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A Commentary on:

Immune cell infiltration and prognostic index in cervical cancer: insights
from metabolism-related differential genes

By Ma B, Ren C, Yin Y, Zhao S, Li J and Yang H (2024). Front Immunol. 2024 May 22;15:1411132.
doi: 10.3389/fimmu.2024.1411132.
Introduction

With the ongoing advancement of bioinformatic technology, utilizing public

transcriptome data to predict the clinical outcomes of cancer patients has become

standard. A recent study by Ma B et al., titled ‘Immune cell infiltration and prognostic

index in cervical cancer: insights from metabolism-related differential genes,’ served as an

inspiration for us. This study introduced a novel metabolism-related (MR) model designed

to enhance the prognostic and therapeutic evaluations of patients with cervical cancer

(CC). The model demonstrated significant prognostic value and was closely linked to the

levels of immune cell infiltration and the response to immunotherapy. Although the study

was well-designed and analyzed, it warrants further enhancements in the selection of

machine learning algorithms, comprehensive bioinformatic evaluations, and validation

through extensive clinical cohorts.
Selection of machine learning algorithms

Currently, lasso regression is the most frequently used machine learning approach for

clinical modeling (2). Similarly, the MR model was also reliant on lasso regression for

construction (1). In 2024 alone, more than 800 studies have utilized this method to

establish clinical assessment models in various cancers. The reasons for its wide application
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are predominantly due to that lasso regression effectively handles

the dilemma of variable selection and model overfitting through

creating a penalty function l (3).

At present, other machine learning algorithms in exception

with lasso regression have also been widely applied in the clinical

modeling process owing to their particular advantages. For instance,

the support vector machine (SVM) is a classical supervised learning

algorithm, which has expertise in addressing the issues referring to

multi-classification and sample disequilibrium (4). Yu Y et al. have

utilized this method to characterize heart failure (5). As for random

forest, it has excelled when dealing with non-linear data and

complex relational data (6), by which Zhang Y et al. constructed

a prediction model for deep vein thrombosis in patients with

digestive system tumors (7). Clearly, lasso regression is not the

only option in clinical modeling. Notably, the original intention of

modeling is to accurately predict survival outcome or therapeutic

response of cancer patients, which can be evaluated by C-index or

area under curve (AUC) value (8). This elicits a question: Does the

models constructed by lasso regression have the best predictive

performance, or is lasso regression the optimal solution

for modeling?

To address this point, Liu Z et al. demonstrated a remarkable

research strategy, termed comparison of multiple machine learning

algorithms (9). In their study, 101 kinds of prediction models were

fitted based on various machine learning algorithms and their

combinations, such as support vector machine-recursive feature

elimination (SVM-RFE), random survival forest (RSF), and Ridge

method. They then calculated the C-index of each model in all

validation cohorts and found the optimal solution for immune

lncRNA signature in colorectal cancer (CRC), which was the

combination of lasso regression and step cox regression. Therefore,

there may be better approaches for fitting the MR model, which awaits

verification by comparing multiple machine learning algorithms.

Nonetheless, the advantages of lasso regression over other

algorithms should not be overlooked. First, the model fitted by

lasso regression offers significant interpretability (10). In contrast,

models such as random forest, SVM, XGBoost, and artificial neural

network (ANN) often result in ‘black box’ models, which are

challenging to interpret internally. This difficulty arises because

the predictive results of black box models can typically only be

explained by the correlations between input and output, without

providing a specific interpreting or reasoning process (11).

Furthermore, black box models are often nonlinear, making their

decision boundaries more elusive than those of the linear models

well-represented by lasso regression. Second, lasso regression is

adept at addressing model overfitting and high model complexity.

However, other algorithms may not always be competent. For

example, when no multicollinearity exists between independent

variables, Ridge regression may diminish the predictive

performance of the constructed model (12). Similarly, the random

forest model is susceptible to overfitting on certain noisy features,

and its training time is relatively long due to its dependence on

training multiple decision trees simultaneously. Therefore, although

lasso regression may not always excel in diagnostic performance, it

remains a stable solution with low fault tolerance for most

clinical analyses.
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Comprehensive
bioinformatics evaluation

Prognostic analysis is a crucial component of personalized

cancer medicine and represents a primary concern for patients. In

their study, Ma B et al. evaluated the survival differences between

patients with high and low MR risks and the accuracy of the MR

model in predicting the overall survival rate (OSR) at 1, 3, and 5

years (1). However, other prognostic properties also merit further

exploration. For instance, clinical subgroup analyses could test the

predictive capacities of the MR model in cancer patients at different

clinical stages (13). Additionally, while the AJCC and TNM systems

are established foundations for cancer prognostic assessments (14),

replacing them with the MR score is impractical. It could be

clinically more significant to investigate whether the MR risk

score could enhance the predictive accuracy or decision-making

benefits of the AJCC or TNM systems using decision curve analysis

(DCA) (15).

Regarding immunotherapy response, Ma B et al. explored the

associations between MR risk score and Tumor Immune

Dysfunction and Exclusion (TIDE) score, tumor mutation burden

(TMB), and expressions of immune checkpoints (ICs). These are

considered valuable biomarkers for predicting the efficacy of

immune checkpoint inhibitors (ICIs) (16–18). Notably, some

clinical cohorts could be used for therapeutic effect analysis due

to their available transcriptome and clinical data.

Compared to the work of Ma B et al., Betancor YZ et al.

demonstrated some advantages in predicting therapeutic response

(19). They utilized real-world evidence from three related clinical

trials (CheckMate-009, CheckMate-010, and CheckMate-025) to

assess the predictive capacity of a three-gene model for anti-PD-1

blockade therapy, highlighting its effectiveness in actual clinical

practice. Additionally, considering that nivolumab is the first-line

treatment for advanced renal cell carcinoma (RCC), the topic chosen

by Betancor YZ et al. may hold more appeal for researchers in this

field. Clearly, the research of Ma B et al., particularly in prognostic

and immunotherapy analyses, could be further refined with more

comprehensive bioinformatic investigations.

Validation of extensive clinical cohort

Although prediction models are increasingly prevalent, only a

minority have undergone validation using the authors’ own clinical

cohorts, significantly limiting their clinical applicability (20).

Regrettably, the prognostic value of the MR model was validated

only in an external cohort (GSE52904 dataset) and not in more

comprehensive clinical cohorts.

There are two primary drawbacks to relying solely on public

data. First, demographic differences among various clinical cohorts

can introduce selection bias. For example, the age range of patients

in the GSE52904 dataset spanned from 24 to 74 years (Mean=50.5

years) (21), whereas the average age in another cervical cancer

cohort, GSE6791, was 43.9 years (22). Additionally, there were

discrepancies among patients in terms of race, clinical stages,

pathological types, and follow-up times across different cohorts.
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Thus, using external clinical data could help minimize this selection

bias to some extent. Second, the clinical validation within their own

centers is a critical first step toward the clinical application of

constructed models. If models developed by authors do not perform

well in their own clinical cohorts, it is challenging to convince

surgeons of their clinical potential and value.

Moreover, since the modeling process tends towards purely

mathematical operations, the lack of clinical data correction can

cause the constructed model to deviate from actual circumstances.

For instance, a six-genes ZNF family model developed for clinical

assessments of esophageal cancer (ESCS) (23) showed no significant

differences in ZNF502 expressions between tumor and normal clinical

samples, as determined by PCR. This undoubtedly diminishes the

credibility of this model to some extent. Collectively, it is crucial to

advocate for more extensive clinical validation.

Some suggestions on clinical
data validation

Validating models or risk signatures on external clinical

cohorts, such as those from a researcher’s own center,

significantly enhances their credibility, although this path is

challenging yet worthwhile. From our perspective, there are two

critical enabling factors. First, long-term and meticulous follow-up

is essential. Prognostic assessment plays a pivotal role in

individualized cancer therapy. Collecting detailed data on patient

survival or therapeutic responses will greatly inform these issues.

Second, the construction of a genome-wide library is crucial. With

the rapid development of genomics, selecting appropriate patients

and performing exon sequencing on their clinical samples can link

molecular features to clinical phenotypes (24), enhancing our

understanding of disease pathogenesis. However, these strategies

are accompanied by considerable human and economic costs.

Conclusions

In this manuscript, we propose several approaches to refine the

MR risk score, thereby enhancing its clinical application. First,

optimizing the machine learning algorithm may improve its

prediction performance. Second, the increased use of

bioinformatics technologies, such as Decision Curve Analysis

(DCA), is instrumental in assessing the clinical value of the MR

risk score. Third, further validation using external clinical data will

enhance the credibility of the MR risk score.
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The rapid expansion of bioinformatics technology has broadened

the scope of cancer research. However, the majority of bioinformatics

research encounters common issues, such as the selection of

modeling algorithms and the scarcity of real-world data. These

limitations significantly restrict the clinical application of novel

prediction models. We highlight three improvement measures to

address these deficiencies, which will contribute to a better

understanding of the application of bioinformatics in the cancer field.
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