure 4E). The key feature of all the identified

fibroblast cluster in GC was summarized in Supplementary Table 6.
FIGURE 4

Differentiation state of each fibroblast cluster. (A) UMAP plot displaying estimated differentiation state by CytoTRACE, monocle3, and Slingshot,
respectively. (B) Fibroblast ratio of observed to expected cell numbers (Ro/e). (C) Fibroblast clustering based on tree structure using the
TooManyCells algorithm. (D) Ranking fibroblast subsets by Ro/e and differentiation state (pseudotime) in all samples, tumor samples, and non-tumor
samples. (E) Heatmap showing correlation between transcription factors and differentiation state in each CAFs cluster (label).
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Cluster 6 was associated with worse
clinical outcomes

To gain a deeper understanding of the biological and clinical

functions of identified fibroblast clusters, we selected the top 50 genes

with high specific expression in each cluster as its signature, excluding

mitochondrial and ribosomal genes. The AUCell method was then

utilized to assess this signature in single-cell data clusters. Analyzing

the relationship between fibroblast subsets and prognosis in GC

patients, we examined their signatures in the TCGA-STAD dataset.

Clusters 0, 6, 9, and 13 were significantly associated with poorer

survival outcomes while clusters 16 and 10 showed a favorable

correlation (Figure 5A). To validate these associations further, we

employed the SCISSOR method (Figure 5B), which indicated that

cells linked to worse prognosis were predominantly found in cluster

6. Consequently, our subsequent study focused on investigating the

characteristics of cluster 6 in GC.

A total of 1260DEGs were identified between cluster 6 and the other

clusters. These DEGs were primarily enriched in DNA repair, epithelial-

mesenchymal transition, cell cycle, hypoxia, complement activation,

regulation of peptidase activity, collagen containing extracellular

matrix and immunology-related pathways (Supplementary Table 6).

Then, the expression signature of cluster 6 was defined by 14 identified

DEGs, including CFD, PI16,MFAP5, SFRP2, IGFBP6, FBLN1, LAMA2,

CCDC80, SFRP1, CLU, C7, OGN, FBL2 and FBN1 (Figure 5C).

Notably, PI16, MFAP5 and SFRP2 were exclusively expressed in

cluster 6. Cluster 6 exhibited the highest signature scores consistent

with the observation that cells showing a positive signature were

predominantly found in cluster 6 (Figures 5D, E).

We confirmed a correlation between cluster 6 and poor clinical

outcomes in seven additional GC datasets. The results consistently

showed that samples with high levels of cluster 6 had significantly

worse clinical outcomes (Figure 5F). Our local GC cohort also

indicated that patients with high cluster 6 had significantly shorter

overall survival (Figure 5G). Interestingly, samples with high cluster 6

were mainly found in the GS subtype, which had lower frequencies of

EBV,MSI, and POLE subtypes (Figure 5H). Furthermore, cluster 6 sig

did not show significant correlations with clinical traits but emerged

as an independent prognostic feature in GC (Supplementary Table 7).
Analysis of cluster 6 fibroblast cell-
cell communication

We analyzed the cell-cell communication of cluster 6 using the

cellChat ligand-receptor complex databases. Results from four

scRNA-seq datasets showed that cluster 6 fibroblasts primarily

interacted with myeloid cells, followed by mast cells and T cells

(Figure 6A). Comparing the crosstalk between immune cell and

cluster 6 fibroblast (Figure 6B) with the Cluster 6 fibroblast-

immune cells crosstalk (Figure 6C), it is evident that cluster 6

fibroblasts play a significant role in these interactions. All immune

cells were able to contact cluster 6 through PPIA-BSG secreted

signaling (Figure 6B). Additionally, B cells, myeloid cells, and T cells

interacted with cluster 6 via CD99-CD99. Conversely, cluster 6

engaged with other immune cells through APP-CD74, PTN-NCL,
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and CD44-based contacts (Figure 6C). All in together, the results

potentially implicating cluster 6 -myeloid cell interaction may

contribute to the worse prognosis in GC.
MFAP5 expressed in fibroblast associated
with worse prognosis

As MFAP5 showed the least statistical significance among cluster

6-related DEGs, we delved into its biological and clinical characteristics

in GC. We found that MFAP5 was present not only in tumor tissues

but also in fibroblasts from non-tumor tissues (Supplementary

Figure 3), with comparable expression levels between normal and

tumor tissues, suggesting a unique role for MFAP5 or cluster 6 within

both microenvironments. Our investigation revealed predominant

expression of MFAP5 in fibroblasts (Figures 7A, B) and a strong

correlation between MFAP5 expression and CAF levels using bulk

RNA sequencing data (Figure 7C). Pseudotime analysis hinted at a

decreasing trend of MFAP5 during fibroblast evolution/transformation

process (Figure 7D), aligning with significantly higher levels of MFAP5

expression among GS subtypes within cluster 6 fibroblast samples

(Figure 7E). Comparing different GC molecular subtypes, we observed

that the high-MFAP group had a significantly higher ratio of GS

subtype but lower ratios of CIN, EBV, and POLE subtypes (Figure 7E).

Further analysis focused on exploring correlations between

MFAP5 expressions and clinical features. Significant associations

were found between MFAP5 expressions with tumor grade and

stage but not lymph node or distant metastasis stages. Across eight

analyzed GC datasets, high-MFAP5 expressions were consistently

linked to worse prognoses; patients with high-MFAP5 expressions

displayed inferior clinical outcomes consistently across datasets

(Figures 7F, G, respectively). Notably, patients showing both high-

CAFs and high-MFAP5 expressions had notably shorter overall

survival rates compared to other groups. In our local cohort,

samples with high MFAP5 expression also had significantly worse

prognosis (Figure 7H). Additionally, elevated cytokine/immune

signatures along with increased p53 score EMT score proliferation

scores within the high-MFAP5 group could contribute towards their

association with poor clinical outcomes seen in GC cases (Figure 7I).
Cluster 6 and MFAP5 were related to
immunotherapy response in GC

Furthermore, cluster 6 fibroblast expression was associated with

a poor response to immunotherapy in GC. Patients who responded

to pembrolizumab as salvage treatment had significantly lower

abundance of cluster 6 fibroblasts (Figure 8A). Similarly, GC

patients with high levels of cluster 6 fibroblasts exhibited

significantly higher T cell dysfunction, exclusion, and TIDE score,

which supported the negative association between cluster 6

fibroblast and immunotherapy sensitivity (Figure 8B). The

correlation analysis revealed that cluster 6 fibroblasts were

strongly linked to activated mast cells and M2 macrophages

(Figure 8C). Conversely, it had a weak but significant negative

correlation with T CD4+ memory activated cells and M0/M1
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FIGURE 5

Cluster 6 of CAFs was associated with worse clinical outcomes in GC. (A) Forest plot illustrating the correlation between identified fibroblast cluster
and overall survival in TCGA-STAD dataset. The x-axis shows the hazard ratio (HR), with a dotted vertical line at HR value of 1, while the y-axis
represents each fibroblast cluster. (B) Linking fibroblast composition to poorer prognosis using SCISSOR algorithm. The red dots in the right UMAP
plot indicate the cells associated with worse prognosis in the TCGA-STAD dataset. (C) Violin plots displaying the expression profile of 14 hallmark
genes associated with cluster 6 in identified fibroblast clusters. (D) Discrepancy in cluster 6 signature value across fibroblast clusters. (E) UMAP plot
demonstrating cellular composition based on cluster 6 signature value in GC scRNA-seq dataset. (F) Kaplan-Meier plots comparing high and low
levels of cluster 6 signature among patients in eight GC bulk RNA datasets. (G) Kaplan-Meier plot comparing high and low levels of cluster 6
signature among patients in a local GC cohort. (H) Variation in cluster 6 signature value among patients with different molecular subtypes (TCGA)
within the TCGA-STAD cohort. EBV, Epstein-Barr virus; MSI, microsatellite instable; GS, genomically stable; CIN, chromosomal instability; GC, gastric
cancer; TCGA, The Cancer Genome Atlas; STAD, stomach adenocarcinoma.
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macrophages. Consistently, individuals with low MFAP5

expression were predominantly immunotherapy responders

(Figure 8D). Intriguingly, MFAP5 showed a significant positive

correlation with most immune checkpoints including CD274 but

had negative correlations with HHLA2, TNFRSF25, TNFRSF15,

and VCTN1 (Figure 8E). While the high-MFAP5 group displayed

higher immune and stromal scores in GC samples, its association

with T cell dysfunction and exclusion may explain its negative

correlation with immunotherapy response (Figures 8F, G).

Additionally, MFAP5 upregulated EMT pathways along with

hypoxia and MYC pathways in GC samples which could

contribute to reduced sensitivity to immunotherapy (Figure 8H).
MFAP5 promotes tumor cell proliferation
and migration in GC

Next, we evaluated the effect of adding MFAP5 in the GC cells

in vitro. Adding of MFAP5 significantly stimulated the proliferation
Frontiers in Immunology 12
andmigration of HGC-27 cells (Figures 9A, B). To delve deeper into

the MFAP5-regulated signaling pathway, we conducted a literature

review and found that MFAP5 might activate the Notch2 and or

HEY1 in other cancer type and Notch2 has been recognized as an

oncogene that enhances invasion in GC. We observed higher levels

of Notch2 and HEY1 in HGC-27 cells treated with MFAP5

compared to the control group (Figure 9C). Gastric cancer

patients exhibiting high NOTCH2 or HEY1 expression had

significantly poorer prognosis than those with lower levels,

respectively (Figure 9D). Overall, these findings suggested a

potential mechanism that MFAP5 promoted gastric cancer

progression through the MFAP5/Notch2/HEY1 signaling axis.
Discussion

In our current study, we created a comprehensive atlas of single-

cell transcriptomes in GC by combining 14 datasets comprising

63,955 fibroblasts from 905,186 cells. We offer a detailed overview
FIGURE 6

Analysis of cluster 6 fibroblast-related cell-cell communication. (A) Circos plot of the cellular crosstalk of cluster 6 fibroblasts toward the major
immune cells in four gastric cancer scRNA-seq datasets. (B) Immune cell - cluster 6 fibroblast crosstalk in cell-cell contact, ECM-receptor and
secreted signaling pathways. (C) Cluster 6 fibroblast- immune cells crosstalk in cell-cell contact, ECM-receptor and secreted signaling pathways.
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FIGURE 7

MFAP5 expression in fibroblast associated with worse prognosis in GC. (A) UMAP plot illustrating the distribution of MFAP5 expression in major cell
types within the GSE167297 dataset. (B) Bar plot displaying variations in MFAP5 levels across different major cell types in the GSE167297 dataset.
(C) Examining the correlation between MFAP5 expression and CAFs abundance in the TCGA-STAD dataset. (D) Analyzing MFAP5 expression
alongside estimated differentiation state using CytoTRACE. (E) Contrasting levels of MFAP5 expression among GC patients with diverse molecular
subtypes from the TCGA-STAD dataset. (F) Kaplan-Meier analysis comparing high and low levels of MFAP5 among patients across eight gastric
cancer datasets. (G) Kaplan-Meier analysis contrasting high and low levels of MFAP5 among patients within a local gastric cancer cohort. (H) Survival
comparison among patients stratified by both MFAP5 and fibroblast levels across eight gastric cancer datasets using Kaplan-Meier plots.
(I) Investigating differences in cytokine/immune signature, p53 score, EMT score, and proliferation score between patients with high versus low levels
of MFAP5 expression.
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of the fibroblast landscape in GC, identifying 17 distinct subsets.

Among these, only eight showed significant expression of known

CAF biomarkers; the remaining nine subsets did not fit into existing

CAF categories. In addition to differences in gene expression, these

fibroblast subsets also exhibited variations in metabolism, cell
Frontiers in Immunology 14
interactions, and clinical implications. Notably, cluster 6 stood

out for its high expression levels of SCRG1 (a marker for

developmental CAFs), as well as CFD, C3, and CXCL2 (markers

for inflammatory CAFs). This cluster has the potential to refine

tumor classification in GC prognosis and response to ICIs.
FIGURE 8

Cluster 6 and MFAP5 were related to immunotherapy response in GC. (A) Differences in cluster 6 fibroblast levels among GC patients with or
without objective response to immunotherapy. ROC curve demonstrates the predictive accuracy of cluster 6 fibroblast. (B) Difference in TIDE value
between GC patients with high and low cluster 6 fibroblast. (C) Correlation between cluster 6 and tumor-infiltrated immune cells in TCGA-STAD
cohort. (D) Differences in MFAP5 expression levels among GC patients with or without objective response to immunotherapy. (E) Correlation
between MFAP5 and immune checkpoint expression in TCGA-STAD cohort. (F) Difference in TIDE value between GC patients with high and low
MFAP5. (G) Differences in immune and stromal scores between GC patients with high and low MFAP5. (H) Enrichment of biological pathways related
to MFAP5. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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Developmental CAFs share gene expression patterns with GC

tumor cells and undergo epithelial-mesenchymal transition

(EMT) (27); however their specific role in GC remains unclear at

this time.

Of particular interest for cancer immunotherapy is the cluster 6

with an immunosuppressive- feature in GC, associating with not

only the inferior prognosis but also the primary resistance to ICIs.

This correlation between cluster 6 and ICIs insensitivity may be

attributed by its contact with tumor macrophage (especially M2

macrophages) and resist the infiltration of T cells. Previous study

has found that three groups of cancer embryonic cells, including

POSTN+ CAF, FOLR2+ TAM, and PLVAP+ EC, have close cellular

communication connections in hepatocellular carcinoma (28). This

particular type of CAFs, known as POSTN+ CAFs, play a significant
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role in shaping the environment for “cancer-embryo”

reprogramming. They act as a central communication hub by

releasing different molecules like CXCL12, CXCL16, and IL34.

However, despite cluster 6 showing increased levels of CXCL12,

their POSTN levels were low. This suggests that there is a distinct

mechanism at work in cluster 6 when it comes to shaping the

immunosuppressive TME.

Targeting the stromal environment offers hope for improving

therapeutic response, and our study reveals that the biological and

clinical function of MFAP5, a specific marker of cluster 6. Although the

function ofMFAP5 has not been well established in both CAFs and GC,

its oncogenic role and negative impact on patients’ clinical outcomes

have been widely supported in other types of cancer (29–33). However,

they mainly explored the function of MFAP5 in tumor but not
FIGURE 9

MFAP5 promotes the GC cell proliferation and migration. (A) Assessment of cell proliferation in hr MFAP5-treated HGC-27 cells. (B) Evaluation of cell
migration in hr MFAP5-treated HGC-27 cells. (C) Western blotting to examine Notch2 and HEY1 levels in hr MFAP5-treated HGC-27 cells.
(D) Kaplan-Meier analysis comparing high and low expression levels of NOTCH2 or HEY1 among patients in the TCGA-STAD cohort. hr MFAP5,
human recombinant MFAP5. *p<0.05; **p<0.01.
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specifically in CAFs with only the exception of Duan et al. to date (31).

They found that inhibiting MFAP5-high CAFs enhances the

effectiveness of gemcitabine-based chemotherapy and PD-L1-based

immunotherapy, which was in consistent with our findings (34). The

MFAP5-related ICI resistance was based on the transduction of

MFAP5/RCN2/ERK/STAT1 pathway, regulating angiogenesis,

hyaluronic acid levels, collagen deposition, and infiltration of

cytotoxic T cells. Blocking CXCL10 with AMG487 has the potential

to reverse the pro-tumor effect and enhance immunotherapeutic

efficacy when combined with anti-PD-L1 antibody. Given the

correlation between MFAP5 and ICI insensitivity, targeting MFAP5

could be a promising therapy to improve immunochemotherapy effects

in gastric cancer by reshaping the desmoplastic and immunosuppressive

microenvironment. On the other hand, we found the association

between MFAP5 and NOTCH pathway, indicating that Notch

inhibitors may be the promising regimens to combine with ICI in

treating MFAP5-high GC. Previous studies in other studies have

supported the connection between MFAP5/CAFs and Notch family

genes (29, 30, 35). Pharmaceutical therapy targeted at Notch pathways,

including g-secretase inhibitors, ADAM inhibitors, antibodies targeting

Notch receptors or ligands and Notch transcription complex inhibitors

are currently under clinical studies (36).

Several challenges and limitations of the current study require

attention. Firstly, extending our analysis to include scRNA-seq or

multiplex immunofluorescence analysis using local GC samples is

necessary due to the primary use of public datasets. Secondly, the

sample size for RNA-seq in our local cohort was limited to 45

patients; thus, expanding this from our center is essential in future

studies. Thirdly, despite validating our results in various external

scRNA-seq cohorts and attempting to address batch effects across

different datasets, these effects must still be considered for

confirming findings. Additionally, as there are few GC patients

undergoing immunotherapy currently and since our conclusions

rely on transcriptomic data from public databases, validation of the

relationship between cluster 6 or MFAP5 expression and

immunotherapy responsiveness in an immunotherapy cohort is

crucial going forward. Finally, due to challenges in obtaining CAFs

from fresh tumor samples, additional experiments both in vivo and

in vitro are required to determine MFAP5 expression profiles in

tumor cells and CAFs. In the current study, we have identified an

association between cluster 6 and MFAP5 with poor outcomes and

immunotherapy resistance. However, further research is needed to

gain detailed mechanistic insights into how these factors contribute

to the immunosuppressive microenvironment. Additionally, it is

important to investigate the other clusters apart from cluster 6 to

better understand their biology and clinical features.

In conclusion, we present a high-resolution GC fibroblast atlas.

Each of the 17 identified fibroblast clusters offers opportunities for

gaining deeper biological insights into the relationship between

fibroblasts and GC development. Specifically, cluster 6 and its

specific marker MFAP5 could serve as prognostic factors in GC

and provide a basis for personalized therapeutic combinations to

overcome primary resistance to ICIs.
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