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Introduction: The immunomodulatory properties of mesenchymal stromal cells

(MSC) have been well-characterized in in-vitro and in-vivo models. We have

previously shown that liver MSC (L-MSC) are superior inhibitors of T-cell

activation/proliferation, NK cell cytolytic function, and macrophage activation

compared to adipose (A-MSC) and bone marrow MSC (BM-MSC) in-vitro.

Method: To test these observations in-vivo, we infused these types of MSC into

mice with unilateral renal artery stenosis (RAS), an established model of kidney

inflammation. Unilateral RAS was induced via laparotomy in 11-week-old, male

129-S1 mice under general anesthesia. Control mice had sham operations.

Human L-MSC, AMSC, and BM-MSC (5x105 cells each) or PBS vehicle were

injected intra-arterially 2 weeks after surgery. Kidney morphology was studied 2

weeks after infusion using micro-MRI imaging. Renal inflammation, apoptosis,

fibrosis, and MSC retention were studied ex-vivo utilizing western blot,

immunofluorescence, and immunohistological analyses.

Results: The stenotic kidney volume was smaller in all RAS mice, confirming

significant injury, and was improved by infusion of all MSC types. All MSC-infused

groups had lower levels of plasma renin and proteinuria compared to untreated

RAS. Serum creatinine improved in micetreated with BM- and L-MSC. All types of

MSC located to and were retained within the stenotic kidneys, but L-MSC

retention was significantly higher than A- and BM-MSC. While all groups of

MSC-treated mice displayed reduced overall inflammation and macrophage

counts, L-MSC showed superior potency in-vivo at localizing to the site of

inflammation and inducing M2 (reparative) macrophage polarization to reduce

inflammatory changes.
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Discussion: These in-vivo findings extend our in-vitro studies and suggest that L-

MSC possess unique anti-inflammatory properties that may play a role in liver-

induced tolerance and lend further support to their use as therapeutic agents for

diseases with underlying inflammatory pathophysiology.
KEYWORDS

mesenchymal stromal cells, immunomodulation, renal artery stenosis, liver
tolerance, inflammation
Introduction

Mesenchymal stromal cells (MSC) have been widely studied for

their potential as therapeutic agents to treat a multitude of

inflammatory pathologies due to their immunomodulatory

capabilities. MSC have been derived from several types of tissues,

but those isolated from adipose tissue and bone marrow are most

often used in clinical trials. Guided by the liver’s unique tolerogenic

microenvironment and immunomodulatory properties, we postulate

that liver-derived MSC (L-MSC) may have superior therapeutic

potential. In fact, in-vitro studies that directly compared MSC

isolated from healthy adult liver (L-MSC) to either those from

adipose (A-MSC) or bone marrow (BM-MSC) demonstrate that

L-MSC are superior at inhibiting the proliferation of alloreactive T

cells, IFNy production by T cells (1), and the cytotoxic abilities of NK

cells (2). Additionally, transcriptomic and proteomic analyses of A-,

BM-, and L-MSC show significantly higher level of expression of

several key immunomodulatory molecules in L-MSC (1).

Collectively, the in-vitro studies suggest that L-MSC possess a

distinct genomic profile that may enhance their immunomodulatory

capabilities compared to A- or BM-MSC. The goal of this study is to

characterize the function of L-MSC in-vivo and evaluate if their

superior immunomodulatory capabilities seen in-vitro translate into

better function in-vivo. We examined the therapeutic and

immunomodulatory function of L-MSC in the context of ischemic

injury using the validated unilateral renal artery stenosis (RAS) mouse

model and directly compared their effect to that of A- and BM-MSC.

We hypothesized that L-MSC would be non-inferior in their ability to

improve overall renal function in the stenotic kidney with greater

influence on immunological changes compared to A- or BM-MSC.
Materials and methods

Cell culture

The collection of MSC from healthy adults are approved by Mayo

Clinic Institutional Review Board (IRB #17-007379 (liver), IRB #11-

009182 (adipose tissue) and IRB # 10-002572 (bone marrow). All tissues

are collected as part of scheduled donation procedures and informed
02
consent are obtained prior to collecting tissue samples for this study.

MSC are isolated and passaged from human adipose, bone marrow, and

liver tissue as previously described (1–3). Specifically, adipose tissue is

obtained from the subcutaneous compartment during the abdominal

incision for a living donor nephrectomy procedure. Bone marrow

aspiration from the iliac crest is performed by specialized hematology

team under general anesthesia as part of living donor nephrectomy

procedure. A liver biopsy sample, measuring 1cm x 1cm, is obtained

from donor organs (deceased or living donor) for isolation ofMSC. After

obtaining tissue samples, the source tissue is enzymatically digested, and

the plastic-adherent cells from the resulting cell suspension are placed

intoMSC culture media and are allowed to proliferate for 2 weeks before

first passage. The cell lines used to date represent both sexes (50%

female), racial heterogeneity (>10% non-Caucasians), and a wide range

of ages from 20 to 75. Their phenotype and trilineage differentiation

capacity were confirmed with flow cytometry and MSC functional

identification assay (R&D Systems, Minneapolis, MN, USA),

respectively. Prior to administration into mice, MSC (5x105 cells in

200ul PBS) in Passage 3 were fluorescently labeled with CellTrace™ Far

Red (CTFR, ThermoFisher Scientific, Waltham, MA, USA) to allow for

detection after infusion.
Renal artery stenosis model

All protocols were approved by Mayo Clinic IRB and Institutional

Animal Care andUse. As previously described (4), 11-week-old, male 129-

S1 mice (Jackson laboratory, Bar Harbor, ME, USA) underwent open

laparotomy under general anesthesia. After exposure of the right renal

artery, a 0.15mm diameter arterial cuff was placed on the artery and

secured with sutures to achieve partial occlusion of blood flow to the right

kidney (i.e., stenotic kidney, STK). Two weeks following RAS surgery,

fluorescently tagged MSC (5x105 cells in 200ul of PBS) derived from

human adipose (A-MSC), bone marrow (BM-MSC), or liver (L-MSC)

tissues, were given to RAS mice intra-arterially through direct cannulation

of the carotid artery via vascular cut down. Mice that underwent surgery

without cuff placement (n=4) served as negative controls (i.e. sham group).

Mice that underwent RAS surgery but received an infusion of PBS (n=4)

served as positive controls (i.e. untreated RAS group). Tail cuff blood

pressures (Kent Scientific, Torrington, CT, USA) were also obtained at

baseline, two weeks following RAS surgery, and two weeks followingMSC
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infusion. General anesthesia was achieved using 3% isoflurane inhalation

for induction and 1.5% during RAS surgery and intra-arterial MSC

injection. Mice were euthanized after MRI imaging. Briefly, mice

underwent general anesthesia with isoflurane as stated above. A midline

abdominal incision (approximately 1-2cm in length) was made to access

the peritoneal cavity. Peritoneal organs were then reflected superiorly to

expose the inferior vena cava in order to obtain blood samples. After

exsanguination, the STKs were collected for tissue processing.
Imaging protocol

Two weeks after MSC or PBS injection, mice were scanned using

MRI as previously described (5). Previously established imaging

protocols were used to acquire the appropriate images to quantify

the volume, perfusion, and oxygenation of the STKs (5, 6). All image

analyses were performed using Analyze software (version 12.0;

Biomedical Imaging Resource, Mayo Clinic, MN, USA) and Matlab

(The MathWorks, Natick, MA, USA).
Serum and urinary
biomarker measurements

Post MRI imaging, blood from the inferior vena cava and urine

were collected at the time of euthanasia. Whole blood was centrifuged,

and the resulting plasma was collected. Plasma renin concentration was

measured by the Renin Assay Kit (Cat#MAK157, Millipore Sigma, St.

Louis, MO, USA). Serum creatinine was measured using the Serum

Creatinine Detection Kits (Cat# KB02-H, Arbor Assays, Ann Arbor,

MI, USA). Urinary protein levels were measured using the Pierce™

Bradford Protein Assay kit (Cat#23200, ThermoFisher, Waltham, MA,

USA). All kits were used per manufacturer’s instructions.
Immunohistochemistry

Following imaging, mice were euthanized as described above, and

the STKs were collected and divided into equal parts for both frozen and

paraffin-embedded sectioning. Paraffin-embedded STK sections were

stained with CD45 (overall inflammation, 1:200 dilution, Cat#ab10558,

Abcam, Waltham, MA, USA); CD14 (overall macrophage, 1:200

dilution, Cat#ab182032, Abcam); F4/80 (1:100 dilution, Cat#ab6640,

Abcam) and iNOS (M1, inflammatory macrophage: 1:100 dilution,

Cat#sc-7271, Santa Cruz Biotechnology, Dallas, TX, USA); F4/80 and

mannose receptor-1 (M2, reparative macrophage, 1:100 dilution,

Cat#HPA004114, Sigma Aldrich, St. Louis, MO, USA); trichrome

(fibrosis, Cat#NC9485545, ThermoFisher); TUNEL (apoptosis,

Cat#G3250, Promega, Madison, WI, USA); and PAS (renal cortical

tubular atrophy, Cat#395B-1KT, Sigma Aldrich). Frozen STK sections

were stained with DHE (reactive oxygen species, Cat#D11347,

ThermoFisher). All non-diluted antibodies were used per

manufacturer instructions. Six images of each stain were captured with

Zeiss® microscope for immunofluorescence stains and Nikon®

microscope for immunohistochemistry stains. M1 (double positive for

F4/80 and iNOS+), M2 (double positive for F4/80 and mannose
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receptor-1+), TUNEL+, and MSC retention were quantified by manual

counts per high power field. Cortical tubular atrophy was scored by

adapting the Banff criteria by an independent pathologist who was

blinded to the treatment groups using PAS-stained slides (7). All other

stains were quantified based on the percentage of positive stain area

using ImageJ (8).
RT-PCR

Frozen STK samples were homogenized in 350ul of ice-cold lysis

buffer, supplied by mirVana PARIS total RNA isolation kit (Cat#

AM1556, ThermoFisher Scientific). Total RNAs were then isolated

from homogenized samples according to the kit protocol. Total RNA

concentrations were measured by a NanoDrop Spectrophotometer

(NanoDrop). First-strand cDNA was produced from 800ng of total

RNA using SuperScript VILO cDNA Synthesis kit (Cat#11755-050,

ThermoFisher Scientific). Relative quantitative PCR were performed

using Taqman assays, containing 4ul of cDNA products. All primers

were purchased from ThermoFisher Scientific with the following

catalog numbers: CD45 (Mm01293577); IFNy (Mm01168134); TNFa

(Mm00443258); and GAPDH (Mm99999915). PCR analysis was done

on Applied Biosystems Quantstudio 7 using the following conditions:

50°C for 2 minutes, 95°C for 10 minutes and 40 cycles of 95°C for 15

seconds and 60°C for 1 minute. Fold changes of gene expressions were

calculated using 2-DDCT method.
Western blot

FrozenSTKsampleswerehomogenized, andproteinexpressionwas

expressed by western blotting. Protein concentrations were measured

using a BCA Protein Assay Kit (Cat# 23225, ThermoFisher Scientific)

per manufacturer’s instructions. Themembranes were blocked with 5%

BSA, incubated with primary antibodies, washed, and incubated with

secondary antibodies at roomtemperature. Finally, themembraneswere

washed and incubated with ECLWestern Blot Substrate (Cell Signaling

Technology, Inc., Danvers, MA, USA) and were visualized on

ImageQuant™ LAS4000. Anti-IFNy (Cat# BS-0480R, Bioss, Woburn,

MA, USA) and anti-TNFa (Cat# ab6671, Abcam,Waltham,MA, USA)

antibodies were used as primary antibodies. GAPDHantibodywas used

to normalize the results.
Statistical analysis

All statistical analyses were performed using GraphPad Prism

version 10.2.2 (324) for Windows (GraphPad Software, Boston,

Massachusetts USA, www.graphpad.com). All data are expressed as

either mean ± SD for normally distributed data or median [IQR] for

non-normally distributed data. Hypothesis testing was carried out

using one-way ANOVA followed by a student t-test for normally

distributed data. Data not following normal distribution were

analyzed using Kruskal-Wallis followed by Wilcoxon test. All data

were considered significant if p<0.05.
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Results

Blood pressure

Initially, eight mice were randomly assigned to receive infusion

of each type of MSC. At the conclusion of the study, two mice in the

A-MSC group were lost due to total infarction of the STK, one

mouse in the BM-MSC was lost due to hydronephrosis of the STK

secondary to ureteral stricture, and one mouse in the L-MSC died

just prior to MRI imaging, resulting in a final count of A-MSC

(n=6), BM-MSC (n=7), and L-MSC (n=7) for analyses. Blood

pressure using tail cuffs were obtained at baseline, post-RAS

surgery, and post-MSC or PBS infusion. As expected, mean

systolic (SBP) and diastolic blood pressure (DBP) measurements

were higher than baseline after RAS surgery (Figure 1A). Injection

of MSC did not show reduction of overall SBP or DBP nor in the

amount of absolute or percent change in SBP or DBP from RAS

surgery to post-MSC injection (data not shown).
Frontiers in Immunology 04
Serum and urine biomarkers

RAS induced proteinuria (1795 ± 199ug/ml vs 938 ± 297ug/ml

in sham, p= 0.002) and tended to elevate serum creatinine (0.27 ±

0.05mg/dL vs 0.16 ± 0.02mg/dL in sham, p= 0.062) compared to

sham (Figure 1B). Compared to RAS, proteinuria (A-MSC: 717 ±

350ug/ml, p<0.001; BM-MSC: 986 ± 374ug/ml, p= 0.002; L-MSC:

1292 ± 624ug/ml, p= 0.047) and plasma renin (A-MSC: 205.5 ±

22.2ng/ml, p= 0.002; BM-MSC: 169.6 ± 24.7ng/ml, p< 0.001;

L-MSC: 149.8 ± 47.2ng/ml, p< 0.001; RAS: 256.3 ± 21.0ng/ml)

decreased with MSC treatment for all types. Mice treated with either

BM-MSC or L-MSC also resulted in decreased mean serum

creatinine (BM-MSC: 0.14 ± 0.09mg/dL, p= 0.024; L-MSC: 0.12 ±

0.14mg/dL, p= 0.009; all vs RAS). Compared to A-MSC, L-MSC

treated mice had lower plasma renin levels (149.8 ± 47.2ng/ml vs

A-MSC, p= 0.002) but higher proteinuria (1292 ± 624ug/ml vs

A-MSC, p= 0.018). No differences were noted among the three MSC

groups for serum creatinine (Figure 1B).
B

A

FIGURE 1

Blood pressure (mean ± SD) measured by tail cuff within each group at baseline, after RAS surgery, and after PBS or MSC infusion are shown in (A).
Serum creatinine, urinary protein, and plasma renin levels for each group are shown in (B). All levels are expressed as mean ± SD. RAS, renal
artery stenosis.
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Renal volume, perfusion, and oxygenation

Non-invasive evaluation of the volume, perfusion, and

oxygenation of the STKs were performed using micro-MRI

analysis. Compared to the sham group, untreated RAS mice had

significant loss of volume in the STKs (94.18 ± 50.6mm3 vs 266 ±

24.7mm3 in sham, p< 0.001), suggestive of ischemic injury
Frontiers in Immunology 05
(Figures 2A, B). With MSC treatment, the volumes of the STKs

significantly improved compared to the untreated RAS mice (A-

MSC: 188.8 ± 17.6mm3; BM-MSC: 226.1 ± 37.9mm3; L-MSC:

181.9 ± 62mm3; all vs RAS, p<0.001). No significant differences

were noted in the volume of the STKs among the MSC treatment

groups (Figure 2B). Cortical and medullary perfusion and

oxygenation were also measured using micro-MRI. In this
B

C

A

FIGURE 2

Representative MRI image of STK in coronal section (A). Non-invasive measurement of volume in the STKs (B) and the oxygenation and perfusion to
the cortex and medulla in the STKs (C) within each group. All measurements are expressed as mean ± SD. For oxygenation, R2*(sec-1) reflects
hypoxia with lower R2* indicating better oxygenation. STK, stenotic kidney.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1448092
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liang et al. 10.3389/fimmu.2024.1448092
method, R2*(sec
-1) reflects hypoxia, thus lower R2* indicated better

oxygenation. The untreated RAS group had decreased oxygenation

to both the cortex (163.8 ± 30.5 sec-1 vs 122.1 ± 24.1sec-1 in sham,

p= 0.008) and the medulla (186 ± 81.3 sec-1 vs 119 ± 30.8 sec-1 in

sham, p= 0.009) and decreased mean perfusion to the cortex (301 ±

91.2ml/100g/min vs 591 ± 182ml/100g/min in sham, p= 0.006)

when compared to the sham group. Mice treated with MSC

had higher oxygenation to the medullary region compared to the

RAS group (A-MSC: 118 ± 28.2 sec-1, p= 0.011; BM-MSC: 131 ±

29.3 sec-1, p= 0.031; L-MSC: 115 ± 20 sec-1, p=0.008; all vs RAS),

while those treated with A-MSC (128.8 ± 17.1 sec-1 vs 163.8 ± 30.5

sec-1 in RAS, p= 0.029) or BM-MSC (128.7 ± 18.2 sec-1 vs RAS, p=

0.024) had improved oxygenation in the cortex. No significant

improvement was observed in perfusion to the cortex and medulla

with MSC treatment (Figure 2C), but medullary perfusion in BM-

MSC group was higher than in A-MSC group.
Inflammatory profiles

Untreated RAS mice had significantly higher gene expression of

CD45 (27.8 ± 25.5 vs 1.02 ± 0.2 in sham, p< 0.001), IFNy (10.8 ±

10.3 vs 1.03 ± 0.27 in sham, p= 0.002), and TNFa (35.9 ± 34.4 vs 1 ±

0.2 in sham, p= 0.001). Treatment with MSC of all types resulted in
Frontiers in Immunology 06
decreased gene expression of CD45 (A-MSC: 0.55 ± 0.23; BM-MSC:

0.49 ± 0.26; L-MSC: 1.26 ± 1.12; all vs RAS, p< 0.001); IFNy (A-

MSC: 0.67 ± 0.74; BM-MSC: 0.31 ± 0.21; L-MSC: 0.35 ± 0.28; all vs

RAS, p≤ 0.001); and TNFa (A-MSC: 0.39 ± 0.17; BM-MSC: 0.30 ±

0.12; L-MSC: 0.63 ± 0.61; all vs RAS, p≤ 0.001) when compared to

the untreated RAS group (Figure 3A). On western blot, the protein

expression of IFNy was higher for A-MSC (0.8 ± 0.03 vs RAS, p<

0.001) and BM-MSC treated mice (0.76 ± 0.07 vs RAS, p= 0.002)

compared to untreated RAS mice (0.52 ± 0.06). On the other hand,

mice treated with L-MSC (0.43 ± 0.1) had lower protein expression

of IFNy compared to A-MSC (p< 0.001) and BM-MSC (p< 0.001)

and similar level of expression to the untreated RAS group. No

significant differences were observed for TNFa protein expression

among untreated and MSC-treated RAS mice (Figure 3B), but they

were no longer lower than sham.

MSC were tagged with a fluorescent protein (CTFR, in pink)

prior to administration to allow for evaluation of their retention in

the STK on unstained frozen sections. Among the three types, L-

MSC (8 [6.4] cells) had the highest retention in the STK compared

to A-MSC (5 [2.7] cells vs L-MSC, p= 0.011) or BM-MSC (4 [1.3]

cells vs L-MSC, p< 0.001) (Figures 4A, B). Untreated RAS mice

displayed the highest level of overall inflammation (CD45 positivity:

7.4 ± 4.6% vs 0.9 ± 0.5% in sham, p< 0.001) and total macrophage

expression (CD14 positivity: 18.4 [21.5] % vs 0.2 [1] % in sham, p<
B

A

FIGURE 3

Levels of gene expression for overall inflammation (CD45), IFNy, and TNFa were measured using real-time PCR (A). Protein expression of IFNy and
TNFa were measured using western blot (B). All measurements are expressed as mean ± SD. IFNy, interferon gamma; TNFa, tumor necrosis
factor alpha.
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0.001) on histology compared to the sham group (Figures 4A, C, D).

Infusion of all MSC types led to reduction in overall inflammation

(A-MSC: 1 ± 0.3%; BM-MSC: 1.8 ± 0.9%; L-MSC: 2.4 ± 0.3%; all vs

RAS, p< 0.001). For overall macrophage expression, A-MSC (2.9

[7.7] % vs RAS, p= 0.044) and L-MSC (3.6 [4.4] % vs RAS, p= 0.011)

treated mice resulted in lower expression compared to untreated

RAS mice (Figures 4A, C, D).
Frontiers in Immunology 07
Focusing specifically on M1 (inflammatory) and M2 (reparative)

macrophage types, RAS led to significant increase in the frequency of

M1 macrophages (6.4 [4.6] cells vs 0.1 [0.35] cells in sham, p= 0.002)

in STKs (Figures 5A, C). L-MSC-treated mice had decreased

frequency of M1 (3 [2.4] cells vs 6.4 [4.6] cells in RAS, p= 0.045)

and markedly increased M2 macrophages (3.8 [4.4] cells vs 1.2 [1.3]

cells in RAS, p= 0.048) in the STKs compared to untreated RAS mice
B C D

E F G H

A

FIGURE 4

Representative histological images of MSC retention, CD45 stain, and CD14 stain. MSCs are labeled in pink. Positive staining for either CD45 or CD14
are in brown (A). Manual counts (median ± IQR) of retained MSCs and TUNEL+ cells per high power field (40x) and percent area of positive stain for
CD45 (mean ± SD), CD14 (median ± IQR), Trichrome (median ± IQR), DHE (median ± IQR), and PAS (counts in each score) in the STKs within each
group are shown in (B–H). MSC, mesenchymal stromal cells; TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling; DHE,
Dihydroethidium; PAS, Periodic acid-Schiff.
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(Figures 5A–C). Treatment with A-MSC or BM-MSC did not achieve

significant reduction in M1 or elevation in M2 macrophages

(Figure 5C). Looking at the ratio of M1 to M2 presence in the

STKs, L-MSC-treated (ratio: 0.45 [0.46]) mice resulted in the lowest

polarization toward the inflammatory M1 macrophage subtype

compared to either untreated RAS (ratio: 6.13 [3.6] vs L-MSC, p=

0.002) or A-MSC (ratio: 4.9 [5.8] vs L-MSC, p= 0.003) and BM-MSC

(ratio: 2.1 [7] vs L-MSC, p=0.014) treated mice (Figure 5C).
Frontiers in Immunology 08
For non-immune related changes, significant reduction in

fibrosis was noted for A-MSC (4 [2.3]% vs 25.5 [13.5]% RAS, p=

0.04) treated mice. Oxidative stress was also reduced for BM-MSC

(18.8 [33.1]% vs RAS, p= 0.017) and L-MSC (4.3 [25.7]% vs RAS,

p= 0.002) treated mice compared to untreated RAS group (75.3

[13.6]%). No significant differences were noted in apoptosis or

tubular atrophy scores between untreated RAS and MSC treated

groups (Figures 4E–H).
B

C

A

FIGURE 5

Representative images of inflammatory macrophages, M1 in (A) and reparative macrophages, M2 in (B) the STKs within each group. Manual counts of
M1 and M2 per high power field (40x) and their ratio within the STKs are shown in (C) as median ± IQR. RAS, renal artery stenosis; A-MSC, Adipose
mesenchymal stromal cells; BM-MSC, Bone Marrow mesenchymal stromal cells; L-MSC, Liver mesenchymal stromal cells.
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Discussion

In this study, we aimed to characterize the effect of the novel L-

MSC in-vivo and to directly compare their impact on ischemic

injury to the more established A- and BM-MSC. We demonstrated

that L-MSC are equally as effective as A-MSC and BM-MSC at

improving renal function, the volume, and oxygenation of the renal

medulla in the STKs. Additionally, L-MSC-treated RAS mice

achieved a similar reduction in inflammation in the STKs as

those treated with A- and BM-MSC. However, significantly more

L-MSC were retained in the STKs, and L-MSC-treated mice had

greater polarization of macrophages toward a more reparative (M2)

phenotype compared to A- and BM-MSC treated groups.

MSC have been extensively investigated as therapeutic agents

for inflammatory conditions, classically in graft versus host disease

and inflammatory bowel disease, but also in ischemic renal injury

(9–12). Although the clinical efficacy of MSC treatments has been

variable, data from experimental and human clinical trials support

MSCs ’ immunomodulatory potential through intricate

communications with both the innate and adaptive immune

system via several proposed routes, including paracrine secretions,

direct cell-to-cell contact, and release of exosomes. The downstream

effect is the resolution of inflammation and the promotion of tissue

regeneration through several mediatory pathways such as induction

of M2 macrophage polarization (12, 13).

The source tissue of MSC and the microenvironment in which

they are found impact MSC functions and properties. The liver is

often considered to be an immunologically privileged organ that

serves as a critical immune interface (14). Several clinical studies

involving simultaneous liver and kidney transplant or simultaneous

liver and heart transplant demonstrate that compared to solitary

kidney or heart transplants, the presence of concomitant liver

allograft was protective against both T cell and antibody-mediated

rejection and overall improved graft survival (15–18). On a cellular

level, simultaneous liver and kidney transplant recipients

demonstrated lower frequency of circulating CD8+, activated CD4+,

and effector memory T cells and had decreased alloreactivity to donor

cells compared to solitary kidney transplant recipients (16). Likewise,

secretome analysis of simultaneous liver and kidney transplant

recipients showed downregulation of inflammatory pathways and

upregulation of tissue integrity pathways (17). Taken together, the

superior immunomodulatory properties of the MSC isolated from

liver may be closely associated with the immune context surrounding

the organ.

Our findings in this study underscore previous studies that

demonstrated improvement in renal function, oxidative stress, and

inflammation after MSC treatment (4, 19, 20) as well as the impact

of MSC on macrophage polarization (12). However, the current

study augments the previous bodies of literature in several ways. We

directly determined and compared the positive impact of MSC

isolated from liver tissue, which has not been explored in detail to

our best knowledge as a therapeutic agent, to that of more

established MSC isolated from adipose and bone marrow tissues.

Additionally, we demonstrated that a significantly higher number of

L-MSC homed to site of injury than A-MSC and BM-MSC and

exhibited greater impact on macrophage phenotypes. Interestingly,
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for more structural related changes, only A-MSC treated group

achieved reduction in fibrosis while BM- and L-MSC treated groups

showed significant reduction in levels of reactive oxygen species.

While MSCs generally share many similar characteristics, previous

studies have demonstrated significant differences among A-, BM,

and L-MSCs that may explain some of the differing effects we

observed in this study. For example, in-vitro studies have shown

that L-MSC have a more homogenous migration kinetics toward

chemoattractants than A-MSC, while the latter have superior anti-

fibrotic and pro-angiogenic properties (21–24). Macrophage

polarization plays a major role in liver disease (25). M1

macrophages promote tissue injury in vast majority of the liver

diseases (viral, alcohol-related and metabolic-associated), whereas

M2 macrophages attenuate liver injury and inflammation (26). At

steady state, the liver microenvironment favors M2 polarization

(27) for homeostasis. Interestingly, here, we demonstrate that

adoptive transfer of human L-MSC in a mouse model of

inflammation also promotes M2 polarization. Thus, it is possible

that L-MSC have a role in liver homeostasis, which will need to be

investigated further in the future.

Our study is not without limitations. TheMSC treated groups did

not result in improvement in blood pressures and perfusion or

decrease in apoptosis compared to untreated RAS group. Given our

small sample size, it is possible that our study may not have been

adequately powered to evaluate all these physiological and

histological changes. We also found that despite L-MSC-treated

RAS mice having lower plasma renin, the urinary protein level was

higher compared to the A-MSC group. This might be due to

differential impact of MSC types on cells in the juxtaglomerular

apparatus. Additionally, we noted discordance between IFNy gene

expression and protein expression for A- and BM-MSC treated mice.

The elevated IFNy protein expression in the A- and BM-MSC groups,

but not in L-MSC group, could be related to post-transcriptional

regulation. Indeed, previous transcriptomic analysis comparing A-,

BM-, and L-MSC demonstrated significant upregulation of INFy

regulatory genes in L-MSC (1, 2), further supporting that L-MSC

likely exert greater influence on the immune system than A- or BM-

MSC. Additionally, while some of the superior effects on

macrophages might have resulted from the engraftment of a larger

number of L-MSC compared to A- and BM-MSC, such differences

were not consistently observed in other parameters. Therefore, cell

number may not have been the sole determinant of L-MSCs’ effects.

In our study, mice were also given a single infusion of MSC. Multiple

infusions may be needed in order for MSC to exert maximal effect on

the ischemic injury to the kidney (28). Additionally, more time than

the allocated two weeks in this study may have been needed to see a

more pronounced impact of reduced inflammation on renal function

in the MSC-treated groups.

In summary, our study established the effect of L-MSC in-vivo

on ischemic injury and directly compared their impact to that of

A-MSC and BM-MSC. We showed that L-MSC are as effective as

the commonly studied A- and BM-MSC at mitigating ischemic

renal injuries. Furthermore, they are superior at homing to site of

injury and at inducing polarization toward reparative macrophages

when compared to A- and BM-MSC. Based on these findings, we

are currently exploring the effect of local delivery of MSC on
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alloimmune mediated damages through direct infusion into the

allograft renal artery in our ongoing clinical trials with adult renal

transplant recipients (NCT05456243). As part of the clinical trial,

we are collaborating with the Mayo Clinic Center for Regenerative

Biotherapeutics Laboratory (IRB 17-007379) to routinely generate

and culture MSC cell lines from adipose, bone marrow, and liver

tissue (1cm x 1cm biopsy sample) from healthy adult donors in a

GMP facility and testing for MSC phenotypic markers and tri-

lineage differentiation to meet the release criteria for clinical use.

More work will need to be done to detail the mechanism(s) through

which L-MSC interact with the immune system to effectuate their

impact on the surrounding environment.
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