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Background: Hepatocellular carcinoma (HCC) poses a significant global health

challenge due to its poor prognosis and limited therapeutic modalities. Anoikis

and ErbB signaling pathways are pivotal in cancer cell proliferation and

metastasis, but their relevance in HCC remains insufficiently explored.

Methods: This study evaluates the prognostic significance of anoikis and ErbB

signaling pathways in HCC by utilizing data from The Cancer Genome Atlas

(TCGA), the International Cancer Genome Consortium (ICGC), three additional

independent validation cohorts, and an in-house cohort. Advanced

bioinformatics analyses and 167 machine learning models based on leave-one-

out cross-validation (LOOCV) were used to predict HCC prognosis and assess

outcomes of immune-targeted therapies. Additionally, key biological processes

of the anoikis and ErbB signaling pathways in HCC were further investigated.

Results: The single sample Gene Set Enrichment Analysis revealed a strong

correlation between upregulated ErbB signaling in high anoikis-expressing

tumors and poor clinical outcomes. The development of the Anoikis-ErbB

Related Signature (AERS) using the LASSO + RSF model demonstrated robust

predictive capabilities, as validated across multiple patient cohorts, and proved

effective in predicting responses to immune-targeted therapies. Further

investigation highlighted activated NOTCH signaling pathways and decreased

macrophage infiltration was associated with resistance to sorafenib and immune

checkpoint inhibitors, as evidenced by bulk and single-cell RNA sequencing

(scRNA-seq).
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Conclusion: AERS provides a novel tool for clinical prognosis and paves the way

for immune-targeted therapeutic approaches, underscoring the potential of

integrated molecular profiling in enhancing treatment strategies for HCC.
KEYWORDS

hepatocellular carcinoma, anoikis, ErbB signaling, prognostic model, single cell analysis,
machine learning
Introduction

Hepatocellular carcinoma (HCC), the most prevalent form of

primary liver cancer, accounts for 75%–90% of cases and ranks as the

sixthmost commonmalignancy globally (1). It also represents the third-

leading cause of cancer-related mortality, with a bleak 5-year survival

rate of less than 20% (2, 3). Although advancements in treatments such

as chemoembolization, targeted therapies (e.g., sorafenib and

lenvatinib), and immune checkpoint blockade (ICB) have extended

survival in patients with advanced HCC, overall outcomes remain

generally poor (4–7). There is an urgent need to enhance current

treatments and explore new therapeutic options. The potential of

circulating tumor cells and nucleic acids, along with microvascular

invasion, shows promise as biomarkers for HCC management, yet

their clinical utility remains constrained by current detection

technologies (8, 9). Therefore, discovering new biomarkers and

therapeutic targets is essential to improve patient outcomes in HCC.

Members of the ErbB tyrosine kinase family such as EGFR and

HER2 are frequently altered in cancer, driving tumor growth and

progression through aberrant signaling pathways (10). In HCC,

overexpression or dysregulation of ErbB receptors is commonly

observed, correlating with poor prognosis and aggressive tumor

behavior (11). Activation of the EGFR pathway stimulates

downstream signaling cascades, such as Ras/Raf/MAPK and

PI3K/Akt/mTOR, promoting cell proliferation and survival (12).

Additionally, amplification or mutation contributes to HCC

progression via dysregulated signaling (13). To combat this,

targeted therapies have been developed, including tyrosine kinase

inhibitors (TKIs), monoclonal antibodies (mAbs), and antibody–

drug conjugates (ADCs), which specifically inhibit ErbB signaling

(14). These therapies have demonstrated clinical efficacy, improving

survival rates in patients with cancers that exhibit these genetic

alterations (15). However, achieving lasting clinical benefits remains

challenging due to resistance mechanisms that diminish the efficacy

of these targeted therapies (16). This highlights the ongoing need

for more effective treatment strategies in HCC, focusing on

overcoming resistance and enhancing the durability of therapeutic

responses to ErbB-targeted interventions.

Anoikis, a form of apoptosis triggered by cell detachment from

the extracellular matrix, is vital for maintaining tissue integrity and

suppressing tumorigenesis (17). However, cancer cells can evade

anoikis, facilitating proliferation and metastasis (18). In HCC,
02
understanding anoikis resistance has become increasingly

attractive. Studies have shown that modulation of the mTOR/

S6K1 signaling axis and the EGFR pathway influences HCC

metastasis by regulating anoikis (19, 20). Various targets have

been identified to mitigate anoikis resistance and inhibit HCC

progression (21). For example, histidine-rich calcium-binding

protein (HRC) and autophagy pathways have been implicated in

promoting anoikis resistance and metastasis in HCC (22, 23).

Despite these advances, further research is needed to develop

prognostic models based on anoikis-related genes (ARGs) for

improved HCC prognosis and therapeutic outcomes.

Current studies indicate that excessive activation of ErbB

tyrosine kinase family was associated with anoikis resistance in

breast cancer or prostate cancers (24, 25), but the association of

ErbB and anoikis has not yet been explored in HCC. In this study,

we initially found that the ErbB signaling pathway stood out as the

only upregulated one in the anoikishigh group among all bulk RNA-

seq cohort. Then, the subgroup of anoikishigh&ErbBhigh patients had

the worst prognosis compared to the other three subgroups, in

which the NOTCH signaling pathway was enriched using bulk- and

single-cell RNA sequencing (scRNA-seq). Through the leave-one-

out cross-validation (LOOCV) framework, 167 machine learning

procedures were constructed to predict the prognosis of HCC

patients based on the Anoikis-ErbB related genes, and the LASSO

+ RSF model was selected for the optimal Anoikis-ErbB Related

Signature (AERS), achieved the highest C-index, and demonstrated

superior predictive power over 72 published predicting models.

Additionally, AERS was shown to predict the response of patients

with HCC to immune-targeted therapies.
Material and methods

Data collection

The gene expression profiles and clinical data were

retrospectively obtained from the Cancer Genome Atlas (TCGA,

https://cancergenome.nih.gov/), including 424 samples (involving

374 tumor tissues and 50 normal tissues), along with 240 tumor

samples from the International Cancer Genome Construction

(ICGC, https://dcc.icgc.org/projects/LIRI-JP). Moreover,

GSE144269, GSE14520, and GSE116174 were downloaded from
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the Gene Expression Omnibus (GEO) databases (https://

www.ncbi.nlm.nih.gov/geo/). The “ComBat” method within the R

package “sva” was utilized to mitigate batch effects across the

TCGA, ICGC, and GEO datasets. Furthermore, the GSE109211

cohort, consisting of 67 patients with HCC receiving sorafenib, was

included to assess the efficacy of sorafenib response. The patients

receiving anti-PD-1 treatment from the GSE91061 cohort

(comprising 109 patients with melanoma), the phs000452 cohort

(comprising 153 patients with melanoma who received anti-PD-1

treatment), and the Braun2020 cohort (comprising 311 patients

with renal cell carcinoma) were obtained from TIGER database

(http://tiger.canceromics.org/#/). Baseline characteristics of these

cohorts are detailed in Supplementary Table S1.
Clinical specimens

A total of 64 frozen HCC samples and 26 paracancer samples

were collected from Mengchao Hepatobiliary Hospital (MCHH)

between December 2015 and December 2018. Among these

samples, 10 HCC samples had received sorafenib treatment for

postoperative recurrence, and the response to sorafenib was

assessed by two clinical experts. This study was ethically approved

by the Ethics Committees of MCHH, with all patients providing

written informed consent. The baseline characteristics of the

MCHH cohort can be found in Supplementary Table S2.
Analysis of pathway activity, function,
immune infiltration, and drug sensitivity

The gene sets of anoikis and KEGG were extracted from the Gene

Set Enrichment Analysis (GSEA) website (https://www.gsea-msigdb.org/

GSEA/index.jsp, Supplementary Table S3). Then, single-sample

GSEA (ssGSEA) and Gene Set Variation Analysis (GSVA) were

employed using the R package “GSVA” to assess pathway activity.

GSEA software (V4.3.3) was used for GSEA to identify the

differentially regulated pathways. Moreover, the tumor immune

microenvironment (TiME) was evaluated by the “EPIC” method

using the R package “IBOR”. Additionally, several tools were

applied to assess the predictive value of molecularly targeted

drugs (MTDs) and immune checkpoint inhibitor (ICI) benefits.

The half-maximal inhibitory concentration (IC50) of MTDs was

calculated by the R package “pRRophetic”. The immunophenoscore

(IPS) of patients with HCC was sourced from the Cancer

Immunome Atlas (TCIA, https://tcia.at/home).
Development and evaluation of a
prognostic Anoikis-ErbB Related Signature
via the machine learning-based
integrative procedure

Differentially expressed genes (DEGs) were identified with the R

package “limma”, and univariate Cox regression analysis was

performed using the R package “survival” to screen for prognostic
Frontiers in Immunology 03
genes. A total of 167 types of machine learning integrations had

been derived from 10 different machine learning algorithms,

namely, Lasso, RSF, survival-SVM, SuperPC, plsRcox, GBM, Enet,

Ridge, stepwise Cox, and CoxBoost. We determine the optimal

hyperparameters for each machine learning model by utilizing the

respective R package associated with each machine learning

algorithm (Supplementary Table S4). The C-index, as calculated

by Harrell, was utilized across all validation datasets to ascertain the

optimal model.

Patients in each bulk RNA-seq cohort were stratified into

AERSlow and AERShigh groups based on the median of AERS. The

prognostic value of AERS was confirmed through analysis of

survival differences using Kaplan–Meier (K-M) curves, time-

dependent receiver operating characteristic (ROC) curves, and

univariate and multivariate Cox regression analyses. These

analyses were conducted using the R packages “survmine”,

“survivalROC”, and “survival” respectively.
The scRNA-seq data quality control
and analysis

Initially, the scRNA-seq cohort GSE149614 including 10 tumor

samples was extracted from GEO databases. Data process and

quality control were conducted by the R package “Seurat”. A total

of 16,709 cells were filtered out based on specific criteria, including

the requirement that each gene be expressed in a minimum of three

cells, each cell express at least 250 genes, the gene count per cell falls

within a range of 100 to 5,000, and mitochondrial gene expression

be maintained below 25%. Furthermore, the filter condition of

unique molecular identifier (UMI) counts ranging from 100 to

50,000 was considered. Additionally, the scRNA-seq data were

normalized and batch effects were removed using the R package

“harmony”. Following this, principal component analysis (PCA)

was conducted to reduce the dimensionality of cells, with

unsupervised cell clusters generated under the conditions of dim

= 20 and resolution = 0.2. Moreover, classical immune cell markers

were employed for annotating subpopulations, with data sourced

from the CellMarker 2.0 database (http://biocc.hrbmu.edu.cn/

CellMarker/). In addition, the identification of phenotype-guided

single-cell subpopulations was also carried out using the R package

“scissor”. To evaluate the functions of pathway, analysis by R

package GSVA was performed. In order to deduce the cellular

development trajectory, we performed pseudotime analyses and

trajectory construction in the R package “monocle”. After that, we

delved deeper into cell–cell communication by employing the R

package “CommPath” and visualizing signaling pathway networks

within clusters through heatmap.
Quantitative real-time polymerase
chain reaction

Previous studies served as the basis for conducting RNA

extraction and reverse transcription procedures (26). Target gene

expression was normalized to b-actin, with all quantitative real-time
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polymerase chain reaction (qRT-PCR) analyses conducted in

triplicate. Primer sequences for the five target genes and b-actin
are listed in Supplementary Table S5.
Statistical analyses

This study utilized R-4.1.2 for statistical analyses. Chi-square

test was used to evaluate differences in proportions. The normality

of variables was assessed using the Shapiro–Wilk test. Student’s t-

test was employed to assess differences between two groups with

normally distributed variables, while the Wilcoxon test was used for

variables that were not normally distributed. Parametric analysis of

variance (ANOVA) tests were conducted for multiple group

comparisons, while nonparametric Kruskal–Wallis tests were

utilized. Spearman correlation and distance correlation analyses

were performed based on correlation coefficients. p < 0.05 indicates

statistical significance.
Results

The clinical significance and potential
mechanism of anoikis and ErbB levels

Figure 1 illustrates the study workflow. In the TCGA cohort,

ssGSEA was applied to assess anoikis levels in patients with HCC,

revealing a significant association between elevated anoikis levels and

worse prognosis (Figure 2A, p < 0.05). To further explore the

potential relationship between anoikis levels and HCC prognosis,

GSVA of the KEGG pathway was conducted. Interestingly, ErbB

pathway stood out as the only one that was upregulated in all bulk

RNA-seq cohorts, including TCGA, ICGC, GSE14520, GSE144269,

and GSE116174 cohorts (Figures 2B, C, as detailed in Supplementary

Table S6). Similarly, high ErbB pathway activity also led to worse

prognosis in patients with HCC (Supplementary Figure S1A, p <

0.05). Prognostic analysis of both pathways demonstrated that

patients in the anoikishigh&ErbBhigh group had the most

unfavorable prognosis compared to other subgroups (Figure 2D;

Supplementary Figure S1B, all p < 0.05). Based on the above findings,

we hypothesize that the anoikis and ErbB pathways engage in the

same biological processes to influence HCC prognosis. Immune

infiltration analysis indicated that macrophage was significantly

downregulated in the anoikishigh&ErbBhigh group (Figure 2E, p <

0.001), alongside the upregulation of the NOTCH pathway

(Figure 2F). Correlation analysis indicated a positive relationship

between anoikis and ErbB levels with NOTCH activity, and a

significant negative correlation with macrophage infiltration

(Figure 2G, as detailed in Supplementary Figures S2A-F). Similar

patterns were observed in the meta-cohort (Supplementary Figures

S3A-E).

Further validation was performed using the scRNA-seq cohort

(GSE149614), where 22 infiltration clusters were identified via PCA

and visualized through UMAP plots (Figure 3A). Then, the
Frontiers in Immunology 04
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performed with typical marker genes for Tregs, CD8+ T cells,

endothelial cells, tissue stem cells, hepatocytes, macrophages, and

B cells (Figure 3B). GSEA identified cells with anoikishigh&ErbBhigh

characteristics, revealing a significant reduction in macrophage

levels compared to other cells (Figure 3C) while showing elevated

anoikis, ErbB, and NOTCH activity (Figure 3D). These results

suggest that anoikis may affect HCC prognosis by enhancing

NOTCH pathway activity and reducing macrophage infiltration

through ErbB receptor signaling.
Construction and evaluation of AERS based
on hub genes of anoikis and ErbB

A total of 802 DEGs were identified between the

anoikishigh&ErbBhigh group and other patients (Figure 4A, as

detailed in Supplementary Table S7), while 1,685 DEGs were

identified between tumor and adjacent non-tumor tissues

(Figure 4B, as detailed in Supplementary Table S8). In addition,

1,852 genes were identified as prognostic genes (Supplementary Table

S9). Venn analysis revealed 105 candidate genes (Figure 4C).

Utilizing the LOOCV framework, 167 machine learning-based

procedures were employed to construct the AERS for predicting

HCC prognosis in the TCGA cohort, and a combination of LASSO

and RSF algorithms yielding the highest mean C-index of

0.763 (Figure 4D).

AERS was constructed based on five key genes (CCT2,

MARCKSL1, SLC2A1, ECT2, and CDK4), as demonstrated by K-

M curves and univariate Cox regression analysis in Supplementary

Figures S4A-L (all p < 0.001). Patients were stratified into two

groups according to the median AERS score of AERS, and K-M

curves show that the AERShigh group had a significantly worse

prognosis across all cohorts (Figures 4E–J, all p < 0.05).

The area under the curve (AUC) at 1 year for the TCGA, ICGC,

GSE14520, GSE116174, and GSE144269 cohorts and meta-cohort

were 0.805, 0.850, 0.748, 0.697, 0.800, and 0.785, respectively. At 2

years, AUC values were 0.751, 0.801, 0.736, 0.694, 0.790, and 0.752;

at 3 years, they were 0.759, 0.798, 0.750, 0.709, 0.808, and 0.764,

respectively (Figure 5A). The C-index values for these cohorts were

0.751, 0.804, 0.734, 0.709, 0.819, and 0.752, indicating superior

prognostic power compared to clinical features such as age, gender,

stage, and grade (Figures 5B-G). Multivariate Cox regression

analysis confirmed AERS as an independent risk factor for overall

survival (OS) in all cohorts (Figures 5H–M, all p < 0.05).

By reviewing previously reported prognostic signatures for HCC,

72 relevant signatures covering various biological processes—

including stemness, autophagy, ferroptosis, epithelial–mesenchymal

transition, and immune response—were identified. Univariate Cox

regression analysis demonstrated that AERS was the only prognostic

signature across all cohorts (Supplementary Figure S5A, all p < 0.05).

Furthermore, compared to the 72 signatures, AERS had the highest

C-index and demonstrated unmatched prognostic predictive

capability in all cohorts (Supplementary Figures S5B-G).
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The potential mechanism for poor
prognosis of the AERShigh subgroup via
scRNA-seq

Further validation of AERS-related biological processes was

performed through scRNA-seq cohort analysis. Cells with poor

prognostic characteristics were identified using the “scissor”

algorithm. Consistent with findings from the anoikishigh&ErbBhigh

group, a significant reduction in macrophage abundance and

landscape was observed compared to other cell types (Figure 6A),

while anoikis, ErbB, NOTCH, and AERS levels were notably
Frontiers in Immunology 05
elevated (Figure 6B). Additionally, pseudotime analysis revealed a

clear trajectory indicating that anoikishigh&ErbBhigh cells tend to

transition into poor prognosis cells (Figure 6C). Cellular

communication analysis, conducted via the “CommPath” method,

further explored ligand–receptor interaction counts and intensity

among cell subpopulations (Supplementary Figures S6A, B). GSEA

identified ErbB and NOTCH signaling pathways as activated in

both anoikishigh&ErbBhigh cells and poor prognosis cells

(Figure 6D). These results collectively suggest that elevated AERS

may contribute to poor prognosis by activating ErbB and NOTCH

signaling and reducing macrophage infiltration.
FIGURE 1

Flowchart of the present study.
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Molecular targeted drugs and immune
checkpoint inhibitors related to AERS

Using the “pRRophetic” algorithm to assess drug sensitivity to

MTDs, the IC50 of sorafenib, erlotinib, dasatinib, and gefitinib was

found to be significantly higher in the AERShigh group within the

TCGA cohort (Figure 7A). In the GSE109211 cohort, sorafenib-

resistant patients exhibited notably higher AERS scores (Figure 7B),

with an AUC of AERS to predict sorafenib response (Figure 7C).

Additionally, the sorafenib response rate to sorafenib was

significantly lower in the AERShigh group compared to the AERSlow

group (Figure 7D, p < 0.05). Interestingly, ErbB and NOTCH
Frontiers in Immunology 06
pathway activation was also observed in sorafenib-resistant cells

(Supplementary Figures S7A–D, S8A, B), indicating that AERS

may predict responses not only to sorafenib but also to other MTDs.

The IMbrave150 trial introduced the combination of MTDs and

ICIs; therefore, we tried to explore the predictive value of AERS in

patients with HCC receiving ICIs (4). IPS, commonly used to predict

ICI response, was significantly decreased in the AERShigh group

(Figure 8A, all p < 0.05). Additionally, immune checkpoint

molecules (e.g., CCR4, CD27, CD274, CD68, CTLA4, PDCD1, and

PDCD1LG2) were significantly upregulated in the AERShigh group

(Figure 8B, all p < 0.01), suggesting potential impairment of the anti-

tumor immune response. Analysis of the GSE91061 cohort, consisting
FIGURE 2

The clinical significance and potential mechanism of anoikis and ErbB levels. (A) Kaplan–Meier analysis of OS stratified based on ssGSEA scores of
anoikis level. (B) Volcano plot showed the GSVA of differential pathways stratified based on anoikis level. (C) The ErbB pathway was identified via a
Venn diagram. (D) Kaplan–Meier analysis of OS stratified based on the combination of anoikis and ErbB pathway level. (E) Differential immune cell
infiltration analysis between the anoikishigh&ErbBhigh group and others. (F) The NOTCH pathway was identified between the anoikishigh&ErbBhigh

group and others via GSEA. (G) Heatmap shows the correlations among anoikis level, ErbB pathway level, NOTCH pathway level, and macrophage
infiltration. OS, overall survival; ssGSEA, single sample Gene Set Enrichment Analysis; GSVA, Gene Set Variation Analysis; GSEA, Gene Set Enrichment
Analysis. *p < 0.05; ** p < 0.01; ***p < 0.001.
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of 109 patients with melanoma receiving anti-PD-1, revealed higher

AERS scores in the resistant group (Figure 8C, p < 0.01), and the ICI

response rate was significantly lower in the AERShigh group compared

to the AERSlow group (Figure 8D). The AUC for AERS in predicting

ICI response was 0.708, outperforming common immune

checkpoints like PDCD1, CD274, and CTLA4 (Figure 8E). Patients
Frontiers in Immunology 07
in the AERShigh group also had worse survival outcomes (Figure 8F,

p < 0.001), with 1-, 2-, and 3-year AUCs of 0.729, 0.743, and 0.659,

respectively (Figure 8G). Similar results were observed in the

phs000452 cohort (including 153 patients with melanoma) and the

Braun2020 cohort (including 311 patients with renal cell carcinoma),

both treated with anti-PD-1 (Supplementary Figures S9A-J).
FIGURE 3

Landscape and potential mechanism of HCC via scRNA-seq. (A) The UMAP plot of 22 cell clusters from the multicellular ecosystem of 10 HCC
patients. (B) Dotplot showed the percentage of expressed cells and average expression levels of canonical marker genes of major cell types in 22
cell clusters. (C) UMAP plot and bar plots indicate the landscape and proportion of major cell lineages between anoikishigh&ErbBhigh and the other
cells. (D) UMAP plot and violin plot showed the distribution of anoikis level, ErbB pathway level, and NOTCH pathway level between
anoikishigh&ErbBhigh and the other cells. HCC, hepatocellular carcinoma; scRNA-seq, single-cell RNA sequencing; UMAP, Uniform Manifold
Approximation and Projection. ***p < 0.001.
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The validation of AERS in a clinical in-
house cohort

To further validate the clinical applicability and predictive

power of AERS, qRT-PCR was performed to assess the expression

of the five signature genes in 64 HCC samples and 26 paracancerous
Frontiers in Immunology 08
samples from MCHH, including 10 patients with HCC who

experienced postoperative recurrence and received sorafenib

treatment. The expression levels of the five genes and AERS were

significantly elevated in tumor tissues (Figure 9A, all p < 0.05), with

AERS showing the highest AUC for distinguishing tumor tissue at

0.832, outperforming individual signature genes (Figure 9B).
FIGURE 4

Construction of AERS based on anoikis and ErbB pathway. (A) Differential expression analysis results revealed that significant genes were upregulated
and downregulated in the anoikishigh&ErbBhigh group with the TCGA cohort. (B) Differential expression analysis results revealed that significant genes
were upregulated and downregulated in tumor samples with the TCGA cohort. (C) The 105 candidate genes were identified via a Venn diagram in
the TCGA cohort. (D) A total of 167 prediction models via the LOOCV framework and the C-index of each model across all cohorts. (E–J) Kaplan–
Meier curves of OS with different AERS groups in TCGA, ICGC, GSE144269, GSE116174, GSE14520, and mate-cohort. AERS, Anoikis& ErbB-related
signature; TCGA, The Cancer Genome Atlas; LOOCV, leave- one-out cross-validation; OS, overall survival; ICGC, International Cancer
Genome Construction.
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Survival analysis in the in-house cohort further confirmed the

prognostic value of AERS. Patients in the AERShigh group exhibited

significantly worse prognosis (Figure 9C, p < 0.001), and multivariate

Cox regression analysis identified AERS as an independent risk factor

for OS (Figure 9D, p < 0.001). K-M analysis of the five signature genes

is shown in Supplementary Figures S10A–E, where all genes, except

MARCKSL1, were significantly associated with OS in univariate Cox
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regression analysis (Supplementary Figure S10F, p < 0.001). AERS

demonstrated the highest AUC at 1, 2, and 3 years (0.876, 0.887, and

0.841, respectively) when compared to the five signature genes

(Figure 9E). Additionally, AERS achieved a C-index of 0.758, which

indicated a most superior prognostic predictive power compared to

both the signature genes and other clinical characteristics, such as age,

gender, stage, and grade (Figure 9F).
FIGURE 5

Evaluation of the AERS in multiple cohorts. (A) Time-dependent ROC analysis of AERS for predicting OS at 1, 2, and 3 years in the cohorts of TCGA,
ICGC, GSE144269, GSE116174, GSE14520, and mate-cohort. (B–G) C-index of AERS compared with other clinical characteristics in predicting
prognosis. (H–M) Univariate and multivariate Cox regression analysis of AERS and other clinical characteristics. ROC, receiver operating
characteristic; AERS, Anoikis& ErbB-related signature; OS, overall survival; TCGA, The Cancer Genome Atlas; ICGC, International Cancer
Genome Construction.
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Moreover, the patients who were resistant to sorafenib

treatment had a significantly higher AERS (Figure 9G, p < 0.05),

with an AUC of 0.960 for predicting sorafenib response

(Figure 9H). Notably, aside from CDK4 in the gender subgroup,

no significant differences were observed in the expression levels of

AERS and the signature genes across various clinicopathologic

characteristics (Supplementary Figures S11A–D, all P>0.05).
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Discussion

Prognostication remains a critical concern in HCC (27).

Previously published studies primarily concentrate on a single

gene or gene set, raising questions about their reproducibility and

generalizability across diverse patient populations and clinical

settings (28, 29). In this investigation, we integrated two
FIGURE 6

Potential mechanism of AERS in HCC progression. (A) UMAP plot and bar plots indicates the landscape and proportion of major cell types between
the poor prognosis group and the other cells. (B) UMAP plot and violin plot shows the distribution of anoikis level, ErbB pathway level, NOTCH
pathway level, and AERS between the poor prognosis group and the other cells. (C) Pseudotime analysis for the anoikishigh&ErbBhigh macrophages
with poor prognosis. (D) Heatmap indicates the activation of major pathways in cell subpopulation with poor prognosis. AERS, Anoikis& ErbB-related
signature; HCC, hepatocellular carcinoma; scRNA-seq, single-cell RNA sequencing; UMAP, Uniform Manifold Approximation and Projection. ***p
< 0.001.
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prominent gene sets of anoikis and ErbB to develop 167 prognostic

models for HCC using machine learning techniques. The LASSO +

RSF model emerged as the optimal AERS, demonstrating superior

predictive capability compared to existing prognostic scores.

Further analyses identified a correlation between elevated AERS,

activated NOTCH signaling pathways, and decreased macrophage

infiltration, as observed through both bulk and scRNA sequencing.

These biological changes are associated with resistance to sorafenib

and ICIs (30).

Anoikis and ErbB signaling pathways are well-documented for

their roles in the progression and prognosis of HCC (14, 31, 32).

Despite the establishment of numerous risk scores based on these

pathways (31, 33), their interactions remain underexplored. In this

study, ErbB signaling was the only upregulated one in the

anoikishigh group among all bulk RNA-seq cohort, and elevated

anoikis score or ErbB score was negatively correlated with the

prognosis of HCC patients. Then, we found that patients with

anoikishigh&ErbBhigh had the worst prognosis compared with other

subgroups and were much more likely to resist to TKIs. Analyses of

bulk and scRNA sequencing revealed that the NOTCH signaling

pathway was activated in the anoikishigh&ErbBhigh subgroup,

accompanied by decreased macrophage infiltration, both of which

were reported to be associated with poor prognosis and therapeutic

resistance in HCC (34).

Utilizing an LOOCV framework, 10 machine learning algorithms

were applied to generate 167 model combinations. This integrative
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approach reduces dimensionality of variables, enhances stability, and

mitigates overfitting, making it highly promising for clinical

application. The principal innovation of this research lies in the

creation of 167 prognostic models for HCC using machine learning,

based on Anoikis-related and ErbB-related genes. Then, according to

the mean ROC, we selected LASSO+RSF as the optimal AERS, the C-

index of which was higher than the other clinicopathogical

characteristics (age, gender, grading, and stage). Of note, the

current AERS had better predicting power than the other 72

published predicting models across all the cohorts. The current

AERS incorporated five genes, namely, MARCKSL1, CCT2, CDK4,

SLC2A1, and ECT2. MARCKSL1 is a member of the MARCKS

family of protein kinase C substrates, known for playing a role in

actin cytoskeleton remodeling and cellular signaling (35). CCT2 is

part of a group of proteins known as chaperonins, which are

specifically involved in the complex process of folding actin and

tubulin (36). CDK4 is a key protein in cell cycle regulation, which is

critical for cellular proliferation (37). SLC2A1, also known as GLUT1,

plays a crucial role in glucose uptake and metabolic processes (38).

ECT2 has roles in controlling the cytoskeleton and is also studied for

its involvement in tumor formation and progression (39). Notably,

the current AERS and the incorporated five genes were also verified in

an in-house cohort. This comprehensive integration of gene sets into

machine learning models represents a significant leap in HCC

prognostication, underscoring its potential utility in guiding

treatment strategies.
FIGURE 7

Application of AERS in MTDs. (A) Drug sensitivity analysis showed an IC50 of four MTDs in different AERS groups in the TCGA cohort. (B) The
distribution of the differential AERS between response and non-response groups in the GSE109211 cohort. (C) ROC curve of AERS to predict
sorafenib response in the GSE109211 cohort. (D) Fourfold table between AERS and sorafenib response in the GSE109211 cohort. MTDs, molecular
targeted drugs; AERS, Anoikis& ErbB-related signature; HCC, hepatocellular carcinoma; IC50, half-maximal inhibitory concentration; ROC, receiver
operating characteristic. *p < 0.05; **p < 0.01; ***p < 0.001.
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Sorafenib remains a cornerstone of systemic therapy for

advanced HCC, yet resistance emerges in a significant portion of

patients, curbing its long-term efficacy (40). The mechanisms of

sorafenib resistance are multifactorial and include cellular

adaptations, tumor microenvironment interactions, and genetic

and epigenetic alterations (41–43). In this study, we noted that

the AERShigh subgroup was much more likely to resist to sorafenib

than the AERSlow subgroup based on the current AERS score. More

importantly, bulk and scRNA sequencing analysis revealed that the

activated NOTCH signaling pathway and decreased macrophage

infiltration might be the answer for sorafenib resistance in this

subgroup. In the context of sorafenib resistance, the NOTCH

signaling pathway has been implicated in the promotion of cancer

stem cell, regulation of tumor microenvironment, and induction of

epithelial-to-mesenchymal transition (EMT) (44). Evidence

revealed that macrophages also played an important role in
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sorafenib resistance (30, 45). Consequently, targeting the NOTCH

pathway and macrophage polarization may serve as viable strategies

to mitigate resistance to sorafenib.

Emerging as a potent therapeutic option, ICIs have shown

promise in treating advanced HCC, particularly in combination

with targeted therapies (4, 5, 46). Application of PD-L1 expression,

tumor mutational burden (TMB), and microsatellite instability

(MSI) greatly improves patient selection and predicting responses

to treatment (47, 48), but challenges remain in achieving consistent

biomarker validation across diverse populations and cancer types,

as well as in integrating complex biomarkers like immune cell

infiltration and gene expression profiles into routine clinical

practice to guide therapy decisions more effectively (49, 50). In

our analysis, we found that the AERShigh group exhibited decreased

IPS of PD1 and CTLA4, alongside increased expression of immune

checkpoints PDCD1, CD274, CTLA4, and PDCD1LG2. These
FIGURE 8

Application of AERS in ICIs. (A) Violin plot shows the distribution of IPS score between different AERS groups in the TCGA cohort. (B) The distribution
of the differential immune checkpoint molecule expression between different AERS groups in the TCGA cohort. (C) The distribution of the differential
AERS between sensitive and resistant groups in the GSE91061 cohort. (D) Fourfold table between AERS and ICI response in the GSE91061 cohort. (E)
ROC curve of AERS to predict immunotherapy response in the GSE91061 cohort. (F) Kaplan–Meier curves of OS with different AERS groups in the
GSE91061 cohort. (G) Time-dependent ROC analysis of AERS for predicting OS at 1, 2, and 3 years in the GSE91061 cohort. ICIs, immune checkpoint
inhibitors; AERS, Anoikis& ErbB-related signature; TCGA, The Cancer Genome Atlas; ROC, receiver operating characteristic. *p < 0.05; **p < 0.01;
***p < 0.001.
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findings indicated that this population might be resistant to ICIs,

which was confirmed by three independent validation cohorts

receiving anti-PD1 treatment. Further analysis revealed that

AERS exhibited better predicting power for ICI response

than traditional biomarkers of PDCD1, CD274 and CTLA4.
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Collectively, AERS could also be a potential biomarker for patient

selection and predicting response to ICIs.

Despite these findings, several limitations exist in the study.

First, this research was based on retrospective cohorts and requires

validation through large-scale, multi-center prospective trials.
FIGURE 9

Validation of AERS by an in-house cohort. (A) Paired plot shows the distribution of signature genes (CCT2, MARCKSL1, SLC2A1, ECT2, and CDK4)
expression and AERS scores between HCC and paracancer samples. (B) ROC analysis of signature genes and AERS to predict HCC. (C) Kaplan–Meier
curves of OS according to AERS. (D) Univariate and multivariate Cox regression analysis of AERS and other clinical characteristics. (E) Time-
dependent ROC analysis for predicting OS at 1, 2, and 3 years according to signature genes expression and AERS in the clinical in-house cohort.
(F) C-index of AERS compared with signature genes and other clinical characteristics in predicting prognosis. (G) The distribution of the differential
AERS between sorafenib response and non-response groups. (H) ROC analysis of signature genes and AERS to predict sorafenib response. AERS,
Anoikis& ErbB-related signature; HCC, hepatocellular carcinoma; ROC, receiver operating characteristic; OS, overall survival. *p < 0.05; **p < 0.01;
***p < 0.001.
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Second, although AERS displayed strong predictive capabilities to

survival and immune-targeted therapy outcomes in HCC, it may

not fully capture the complexity of HCC biology and treatment

responses. Third, while AERS has been validated in transcriptomics

using RT-qPCR, further proteomic analyses are necessary to

substantiate these results. Finally, the mechanisms underlying

immune-targeted therapy resistance driven by anoikis&ErbB need

further validation in vitro and in vivo.
Conclusion

In conclusion, this study enhances HCC prognostication by

integrating the key genes identified by the anoikis&ErbB pathway

into 167 machine learning-based models, with AERS (combination of

the LASSO and RSF model) showing superior predictive accuracy

over existing scores. The AERShigh subgroup, characterized by

activated NOTCH signaling and decreased macrophage infiltration,

demonstrated resistance to immune-targeted therapies. These

findings highlight the potential of targeting specific biological

pathways to overcome therapeutic resistance and improve

treatment outcomes in HCC, offering a promising avenue for

personalized medicine in this challenging disease landscape.
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SUPPLEMENTARY FIGURE 1

Kaplan-Meier analysis of OS stratified based on ssGSEA scores of ErbB level
(A), as well as anoikis&ErbB levels (B).

SUPPLEMENTARY FIGURE 2

(A-F) Scatter plot shows the correlations among anoikis level, ErbB pathway
level, NOTCH pathway level and macrophage infiltration.

SUPPLEMENTARY FIGURE 3

The clinical significance and potential mechanism exploration of anoikis levels in

meta-cohort. (A) Kaplan-Meier analysis of OS stratified based on anoikis and ErbB
levels; (B) Kaplan-Meier analysis of OS stratified based on the combination of
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anoikis and ErbB level; (C) Differential immune cells infiltration analysis between
anoikishigh&ErbBhigh group and others; (D) The NOTCH pathway was identified

between anoikishigh&ErbBhigh group and others via GSEA analysis; (E) Heatmap

showed the correlations among anoikis level, ErbB pathway level, NOTCH
pathway level and macrophage infiltration in meta-cohort. OS, Overall Survival;

GSEA, Gene Set Enrichment Analysis; *: P < 0.05; **: P < 0.01; ***: P < 0.001.

SUPPLEMENTARY FIGURE 4

The prognostic value of five signature predictors. (A-E) Kaplan-Meier analysis of OS

stratified based on the expression status of ECT2, CCT2, CDK4, SLC2A1, MARCKSL1

genes in TCGA cohort. (F)Univariate Cox regression analysis of signature predictors
in TCGAcohort. (G-K)Kaplan-Meier analysis ofOS stratifiedbasedon theexpression

status of ECT2, CCT2, CDK4, SLC2A1, MARCKSL1 genes in meta-cohort. (L)
Univariate Cox regression analysis of signature predictors in meta-cohort. OS,

Overall Survival; TCGA, The Cancer Genome Atlas.

SUPPLEMENTARY FIGURE 5

Comparison of AERS and other prognostic signatures in HCC. (A) Univariate
Cox regression analysis of AERS and 72 published signatures in the TCGA,

ICGC, GSE144269, GSE116174, GSE14520 andmate-cohort. (B-G)C-index of
AERS and 72 published signatures in the TCGA, ICGC, GSE144269,

GSE116174, GSE14520 and mate-cohort. AERS, Anoikis&ErbB related
signature HCC, Hepatocellular carcinoma; TCGA, The Cancer Genome

Atlas; ICGC, International Cancer Genome Construction.

SUPPLEMENTARY FIGURE 6

The counts (A) and intensity (B) of ligand receptors between different cell
types with poor prognosis is shown by circle plots.

SUPPLEMENTARY FIGURE 7

Potential mechanism of AERS in sorafenib resistance. (A) UMAP plot and bar

plots indicating the landscape and proportion of major cell lineages between
sorafenib resistant group and the other cells. (B) UMAP plot and violin plot

shows the distribution of anoikis level, ErbB pathway level, NOTCH pathway
level and AERS between sorafenib resistant group and the other cells. (C)
Pseudotime analysis for the anoikishigh&ErbBhigh macrophages with sorafenib
resistant. (D) Heatmap indicating the activation of major pathways in cell
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subpopulation with sorafenib resistant. AERS, Anoikis&ErbB related signature
HCC, Hepatocellular carcinoma; scRNA-seq, Single-cell RNA sequencing;

UMAP, Uniform Manifold Approximation and Projection; ***:P < 0.001.

SUPPLEMENTARY FIGURE 8

The counts(A) and intensity(B) of ligand receptors between different cell types
with sorafenib resistant is shown by circle plots.

SUPPLEMENTARY FIGURE 9

The application of AERS in ICIs among phs000452 cohort and Braun-2020

cohort. (A) The distribution of the differential AERS between sensitive and
resistant groups in the phs000452 cohort. (B) Fourfold table between AERS

and sorafenib response in the phs000452 cohort. (C) ROC curve of AERS to
predict ICIs response in the phs000452 cohort. (D) Kaplan-Meier curves of

OS with different AERS groups in the phs000452 cohort. (E) Time-dependent
ROC analysis of AERS for predicting OS at 1, 2, and 3 years in the phs000452

cohort. (F) The distribution of the differential AERS between sensitive and

resistant groups in the Braun-2020 cohort. (G) Fourfold table between AERS
and ICIs response in the Braun-2020 cohort. (H) ROC curve of AERS to

predict ICIs response in the Braun-2020 cohort. (I) Kaplan-Meier curves of
OSwith different AERS groups in the Braun-2020 cohort. (J) Time-dependent

ROC analysis of AERS for predicting OS at 1, 2, and 3 years in the Braun-2020
cohort. ICIs, Immune checkpoint inhibitors; AERS, Anoikis&ErbB related

signature; ROC, Receiver operating characteristic; OS, Overall Survival. **p

< 0.01; ***p < 0.001.

SUPPLEMENTARY FIGURE 10

The prognostic value of five signature predictors in an in-house cohort. (A-E)
Kaplan-Meier curves of OS according to the ECT2, CCT2, CDK4, SLC2A1,
MARCKSL1 genes expression. (F) Univariate and multivariate Cox regression

analysis of signature genes. OS, Overall Survival.

SUPPLEMENTARY FIGURE 11

Clinicopathological characteristics evaluation by AERS in an in-house cohort.
(A-D) Boxplot shows the distribution of AERS and the expression of five

signature predictors (ECT2, CCT2, CDK4, SLC2A1, and MARCKSL1) between
the groups of age, gender, grade and clinical stage. *p < 0.05.
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