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Antigen specificity affects
analysis of natural antibodies
Kendra Weston1*, Janet E. Fulton2 and Jeb Owen1*

1Department of Entomology, Washington State University, Pullman, WA, United States, 2Hy-Line
International, Dallas Center, IA, United States
Natural antibodies are used to compare immune systems across taxa, to study

wildlife disease ecology, and as selection markers in livestock breeding. These

immunoglobulins are present prior to immune stimulation. They are described as

having low antigen specificity or polyreactive binding and are measured by

binding to self-antigens or novel exogenous proteins. Most studies use only

one or two antigens to measure natural antibodies and ignore potential effects of

antigen specificity in analyses. It remains unclear how different antigen-specific

natural antibodies are related or how diversity among natural antibodies may

affect analyses of these immunoglobulins. Using genetically distinct lines of

chickens as a model system, we tested the hypotheses that (1) antigen-specific

natural antibodies are independent of each other and (2) antigen specificity

affects the comparison of natural antibodies among animals. We used blood cell

agglutination and enzyme-linked immunosorbent assays to measure levels of

natural antibodies binding to four antigens: (i) rabbit erythrocytes, (ii) keyhole

limpet hemocyanin, (iii) phytohemagglutinin, or (iv) ovalbumin. We observed that

levels of antigen specific natural antibodies were not correlated. There were

significant differences in levels of natural antibodies among lines of chickens,

indicating genetic variation for natural antibody production. However, line

distinctions were not consistent among antigen specific natural antibodies.

These data show that natural antibodies are a pool of relatively distinct

immunoglobulins, and that antigen specificity may affect interpretation of

natural antibody function and comparative immunology.
KEYWORDS

chickens, disease ecology, immunoglobulin, innate immunity, selection
1 Introduction

Natural antibodies (NAbs) are a class of immunoglobulins present in blood for which the

immune system has had no prior stimulation (1–5) and which can function in the innate

immune response (6–8). These immunoglobulins are variously described as polyreactive or

having low antigen specificity (8–10). Natural antibodies are commonly measured using

antigens that animals have not previously encountered such as keyhole limpet hemocyanin

(KLH) or self-antigens like ovalbumin (OVA) (11–13). The NAbs may be directly protective

by neutralizing pathogens (14–16), and they may facilitate the adaptive immune response by
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supporting pathogen phagocytosis and antigen presentation (11, 17).

Due to their defensive properties and their function as a bridge

between the innate and adaptive compartments of the immune

system, NAbs have been studied in the contexts of disease, ecology,

evolution, and comparative immunology (15, 18–20). Experimental

infections under laboratory conditions have shown that higher levels

of NAbs are associated with lower infection intensities (21) and a

higher probability of survival (1, 22). However, some NAbs appear

inversely associated with higher survival probability (22). Studies of

wildlife suggest that individuals with higher levels of NAbs have

greater bactericidal capabilities (8, 18, 23, 24) and resistance to

parasites (7, 25, 26). The NAbs appear to be correlated with other

immunological factors (27–29) and vary among sexes (30),

populations (31), life stages (32), food resources (33–35), and

seasons (36). In animal agriculture, NAbs have been used as

selection traits to enhance disease resistance (37–42). Finally, given

that NAbs are thought to bridge innate and adaptive immune

responses, they have been used to compare immune systems

among different taxa (27, 28, 43, 44) and to explore tradeoffs in the

evolution of immune systems (19, 30). Other than the mouse (Mus

musculus), the chicken (Gallus gallus) is the most widely used animal

model for the study of NAbs (1, 3, 6, 22, 27, 33, 39–42, 45–61). As

early as 1923 natural antibodies were identified in chickens (53).

Subsequently, NAbs have been linked to poultry survival (1, 45, 56)

and pathogen resistance (39–41). The genetic basis for variation in

NAbs has been explored using established genetic lines of poultry (6,

22, 40, 42, 47–49, 52, 55) and with modern genomics tools (62–66).

The chicken has been a vital model for developing NAb assays used

for wild bird species (25, 27, 28, 43). However, given the agricultural

and economic importance of poultry, the primary application of NAb

research on chickens has been in selective breeding for enhanced

immune defense (39–42, 46, 49, 51, 58, 60).

Although some functional studies of NAbs are based on isolated

B-1 cell lines in mice (18, 67–71), most studies of NAbs are based on

measures of circulating immunoglobulins in serum or plasma (6,

18, 37, 38, 43). These measures are commonly done using one of

two methods – (1) hemagglutination assay (HA) or (2) enzyme-

linked immunosorbent assay (ELISA). Hemagglutination assays

measure in vitro antibody binding and cross-linking of vertebrate

red blood cells (72). In hemagglutination assays, antibodies bind to

proteins on the surface of red blood cells, causing clumping

(agglutination) of the red blood cells in a microtiter well (17, 72).

The antibody titer is calculated based on a dilution series of sera or

plasma incubated with a fixed concentration of red blood cells, and

the experimenter determines the dilution point when agglutination

fails to occur (3, 27). Hemagglutination assays are often employed

in wildlife studies (23, 28, 30, 44) and are popular because they do

not require special reagents or equipment (27). The ELISA uses a

microtiter plate coated with a specific antigen and then filled and

incubated with sera or plasma from the study animal. Antibodies in

the sera/plasma that bind to the plate-affixed antigen can be

quantified using a secondary antibody conjugated to a

colorimetric enzyme or fluorescence marker detected by a

spectrophotometer (17, 72, 73). The ELISA approach is frequently

used in laboratory and livestock research (43, 74–76). Different

antigens are used to measure NAbs with both methods.
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Hemagglutination assays may use blood cells from rabbits, sheep,

chickens, or fish (27, 47–50, 77). Enzyme-linked immunosorbent

assays may use antigens from bacteria (e.g., lipopolysaccharide),

invertebrates (e.g., keyhole limpet hemocyanin), plants (e.g.,

phytohemagglutinin), or vertebrates (e.g., ovalbumin) (11, 51, 52).

These different methods measure NAbs binding to specific

antigens, and it is unclear how these antigen-specific NAbs are

related. Though NAbs are expected to be polyreactive (24, 78–81),

studies of monoclonal NAbs reveal that NAbs do not bind equally

well to all antigens. For example, Gunti et al. (8) showed that NAbs

from a single B-1 clone exhibited wide variation in binding to

different bacteria, including species from the same genus.

Importantly, different NAbs can have unique (non-overlapping)

ranges of antigen binding (82, 83). Baumgarth et al. (9, 84) argue

that immunological defense by NAbs results from broad antigen

reactivity of both individual NAbs and the natural antibody

repertoire. These studies underscore that NAbs are not uniform

and the NAb repertoire reflects a diverse pool of immunoglobulins

with potentially unique but complimentary antigen specificities.

Despite these insights, the majority of NAb studies are based on

immunoglobulin measures using only one or two antigens (6, 19,

22, 27, 28, 30, 34, 42, 49, 51, 60, 74, 76, 85–97). This raises an

important question – are NAbs measured with one antigen

representative of the broader repertoire of NAbs? This is a vital

question, given that many studies of NAbs infer immune function

(14, 22, 27, 30, 76, 86, 91, 98), ecological relationships (25, 28, 34,

99), and evolution (19, 25, 42, 49, 97, 100) based on one or two NAb

antigens. Additionally, the antigens used vary widely across studies

(22, 27, 60, 89), which makes it difficult to synthesize results among

different study systems.

To our knowledge, comparisons of circulating NAbs have not

been reported in the literature. Here, we tested two related

hypotheses regarding NAb specificity (1): Levels of antigen-

specific NAbs are independent; (2) Antigen specificity affects

comparison of natural antibodies among animals. We tested these

hypotheses by measuring NAb levels among genetically distinct

chicken breeds and selection lines, using different antigens with

agglutination and ELISA methods. We discuss the potential

importance of antigen specificity to the study of NAb function

and comparative immunology.
2 Materials and methods

2.1 Poultry

Plasma was collected from female chickens in eight selection

lines across three breeds: White Leghorn (WL), White Plymouth

Rock (WPR), and Rhode Island Red (RIR). These three breeds are

distinct, having been historically selected for different physical

characteristics including feather color and eggshell color. Each

was defined as a different breed over 100 years ago (101). The

different lines within each breed have been separated from one

another since the 1940s through artificial selection on egg

production, body weight, and feed conversion efficiency (102).

The Rhode Island Red breed is a cross of three breeds (Malay
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Game, Leghorn, and Asian native) originating in Europe around

100 B.C (103, 104). The Leghorn breed originated in Italy in 400

B.C. and are classified as egg layers (103, 104) and are the most

commonly utilized breed for white egg shell production. They

exhibit a range of plumage colors, with white being the most

common (104). The White Plymouth Rock was one of the breeds

used to develop the modern commercial meat (broiler) bird in the

early part of the 20th century (104). The Rhode Island Red and

Plymouth Rock breeds are used for commercial brown egg

production. All birds used in this study were from elite egg layer

lines, selected for generations for multiple egg production related

traits. These are all pure lines, not commercial cross production

birds. They were maintained at the breeding facilities of Hy-Line

International. The housing was in single cages, under standard

production conditions with feed and water provided ad libitum.
2.2 Plasma samples

Blood was collected from birds in each line at ten weeks of age,

and plasma samples were separated from blood by centrifugation at

240 x g for three minutes. After collection, plasma samples were

split into aliquots for the different assays, then stored at -20°C until

use. Sample sizes ranged from 98–106 birds per line with eight lines

total across three breeds (two for Rhode Island Red, four for White

Leghorn, and two for White Plymouth Rock), with a total of 813

samples for the ELISA assays, and sample sizes ranged from 10–25

birds per line, with a total of 119 samples for the rabbit blood cell

hemagglutination (HA) assay.
2.3 Agglutination assay

Measures of NAbs binding to rabbit red blood cells (anti-rRBC

NAbs) were determined using the hemagglutination assay (HA)

(27, 28). A 1% rabbit blood cell (RBC) suspension was prepared

using rabbit whole blood in Alsever’s solution (catalog # RBA050,

Hemostat Laboratories, Dixon, CA, USA). Briefly, RBCs in whole

blood were washed four times with centrifugation at 241.5 x g for 5

min in phosphate-buffered saline (PBS, catalog# P3813, Sigma-

Aldrich, St. Louis, MO, USA). Lysed red blood cells were removed

with the supernatant after each wash. The washed cell

concentration was measured using duplicate hematocrit capillary

tubes following sample centrifugation at 0.004 x g for 1 min.

Additional PBS was added to make a 1% red blood cell

suspension with confirmation of the concentration via hematocrit.

Each HA assay was done using a 96-well microtiter plate

(CorningTM Clear Polystyrene 96-Well Microplates, catalog#

3795, Thermo Scientific, Rockford, IL, USA). Each row of wells

tested plasma from a single bird, with 2x dilutions of the plasma

from the first well (25 µl undiluted plasma) through the 11th well (1/

1024 dilution of plasma in PBS; 25 µl total volume). Seven rows

contained experimental samples (7 birds) and one row contained a

positive control sample of pooled plasma. Column 12 wells

contained 25µl PBS only, as a negative control. After plasma

samples were distributed, 25µl of the 1% rabbit blood cell
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suspension were added to each well. The plates were sealed with

Parafilm to prevent evaporation. Plates were placed on an orbital for

10 seconds and incubated in a 37°C water bath for 90 min. Plates

were removed and placed at a 45-degree angle (on the long axis) for

20 min at room temperature to enhance the visualization of

agglutination. We photographed and re-sealed each plate before

incubation for an additional 70 minutes at a 45-degree angle at

room temperature. We then photographed each plate again.

Chicken samples were numerically coded and randomized across

plates to avoid observer bias. The plates were scored blindly at the

time of assay. The same researcher scored the photos of assays later

to validate the original scores (27). Scores were recorded as the

highest dilution (i.e., well number) at which agglutination occurred.

Due to time constraints, we did not conduct HA assays on all

plasma samples. A random subset of samples from each line of

chicken breed was selected. The HA sample sizes matched or

exceeded sample sizes reported in the literature for this assay (27,

28, 105–107). Sample sizes for the HA assay were Rhode Island Red

(n=29), White Leghorn (n=59), and White Plymouth Rock

(n=31) (Table 1).
2.4 Enzyme-Linked Immunosorbent
Assay (ELISA)

We developed indirect ELISAs to quantify IgY NAbs binding to

each of three antigens - keyhole limpet hemocyanin (KLH;

Hemocyanin from Megathura crenulate (keyhole limpet), catalog #
TABLE 1 Sample sizes (n) of three breeds (Rhode Island Red, White
Leghorn, and White Plymouth Rock) consisting of eight lines (RIR 1, RIR
2, WL 1, WL 2, WL 3, WL 4, WPR 1, and WPR 2) for assays (ELISA and HA)
used to measure natural antibodies.

Breed n Line n

E
LI
SA

Rhode
Island Red

203
RIR 1 102

RIR 2 101

White Leghorn 402

WL 1 100

WL 2 100

WL 3 100

WL 4 102

White
Plymouth Rock

208
WPR 1 106

WPR 2 102

H
A

Rhode
Island Red

29
RIR 1 16

RIR 2 13

White Leghorn 59

WL 1 10

WL 2 18

WL 3 18

WL 4 13

White
Plymouth Rock

31
WPR 1 14

WPR 2 17
fro
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H7017–20MG, Sigma-Aldrich, St . Louis , MO, USA) ,

phytohemagglutinin (PHA; Phytohemagglutinin-L, catalog #

11249738001, Sigma-Aldrich, St. Louis, MO, USA), and

ovalbumin (OVA; Imject ™ Ovalbumin, catalog # 77120, Thermo

Scientific, Rockford, IL, USA) using a single dilution approach (108–

110). Each assay was optimized based on dilutions of antigen and

plasma (i.e., checkerboard titration) with the following steps: (Step

1) 96-well clear microtiter plates (Immulon ® 4HBX Flat Bottom

Microtiter® Plates, Thermo Scientific, Rockford, IL, USA) were

coated with an antigen diluted in coating buffer (Carbonate-

Bicarbonate Buffer, catalog # C3041–100CAP, Sigma-Aldrich, St.

Louis, MO, USA), with 100µl of solution per well. Antigen

concentrations ranged from 1x (stock solution) in row A to 1:2000

dilution in row H. The plate was incubated at room temperature on

an orbital shaker for 1 hour. (Step 2) The plate was washed with Tris

buffer (Tris Buffered Saline, with Tween ® 20, pH 8.0, catalog #

T9039–10PAK, Sigma-Aldrich, St. Louis, MO, USA) three times.

(Step 3) The wells were filled (300 µl/well) with blocking buffer

(Pierce ™ Protein-Free Blocking Buffer, catalog # 37572, Thermo

Scientific, Rockford, IL, USA) to cover any open binding surfaces on

the plate. The plate was incubated at room temperature on an orbital

shaker for 30 minutes. (Step 4) The plate was washed with Tris buffer

three times. (Step 5) A pooled plasma sample was diluted in sample

buffer (50 mMTris buffered saline, pH 8.0, 1% BSA; Sigma Chemical

# T6789; 10% Tween 20, Tween 20; Sigma Chemical P7949) and

added to the plate (100µl/well) so that plasma concentrations ranged

from 1x (undiluted) in column one to 1:2048 in column 12. The

plate was incubated at room temperature on an orbital shaker for 1

hour. (Step 5) The plate was washed with Tris buffer three times.

(Step 6) Detection antibody (anti-Chicken IgY – Fc Fragment

Antibody with HRP conjugate; A30–104P, Bethyl Laboratories

Inc., Texas, USA) was diluted in sample buffer 1:200,000 and

added to all wells (100µl/well). The plate was covered with

aluminum foil and incubated on an orbital shaker for 1 hour at

room temperature. (Step 7) The plate was washed with Tris buffer

three times. (Step 8) 100µl TMB (3,3’,5,5’-Tetramethylbenzidine

Liquid Substrate System, catalog # T8665–1L, Sigma-Aldrich, St.

Louis, MO, USA) were added to each well and the plate was

incubated on an orbital shaker for 15 min. (Step 9) We added

100µl of stop solution (BioFX ® 450nm Liquid Nova-Stop Solution

for TMB Microwell Substrates, NC1026538, Thermo Scientific,

Rockford, IL, USA) to each well. (Step 10) The plate was scanned

at 450 nm with a spectrophotometer (Imark™ Microplate reader,

Bio-RAD, Hercules, CA, USA) to determine the optical density

(OD) in each well. Optical density correlates with the amount of

antibody bound to the substrate antigen. We confirmed that OD

values decreased as antigen dilution increased and as plasma

dilution increased. This validated antibody-antigen binding in the

assay. We compared the OD curves for the plasma dilutions among

the different antigen concentrations. We selected the antigen

concentration that yielded an OD curve with the steepest slope

across plasma dilutions, because this reflected the antigen

concentrat ion most sensit ive to changes in antibody

concentration. Once the optimal concentration was determined
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for each antigen, the selected concentration was used for all

sample assays. The selected antigen concentrations were KLH

(1:40 dilution), PHA (1:500 dilution), and OVA (1:20 dilution).

All assays used plasma samples diluted 1:100 and each sample was

analyzed in triplicate wells (100µl/well). In addition, all assays

included a positive control sample of pooled plasma and a

negative control of sample buffer only. The OD value of the

negative control (buffer only) was subtracted from all sample

wells, and we determined the coefficient of variation (CV) for the

optical densities of triplicate wells for each sample. For samples with

a CV <20%, we averaged the triplicate well OD values to use in

statistical analyses. Samples with CV values >20% were excluded

from analyses. Sample sizes for ELISAs were as follows: Rhode

Island Red (n=203), White Leghorn (n=402), and White Plymouth

Rock (n=208) (Table 1).
2.5 Statistical methods

All sample data were standardized against positive controls by

calculating the ratio of the sample value (Si) to the value of the

positive control (P) on the plate (xi = Si/P). This controlled any

assay variation among different plates. We then normalized S/P

values (xi) of each assay by scaling from 0 to 1 with the following

formula: zi = (xi – min(x))/(max(x) - min(x)), where x = (x1,…,xn)

and zi is the ith normalized data value. This was done to enable

direct comparisons of assay results on a common scale. To analyze

relationships between antigen-specific NAbs, we calculated

Spearman’s correlation coefficients for each pairwise combination

of NAb assay antigens with the psych package in R (111). We

expected that any correlated NAbs would reflect cross-reactivity of

polyreactive NAbs or tightly linked production of antigen-specific

NAbs. Conversely, uncorrelated NAbs would indicate antigen-

specific NAbs are independent. We compared NAb levels among

chicken breeds and lines for each antigen-specific NAb using

Generalized Linear Models (GLM) with stats package in R (112).

The GLM models were NAbx level ~ Line + Breed, where NAbx
represents the normalized assay values for antigen x. Post hoc

pairwise comparisons were evaluated using the emmeans package

(113). Significant effects of chicken line or breed on NAb levels

indicate genetic variation for NAb expression. Statistical differences

in NAb levels among lines and breeds were qualitatively compared

among assay antigens, to determine if antigen specificity affects

comparisons of NAbs among genetically distinct animals.
3 Results

3.1 Correlations among antigen-
specific NAbs

The correlation coefficients of antigen-specific NAb levels

ranged from 0.10 to 0.31, indicating that antigen-specific NAb

levels were independent (Figure 1). As a result, antigen-specific
frontiersin.org
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NAbs were considered independent and unique subsets of the

overall NAb repertoire.
3.2 Agglutination assays of NAbs among
breeds and lines

The genetic line of chickens affected anti-rRBC NAbs (GLM,

t=2.56, p=0.01), but there was no effect of breed (GLM, t=1.30,

p=0.20) (Figure 2). White Leghorn Line 3 had lower levels of anti-

rRBC NAbs compared to line White Leghorn Line 4 (GLM, t=3.20,

p=0.04), but no other pairwise line differences were observed.
3.3 ELISAs of NAbs among breeds and lines

The genetic line and breed of chicken affected levels of NAbs

measured in all three ELISAs (Figure 3). Among the poultry lines

there was a difference in expression of NAbs binding KLH (GLM,

t=3.41, p=0.001), OVA (GLM, t=4.32, p<0.0001), and PHA (GLM,

t=3.80, p=0.0002). Post hoc pairwise comparisons of lines revealed

significant differences between 5 pairs of lines in the KLH assay, 17

pairs of lines in the OVA assay, and 5 pairs of lines in the PHA assay

(Table 2). Among the poultry breeds, there was a difference in the

expression of NAbs binding KLH (GLM, t=2.27, p=0.02) and OVA

(GLM, t=8.20, p<0.001), but no difference in the expression of NAbs

binding PHA (GLM, t=1.55, p=0.12). Post hoc pairwise

comparisons of breeds revealed significant differences between 2

pairs of lines in the KLH assay, 3 pairs of lines in the OVA assay,

and no pairs of lines in the PHA assay (Table 3).
Frontiers in Immunology 05
4 Discussion

We compared natural antibody levels among different breeds

and selected elite lines of poultry using two methods (i.e. ELISA and

HA) to test the hypotheses that (1) antigen-specific NAbs are

independent and (2) antigen specificity affects comparisons of

NAbs among different animals. Our data supported both

hypotheses. Correlations among antigen-specific NAbs were

absent or weak, indicating that the measured NAbs did not have

strongly overlapping antigen binding (i.e., similar polyreactivity),

nor were they tightly linked (i.e. co-regulated). We observed

significant differences in levels of antigen-specific NAbs among

chicken breeds and lines, reinforcing the concept that NAbs are

germline-encoded (6, 22, 40, 42, 48, 49, 52, 55). However, breed and

line effects were not consistent among antigen-specific NAbs. For

example, all three breeds differed in levels of anti-KLH and anti-

OVA NAbs, but not anti-rRBC nor anti-PHA NAbs. Relative

differences were not consistent among antigen-specific NAbs. For

example, White Leghorn chickens had lower levels of anti-OVA

NAbs compared to Rhode Island Red chickens, but levels of anti-

KLH NAbs were similar between the two breeds. Levels of anti-

OVA NAbs were different among all eight lines. In comparison,

anti-KLH and -PHA NAbs were different among six lines, and anti-

rRBCs NAbs differed among only two lines. These data show that

subsets of NAbs have some degree of unique (non-overlapping)

antigen specificity and are not tightly linked. Genetic differences

among chickens affect levels of antigen-specific NAbs, but these

genetic effects (i.e., breed and line differences) were not consistent

among antigen-specific NAbs. These results raise important

questions about the diversity of immunoglobulins in the NAb
FIGURE 1

Pairwise correlations among levels of antigen-specific natural antibodies (NAbs) binding molecules ovalbumin (OVA), keyhole limpet hemocyanin
(KLH), phytohemagglutinin (PHA), and rabbit red blood cells (RBCs). The NAb measures were normalized to a 0 to 1 scale for comparison. Antigen-
specific NAb expression of individual birds is shown in scatter plots below the diagonal and Spearman’s correlation coefficients of NAb expression
above the diagonal.
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FIGURE 2

Levels of natural antibodies (NAb) binding rabbit red blood cells (rRBCs) were measured with hemagglutination assays. The anti-rRBC NAb levels were
measured as the highest dilution of plasma that resulted in RBC agglutination. The anti-rRBC NAb levels were normalized to a 0 to 1 scale before
comparison among breeds and lines. The NAb measures are shown for multiple breeds (x-axis) and lines (legend), with points representing outliers.
There was a significant difference in anti-rRBC NAb level between lines WL3 and WL4 (post hoc, p < 0.05), but no differences among breeds.
B CA

FIGURE 3

Levels of natural antibodies (NAb) binding keyhole limpet hemocyanin (KLH) (A), ovalbumin (OVA) (B), and phytohemagglutinin (PHA) (C) measured
using enzyme-linked immunosorbent assays and recorded as optical density units with spectrophotometry. The optical density values were
normalized to a 0 to 1 scale before comparison among breeds and lines. The antigen-specific NAb levels are shown for multiple breeds (x-axis) and
lines (legend), with single points representing outliers. Symbols represent significant differences (p<0.05). The (*) symbol indicates a difference in NAb
levels among breeds, and the (†) symbol indicates a difference in NAb levels among lines. See Tables 2, 3 for pairwise comparisons.
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repertoire and the potential importance of antigen-specificity to

NAb function and comparative immunology.

A hallmark of NAbs is polyreactivity (8, 9, 114) and binding to

diverse antigens has been clearly demonstrated with studies using

NAbs from monoclonal B-1 cells (7–9, 18, 24, 26). However,

evidence in the literature illustrates that NAbs can have unique,

non-overlapping ranges of antigen binding (8, 24) and structural

diversity at the antigen binding site (114). Several reviews of NAbs

have mentioned diversity of immunoglobulins in the NAb

repertoire (11, 13) and this diversity is suggested to be essential to

immune defense (9, 84). Despite this information, nearly all studies
Frontiers in Immunology 07
of NAbs are based on one or two antigens and the antigens used

among studies are often different. Should we expect that measures

of antigen-specific NAbs represent the broader NAb repertoire or

reflect the activity of other natural antibodies? Evidence

from the literature suggests that antigen-specific NAbs are

not interchangeable.

In two notable studies, different red blood cells were used for

hemagglutination assays of NAbs from the same animals. Bailey

(53) observed that poultry sera agglutinated rabbit and rat red blood

cells at a titer four times higher than the agglutination threshold for

red blood cells from guinea pigs or frogs, and >20 times higher than
TABLE 2 Pairwise comparisons of NAbs binding KLH, OVA, PHA, and rRBCs among poultry lines (RIR 1, RIR 2, WL 1, WL 2, WL 3, WL 4, WPR 1, and
WPR 2).

Contrast Estimate SE df t ratio p value

K
LH

RIR 1 - WL 2 0.066 0.019 459 3.409 0.0162

WL 1 - WPR 2 -0.063 0.020 459 -3.098 0.0428

WL 2 - WPR 1 -0.081 0.018 459 -4.423 0.0003

WL 2 - WPR 2 -0.106 0.020 459 -5.206 0.0000

WL 3 - WPR 2 -0.078 0.020 459 -3.898 0.0028

O
V
A

RIR 1 - WL 1 0.136 0.031 370 4.318 0.0005

RIR 1 - WL 2 0.141 0.034 370 4.214 0.0008

RIR 1 - WL 3 0.127 0.035 370 3.567 0.0096

RIR 1 - WL 4 0.154 0.037 370 4.202 0.0009

RIR 1 - WPR 2 -0.113 0.034 370 -3.323 0.0217

RIR 2 - WL 1 0.192 0.031 370 6.269 p<0.0001

RIR 2 - WL 2 0.198 0.033 370 6.027 p<0.0001

RIR 2 - WL 3 0.183 0.035 370 5.257 p<0.0001

RIR 2 - WL 4 0.210 0.036 370 5.851 p<0.0001

WL 1 - WPR 1 -0.233 0.030 370 -7.738 p<0.0001

WL 1 - WPR 2 -0.249 0.031 370 -8.024 p<0.0001

WL 2 - WPR 1 -0.238 0.032 370 -7.386 p<0.0001

WL 2 - WPR 2 -0.254 0.033 370 -7.676 p<0.0001

WL 3 - WPR 1 -0.224 0.034 370 -6.520 p<0.0001

WL 3 - WPR 2 -0.240 0.035 370 -6.823 p<0.0001

WL 4 - WPR 1 -0.251 0.035 370 -7.080 p<0.0001

WL 4 - WPR 2 -0.267 0.036 370 -7.367 p<0.0001

P
H
A

RIR 1 - WL 4 -0.060 0.016 658 -3.802 0.0039

RIR 2 - WL 4 -0.049 0.016 658 -3.049 0.0489

WL 2 - WL 4 -0.066 0.016 658 -4.234 0.0007

WL 3 - WL 4 -0.062 0.015 658 -4.027 0.0016

WL 4 - WPR 2 0.052 0.015 658 3.378 0.0175

rR
B
C

WL 3 - WL 4 -0.262 0.082 111 -3.188 0.0380
*tukey p-value adjustment for multiple comparisons.
Only significant comparisons are shown (p<0.05).
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the threshold for cells from sheep, turtle, or goat blood (53). Seto

and Henderson (3) observed poultry sera agglutinated mouse red

blood cells at a titer 1.5x higher than hamster red blood cells and

12x higher than blood cells from rabbits or sheep (3). The wide

variation in NAb titers among different vertebrate red blood cells

indicates that each assay measured a different antigen-specific

natural antibody. This is perhaps unsurprising, given more recent

analyses of the protein composition of red blood cells. Using

quantitative mass spectrometry, Sae-Lee et al. (115) identified

1,944 distinct protein groups in human red blood cells, and Matei

et al. (116) described multiple electrophoretic differences in red

blood cell proteins among eight animal species, including sheep,

rabbit, rat, and mouse. Molecular analyses of antigens used in NAb

ELISAs also suggest significant structural diversity that could affect

binding specificity. The KLH molecule, derived from the mollusk

Megathura crenulate, is a ~390 kDa polypeptide with eight globular

units (117). The OVA molecule, derived from egg white, is a 44.5

kDa glycoprotein with a tertiary structure (118, 119). Finally, a

legume plant produces the PHA molecule, a 30.5 kDa glycoprotein

with a quaternary structure (120). As with the agglutination assay,

these molecular differences likely contribute to epitope variation

among ELISAs. These antigen and epitope differences among NAb

assays likely result in measurements of different subsets of NAbs

(24, 70, 78, 121) which may affect analyses of NAbs relative to

species differences, immune function, and ecology (27, 28, 30, 93).

Many studies have shown species and breed effects on levels of

NAbs (6, 27, 28, 40, 42). However, to our knowledge, antigen

specificity of NAbs has not been considered in comparative studies.

Perhaps the best cited example of using NAbs as a comparative trait is

Matson et al. (122). In that study, the authors compared levels of

NAbs using agglutination assays with rabbit and trout red blood cells.

Although the average NAb levels in the two assays were correlated

(R2 = 0.62), there were cases where species effects were not identical
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for anti-rabbit and anti-trout RBC immunoglobulins. For example,

the Chilean pintail (Anas georgica spinicauda) and white-winged

wood duck (Cairina scutulata) had similar titers of NAbs binding

rabbit red blood cells but dissimilar titers of NAbs binding trout red

blood cells. In contrast, South Georgia pintail (Anas georgica georgica)

and black-bellied tree duck (Dendrocygna autumnalis) had the

opposite pattern (122). Other studies have reported variation in

NAbs among chicken breeds (22, 55), but breed effects are not

identical among NAb antigens (40). These inconsistencies among

antigen-specific NAbsmay reflect complexity in the genetic control of

natural antibody diversity (62–65, 114).

Natural antibodies are considered important to innate immune

defense (9, 11, 13), but it remains unclear if antigen specificity of

NAbs affects defense. Monoclonal NAbs do not bind uniformly to

all pathogens (8, 24) and they do not neutralize different pathogens

equally in vitro (24). This suggests that antigen specificity could

affect defenses provided by NAbs. Animal studies with chickens and

pigs have reported positive (41, 123) or absent (1, 56) relationships

between antigen-specific NAbs and survival. In pigeons, Owen et al.

(21) observed that some antigen-specific NAbs were predictive of

bird resistance to internal and external parasites, but other antigen-

specific NAbs were not. In addition, the authors showed that

pigeons with a more diverse repertoire of antigen-specific NAbs

were more resistant to parasites (21). These various studies suggest

that antigen-specific NAbs provide defense against a restricted

range of parasites or pathogens, reinforcing the idea that immune

defense from NAbs relies on a diverse repertoire of these

immunoglobulins (9, 84).

The mechanism(s) of defense by NAbs are not entirely

understood and remain an active area of investigation (1–6, 11,

14–17, 54, 100, 106, 107). Although NAbs are germline-encoded

and produced prior to infection, evidence suggests that production

of NAbs can increase following immune stimulation (52, 54, 68,
TABLE 3 Pairwise comparisons of NAbs binding KLH, OVA, PHA, and rRBCs among poultry breeds (Rhode Island Red, White Leghorn, and White
Plymouth Rock).

Contrast Estimate SE df t ratio p value

K
LH

Rhode Island Red - White Leghorn 0.027 0.012 464 2.265 0.0618

Rhode Island Red - White Plymouth Rock -0.033 0.014 464 -2.364 0.0480*

White Leghorn - White Plymouth Rock -0.060 0.012 464 -5.067 p<0.0001*

O
V
A

Rhode Island Red - White Leghorn 0.168 0.020 375 8.201 p<0.0001*

Rhode Island Red - White Plymouth Rock -0.075 0.023 375 -3.215 0.0040*

White Leghorn - White Plymouth Rock -0.243 0.020 375 -12.092 p<0.0001*

P
H
A

Rhode Island Red - White Leghorn -0.014 0.010 663 -1.355 0.3654

Rhode Island Red - White Plymouth Rock -0.018 0.012 663 -1.546 0.2701

White Leghorn - White Plymouth Rock -0.004 0.010 663 -0.443 0.8975

rR
B
C

Rhode Island Red - White Leghorn 0.069 0.053 116 1.300 0.3980

Rhode Island Red - White Plymouth Rock -0.019 0.061 116 -0.306 0.9497

White Leghorn - White Plymouth Rock -0.088 0.052 116 -1.686 0.2150
*tukey p-value adjustment for multiple comparisons.
Significant differences are indicated by the * symbol (p<0.05).
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106, 106, 110, 111). However, increased production of NAbs

appears to be antigen specific. Some antigen-specific NAbs

increase with immune challenge, but others remain unchanged

(27, 52, 54, 106, 112, 113). In addition, relationships between NAbs,

adaptive antibodies, and other immune effectors vary depending on

antigen specificity (49, 83). Matson et al. (122) measured 13

immunological parameters that included NAbs, complement

proteins, antimicrobial activity, and leukocyte counts from 10

species of waterfowl. The authors used principal component

analysis as a statistical approach to group correlated variables.

The NAb and complement levels were measured using the

hemagglutination-hemolysis assay that combines a measure of

complement protein activity (blood cell lysis) with NAbs that

mediate the binding of complement to the target blood cells (i.e.,

classical complement pathway) (21, 24, 77). As discussed above,

Matson et al. (122) used trout and rabbit red blood cells in separate

assays of the same samples. The lysis (complement) and

antimicrobial measures grouped into different PCs based on

antigen. One PC showed a positive correlation with trout cell lysis

and killing of Staphylococcus aureus bacteria. In contrast, a different

PC correlated positively with rabbit cell lysis but negatively with the

killing of S. aureus. In this example, relationships between NAbs,

complement, and bacteria killing changed depending on NAb

antigen specificity (100). These studies strongly suggest that

antigen-specificity of NAbs affects interactions with pathogens

and the defenses provided by these immunoglobulins. Accurate

and comprehensive understanding of NAbs and immune function

requires consideration of antigen specificity.

The data reported here reveal that natural antibodies in poultry

are composed of a diverse repertoire of immunoglobulins. Our data

align with previous studies of NAbs in chickens that show both

breed and selection line affect natural antibody levels (6, 22, 40, 42,

47–49, 52, 55). Selective breeding of poultry has revealed that some

antigen-specific NAbs are associated with pathogen resistance (39–

41) and survival (1, 56). However, the mechanism(s) of these effects

are unknown. Natural antibodies may provide important immune

defenses in chickens or serve as relevant markers for selection. In

either case, identifying the effects of antigen specificity could reveal

more targeted strategies for improving traits in these

important livestock.
5 Conclusions

Natural antibodies are important components of the vertebrate

immune system, and these molecules have proven valuable in

studies of immune function, ecology, evolution, and livestock

selection. These molecules are defined as polyreactive with low

specificity (11, 13), but evidence from our studies and the literature

reveal that antigen-specific NAbs are independent and have unique

interactions with pathogens and parasites (8, 24). Thus, antigen-

specific NAbs are not interchangeable. A comprehensive

understanding of NAbs requires consideration for functional

differences between antigen-specific NAbs and characterization of

immunoglobulin diversity in the NAb repertoire. This leads to the
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NAbs? Natural antibodies should be appreciated as a group of

diverse immunoglobulins rather than treated as a singular effector

(9, 84). Going forward, we recommend three approaches to the

study of NAbs. The first is to reconcile the similarities and

differences among antigen-specific NAbs (114). For example, by

combining western blot analyses and affinity chromatography,

researchers may be able to identify how antigen-specific NAbs are

related (46, 51, 124, 125). Second, researchers could use a panel of

antigens to measure the NAb repertoire (21), or design ELISAs that

utilize several antigens at once (e.g., multiplex ELISA) (21, 126–

128). These approaches would yield more complete measures of the

NAb repertoire. Finally, as biochemical and genetic resources

become available for non-model animal species, researchers

should endeavor to determine the cellular and molecular

characteristics of NAbs in different animal species.
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89. Sandmeier FC, Tracy CR, Dupré S, Hunter K. A trade-off between natural and
acquired antibody production in a reptile: implications for long-term resistance to
disease. Biol Open. (2012) 1:1078–82. doi: 10.1242/bio.20122527

90. Silva TH, Celestino ML, Menta PR, Neves RC, Ballou MA, MaChado VS.
Associations between circulating levels of natural antibodies, total serum
immunoglobulins, and polymorphonuclear leukocyte function in early postpartum
dairy cows. Veterinary Immunol Immunopathology. (2020) 222:110026. doi: 10.1016/
j.vetimm.2020.110026

91. Ujvari B, Madsen T. Do natural antibodies compensate for humoral
immunosenescence in tropical pythons?: Natural antibodies and immunosenescence
in pythons. Funct Ecol. (2011) 25:813–7. doi: 10.1111/fec.2011.25.issue-4

92. Minozzi G, Parmentier HK, Mignon-Grasteau S, Nieuwland MG, Bed’hom B,
Gourichon D, et al. Correlated effects of selection for immunity in White Leghorn
chicken lines on natural antibodies and specific antibody responses to KLH and M.
butyricum. BMC Genet. (2008) 9:5. doi: 10.1186/1471-2156-9-5

93. Racca AL, Eberhardt AT, Moreno PG, Baldi C, Beldomenico PM. Differences in
natural antibody titres comparing free-ranging guanacos (Lama guanicoe) and capybaras
(Hydrochoerus hydrochaeris).Veterinary J. (2014) 199:308–9. doi: 10.1016/j.tvjl.2013.10.036

94. Hangalapura BN, Nieuwland MGB, De Vries Reilingh G, Van Den Brand H,
Kemp B, Parmentier HK. Durations of cold stress modulates overall immunity of
chicken lines divergently selected for antibody responses. Poultry Sci. (2004) 83:765–75.
doi: 10.1093/ps/83.5.765

95. Berghof TVL, van der Klein SAS, Arts JAJ, Parmentier HK, van der Poel JJ,
Bovenhuis H. Genetic and non-genetic inheritance of natural antibodies binding
keyhole limpet hemocyanin in a purebred layer chicken line. PloS One. (2015) 10:
e0131088. doi: 10.1371/journal.pone.0131088

96. Sun Y, Ellen ED, Parmentier HK, van der Poel JJ. Genetic parameters of natural
antibody isotypes and survival analysis in beak-trimmed and non-beak-trimmed
crossbred laying hens. Poultry Sci. (2013) 92:2024–33. doi: 10.3382/ps.2013-03144

97. Adriaansen-Tennekes R, De VriesReilingh G, Nieuwland MGB, Parmentier HK,
Savelkoul HFJ. Chicken lines divergently selected for antibody responses to sheep red
blood cells show line-specific differences in sensitivity to immunomodulation by diet. Part
I: Humoral parameters. Poultry Sci. (2009) 88:1869–78. doi: 10.3382/ps.2009-00159

98. Thompson-Crispi KA, Miglior F, Mallard BA. Genetic parameters for natural
antibodies and associations with specific antibody and mastitis in Canadian Holsteins. J
Dairy Sci. (2013) 96:3965–72. doi: 10.3168/jds.2012-5919

99. Ndithia HK, Matson KD, Muchai M, Tieleman BI. Immune function differs
among tropical environments but is not downregulated during reproduction in three
year-round breeding equatorial lark populations. Oecologia. (2021) 197:599–614.
doi: 10.1007/s00442-021-05052-0

100. Madsen T, Ujvari B, Nandakumar KS, Hasselquist D, Holmdahl R. Do
“infectious” prey select for high levels of natural antibodies in tropical pythons? Evol
Ecol. (2007) 21:271–9. doi: 10.1007/s10682-006-9004-4

101. The American standard of perfection, illustrated. A complete description of all
recognized varieties of fowls. Boston, Massachusetts, USA: The American Poultry
Associaation (1921).

102. Leenstra F, Ten Napel J, Visscher J, Van Sambeek F. Layer breeding
programmes in changing production environments: a historic perspective. World’s
Poultry Sci J. (2016) 72:21–36. doi: 10.1017/S0043933915002743

103. Dryden J. Breeds of chickens. Oregon Agric Coll. (1909) 1.

104. Ashraf M. Poultry breeding and selection. In: Poultry production technology
Faisalabad, Pakistan: University of Agriculture (2017). p. 28–41.

105. Versteegh MA, Helm B, Kleynhans E, Gwinner E, Tieleman I. Genetic and
phenotypically flexible components of seasonal variation in immune function. J Exp
Biol. (2014) 217(9):1510–8. doi: 10.1242/jeb.097105

106. Aastrup C, Hegemann A. Jackdaw nestlings rapidly increase innate immune
function during the nestling phase but no evidence for a trade-off with growth. Dev
Comp Immunol. (2021) 117:103967. doi: 10.1016/j.dci.2020.103967
Frontiers in Immunology 12
107. Pardal S, Alves JA, Mota PG, Ramos JA. Dressed to impress: breeding plumage
as a reliable signal of innate immunity. J Avian Biol. (2018) 49. doi: 10.1111/jav.01579

108. Kumar S, Kumar Y, Malhotra DV, Dhar S, Nichani AK. Standardisation and
comparison of serial dilution and single dilution enzyme linked immunosorbent assay
(ELISA) using different antigenic preparations of the Babesia (Theileria) equi parasite.
Vet Res. (2003) 34:71–83. doi: 10.1051/vetres:2002055
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