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Background: Multiple myeloma (MM) is a hematological malignancy

characterized by the abnormal proliferation of plasma cells. Mitochondrial

dysfunction and dysregulated programmed cell death (PCD) pathways have

been implicated in MM pathogenesis. However, the precise roles of

mitochondria-related genes (MRGs) and PCD-related genes (PCDRGs) in MM

prognosis remain unclear.

Methods: Transcriptomic data from MM patients and healthy controls were

analyzed to identify differentially expressed genes (DEGs). Candidate genes

were selected by intersecting DEGs with curated lists of MRGs and PCDRGs.

Univariate Cox, least absolute shrinkage and selection operator (LASSO),

multivariate Cox, and stepwise regression analyses identified prognostic genes

among the candidates. A risk model was constructed from these genes, and

patients were stratified into high- and low-risk groups for survival analysis.

Independent prognostic factors were incorporated into a nomogram to predict

MM patient outcomes. Model performance was evaluated using calibration

curves, receiver operating characteristic (ROC) analysis, and decision curve

analysis (DCA). Finally, associations between prognostic genes and immune

cell infiltration/drug responses were explored.

Results: 2,192 DEGs were detected between MM and control samples. 30

candidate genes were identified at the intersection of DEGs, 1,136 MRGs, and

1,548 PCDRGs. TRIAP1, TOMM7, PINK1, CHCHD10, PPIF, BCL2L1, and NDUFA13

were selected as prognostic genes. The risk model stratified patients into high-

and low-risk groups with significantly different survival probabilities. Age, gender,

ISS stage, and risk score were independent prognostic factors. The nomogram

displayed good calibration and discriminative ability (AUC) in predicting survival,

with clinical utility demonstrated by DCA. 9 immune cell types showed

differential infiltration between MM and controls, with significant associations

to risk scores and specific prognostic genes. 57 drugs, including nelarabine and

vorinostat, were predicted to interact with the prognostic genes. Ultimately,

qPCR in clinical samples from MM patients and healthy donors validated the
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expression levels of the seven key prognostic genes, corroborating the

bioinformatic findings.

Conclusion: Seven genes (TRIAP1, TOMM7, PINK1, CHCHD10, PPIF, BCL2L1,

NDUFA13) involved in mitochondrial function and PCD pathways were identified

as prognostic markers in MM. These findings provide insights into MM biology

and prognosis, highlighting potential therapeutic targets.
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1 Introduction

MM is a plasma cell malignancy characterized by clonal

proliferation of neoplastic cells in the bone marrow. It is the

second most prevalent hematological cancer, accounting for

approximately 10% of all hematological malignancies. MM is

frequently associated with devastating complications such as

hypercalcemia, renal impairment, anemia, and bone lesions (1).

MM progresses from an asymptomatic precursor stage -

monoclonal gammopathy of undetermined significance (MGUS),

to smoldering multiple myeloma (SMM), and finally to active MM

(2). The etiology of MM remains incompletely elucidated, but it is

hypothesized to involve a complex interplay between genetic

predisposition, environmental factors, and immune system

dysregulation. Contemporary treatment modalities, such as

chemotherapy, targeted therapies, chimeric antigen receptor T-

cell therapy, and hematopoietic stem cell transplantation, have

contributed to improved patient outcomes (3). However, relapse

and the development of drug resistance remain significant

therapeutic challenges, leading to disease progression and poor

prognosis (4). Therefore, there is an urgent need to identify novel

prognostic biomarkers and molecular signatures that can facilitate

risk stratification, guide treatment selection, and ultimately improve

clinical outcomes for patients with MM.
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Of particular interest in MM research is the intricate

involvement of mitochondria, the cellular powerhouses and key

regulators of PCD (5). Subtle alterations in mitochondrial function

and regulatory mechanisms profoundly influence the cell’s fate (6,

7). In cancer cells such as those found in MM, mitochondrial

bioenergetics are often reprogrammed to support the heightened

energetic demands associated with rapid proliferation and

metastasis (8). Mitochondrial functional and structural

abnormalities are pivotal drivers of tumor formation and

progression, wherein mitochondria facilitate the malignant

transformation of tumor precursor cells through the production

of reactive oxygen species, aberrant accumulation of specific

metabolites, and functional defects (9, 10). Furthermore, the rapid

advancements in molecular biology and genomics have unveiled the

intricate biological characteristics of MM, shedding light on the

dysregulation of intracellular and intercellular signaling pathways

that are crucial for the proliferation and survival of cancer cells (11,

12). Within this framework, PCD serves as an essential homeostatic

mechanism (13). The diversity and complexity of PCD occupy a

pivotal position in oncology (14, 15). PCD manifests in diverse

forms, including apoptosis, necrosis, and autophagy, each playing a

critical role in eliminating damaged or abnormal cells, regulating

cell populations, and shaping tissue development and homeostasis

(16). The intricate interplay between mitochondrial dynamics and

cell death pathways, particularly their regulation of plasma cell

survival and response to therapy, has become a central focus of

research (17–19). Mitochondrial membrane potential changes (20),

cytochrome c release (21, 22), Bcl-2 protein family interactions (23),

and other molecular events form a complex network that influences

MM cell survival, pathogenesis, and treatment responsiveness (24).

This underscores the critical importance of further exploring the

interconnected roles of mitochondria and PCD in the

pathophysiology and treatment of MM.

The central objective of our study is to comprehensively

investigate the functional roles, expression profiles, and clinical

correlations of MRGs and PCDRGs in MM. To achieve this, we

have integrated bioinformatics approaches with large-scale

transcriptomic data analysis. Our specific aims include the

identification of critical prognostic markers among MRGs and
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PCDRGs, and the subsequent construction of a risk scoring model

to predict patient outcomes accurately. Through an in-depth

analysis of the immune microenvironment, we aim to disentangle

the complex immune interactions related to MM and elucidate their

role in disease progression and therapeutic response.

Furthermore, we have explored the locations and interactions of

MRGs and PCDRGs within the regulatory network, providing

theoretical support for the development of immunotherapeutic

strategies targeting these pathways. Additionally, drug sensitivity

analysis has guided the selection of potential inhibitory candidates

for MM cells, paving the way for therapeutic optimization and the

development of novel targeted therapies. Ultimately, our research

endeavors to enhance the fundamental understanding of the

biological characteristics of MM, offer more precise biomarkers

and therapeutic targets for the treatment and prognostic evaluation

of MM, and ultimately improve clinical outcomes for patients

afflicted with this debilitating disease.
2 Materials and methods

2.1 Data collection

859 samples were obtained from UCSC Xena’s MMRF-

COMPASS database, including 764 primary MM samples (763

with survival data). We processed the count, FPKM, survival, and

phenotypic data to obtain expression matrices (genes as rows,

samples as columns) and tables with grouping, survival, and

phenotypic information for prognostic modeling. See

Supplementary Table 1 for baseline details.

MM-related datasets GSE47552 (99 samples: 5 controls, 20

MGUS, 33 SMM, 41 MM), GSE4581 (414 MM), GSE24080 (559

MM), and GSE6477 (134 samples: 15 controls, 21MGUS, 23 SMM, 75

MM) were downloaded from GEO. We converted probe IDs to gene

names and constructed expression matrices and grouping information

for differential expression and prognostic model validation.

1136 MRGs were obtained from MitoCarta3.0, and 1548

PCDRGs from the literature.
2.2 Differential expression analysis

Differential expression analysis was performed using the limma

package (version 3.52.4) (25) to identify differentially expressed

genes (DEGs) (adj. p < 0.05 and |log2FoldChange (FC)| > 0.5).

Volcano map of DEGs were drafted by ggplot2 (version 3.3.6) (26).

Top 20 up- and down-regulated DEGs in |log2FC| sequencing were

displayed using Complex Heatmap package (version 2.12.1) (27).
2.3 Identification and enrichment analysis
of candidate genes

Candidate genes were obtained by taking intersection of DEGs,

MRGs and PCDRGs, and results were visualized by ggvenn package

(version 0.1.9) (28). Expression of candidate genes was visualized by
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heatmap. Subsequently, the candidate genes were analyzed for GO

and KEGG enrichment (p < 0.05) using the cluster analysis software

package (version 4.7.1.001). Top8 GO terms and KEGG pathways of

p value were visualized by enrichplot package (version 1.8.1) (29).

Next, ssGSEA algorithm was used to calculate ssGSEA score of MM

patients by GSVA package (version 1.50.1) (30) in MMRF-

COMMPASS dataset. Then MM samples were divided into high

and low scoring groups based on median value of ssGSEA score.

Survival difference of 2 scoring groups was compared by log-rank test.
2.4 Screening of prognosis genes

Univariate Cox regression analysis was performed in MMRF-

COMMPASS dataset by survival package (version 3.4-0) (31) to find

survival-related genes (HR ≠ 1, p < 0.05). Then, genes that passed

proportional hazard (PH) assumption test were then used for

subsequent analysis (p > 0.05). After that, LASSO regression

analysis was used to further screen candidate prognosis genes by

glmnet package (version 4.1-6) (32). Furthermore, multivariate Cox

and stepwise regression analyses were performed to screen prognostic

genes and calculate the expression ofMM samples. KM survival curve

of prognosis genes was utilized to compare survival difference

between 2 scoring groups using log-rank test. Subsequently,

consensus clustering of MM samples was processed by Consensus

Cluster Plus package (version 3.18) (33) relied on expression mode of

prognosis genes. MM samples were divided into different subtypes,

and KM survival analysis of different subtypes was proceeded.
2.5 Construction of risk model

In order to further evaluate the efficacy of the risk model in

predicting patient survival and treatment response, time-dependent

ROC curves were drafted by time ROC package (version 0.4) (34).

The MM patients were stratified into high and low risk group, and

survival differences between the 2 risk groups were compared by

KM survival curves. Additionally, the performance of the risk

model was validated in the GSE4581 and GSE24080 datasets.

Furthermore, to explore the relationship between risk score and

clinical features, correlation analysis was conducted using three

clinical features (age, gender, and ISS stage) in the two risk cohorts.

The proportions of the 3 clinical characteristics Age, Gender and

ISS Stage in the high and low risk groups are shown in the graph

with different percentages and color divisions. By knowing the

percentage shares, we can assess their potential impact on prognosis

and also guide the development of personalized treatment

strategies. Then differences in risk scores across different clinical

features were compared by Wilcoxon test (p < 0.05).
2.6 Construction of nomogram

Univariate Cox, PH assumption test, and multivariate Cox

regression analyses were processed to find independent

prognostic factors among risk score, age, gender and ISS stage.
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After obtaining, a nomogram was constructed to predict survival

probability of MM. Predictive ability of nomogram was evaluated

by calibration curve, ROC and decision curve analysis (DCA).
2.7 Gene Set Enrichment Analysis and
chromosome localization

To explore corresponding functions and pathways involved in

risk groups, differential analysis between 2 risk groups was

performed by DESeq2 package in MMRF-COMMPASS dataset

(version 1.36.0) (35). Based on background genes which were

downloaded from MSigDB database, GSEA was processed by

clusterProfiler package. Chromosome localization of prognosis

genes was determined through RCircos package (version 1.2.2) (36).
2.8 Immune microenvironment analysis

Difference of immune cells between 2 risk groups was compared.

Firstly, ssGSEA algorithm was used to calculate score of 28 immune

cell types in all samples of MMRF-COMMPASS dataset by GSVA

package. Then difference of immune cells of 2 risk groups was

compared by wilcoxon test (p < 0.05). In addition, 12 gene sets of

immune related functions were obtained from published literature

(37). Immune-related function scores were calculated using the

ssGSEA algorithm in the GSVA software package and compared

between the two risk groups (p < 0.05). Paradoxical correlation

analysis was also performed to explore the relationship between

prognostic genes and risk scores with different immune cells and

immune-related functions. Correlation results were presented using

the ggcor and ggplot2 software packages, respectively.
2.9 Correlation analysis of immunotherapy

The effect of immune checkpoints was explored by analyzing

the differential expression of 38 immune checkpoints (38) in MM

samples from both groups. The relationship between risk scores and

differences in immune checkpoints was investigated using

Spearman’s correlation analysis (p < 0.05). TIDE, MDSC, CAF,

TAM, merck18, dysfunction and exclusion scores were compared

between the two risk groups (p < 0.05) and their correlation with

risk scores was analyzed. In addition, differences in immunity

scores, stromal scores and estimated scores were investigated.

Somatic mutations in multiple myeloma patients in the MMRF-

COMPASS dataset were analyzed using the maftools software

package (version 2.12.0) (39), and the mutation frequencies of the

top 20 genes were shown by waterfall plots.
2.10 Regulatory mechanism and
drug analysis

To explore miRNAs targeting prognosis genes. The intersection

of miRNAs extracted from both starBase and miRTarBase databases
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were identified as key miRNAs. Then long non-coding RNAs

(lncRNAs) targeting key miRNAs were obtained from miRNet and

starBase (clipExpNum > 5) databases. After that, key lncRNAs were

selected by overlapping lncRNAs. Finally, key miRNAs, key lncRNAs

and prognosis genes with interactions were constructed into a

lncRNAs-miRNAs-mRNAs regulatory network.

Half maximal inhibitory concentration (IC50) value of 198 drugs

which were obtained from GDSC was calculated by oncoPredict

package (version 0.2) (40). Difference of IC50 value of 198 drugs of

different risk groups was compared (p < 0.05). Expression of top 6

drugs with p value of Wilcoxon test was displayed by boxplot. To

further explore correlation of risk score and IC50 value, spearman

correlation analysis was performed (p < 0.001).

Furthermore, potential drugs of MM were predicted by CTD

relied on prognosis genes (Reference Count ≥ 2). Drug-prognosis

genes network was visualized by cytoscape. Protein structures of

prognosis genes were obtained from PDB, and SDF format files of

therapeutic drugs were sourced from the PubChem database.

Preparation and preprocessing of drug and gene protein structures

were performed using AutoDock tool (version 1.1.2) (41).
2.11 Expression validation of
prognosis genes

The expression trends of prognosis genes in the MM and

control groups in the GSE47552 and GSE6477 datasets were

analyzed by wilcoxon test. Next, the expression of prognosis

genes in different subtypes was compared by kruskal test.
2.12 RNA extraction and quantitative
real-time PCR

For quantification of gene expression profiles, we performed

qRT-PCR on mononuclear cells from samples of multiple myeloma

patients bone marrow before treatment (MM, = 36) and healthy

controls (=24) from the Second Affiliated Hospital of Xi’an Jiaotong

University. Sample total RNA was extracted using TRIzol reagent

(Thermo Fisher Scientific, USA), cDNA synthesis was accomplished

with PrimeScript ™ RT Master Mix (Takara Bio, USA), and then

amplification reactions were carried out in a real-time PCR system

using TB Green® Premix Ex Taq (Takara Bio, USA). Each sample

was evaluated three times to ensure accuracy. GAPDH was used as a

housekeeping gene for normalization, and CT values were recorded

for relevant and reference genes in each sample. Relative expression

levels of target genes were calculated using the 2^-DDCT method. The

Wilcoxon rank sum test was used to compare gene expression

between the MM and control groups. Detailed qRT-PCR primer

sequences are shown in Supplementary Table 2.
2.13 TISCH analysis

We used the TISCH repository (Tumor Immune Single-cell

Hub, available at http://tisch.comp-genomics.org/) to assess the
frontiersin.org

http://tisch.comp-genomics.org/
https://doi.org/10.3389/fimmu.2024.1448764
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2024.1448764
presence of potential tumour antigens in immune cells penetrating

the bone marrow. The GSE1151310 dataset in this repository is

divided into four main cell categories, visualizing the expression

patterns of specific genes in different types of immune cells.
2.14 Statistical analysis

R software (version 4.3.2) was used to process and analyze data.

All statistical tests were two-sided. The p value < 0.05 was

considered statistically significant. Differences in parameters

between high and low risk groups were tested using the

wilcox.test method.
3 Results

3.1 Identification and analysis of 30
candidate genes

Figure 1 illustrates the study’s flowchart (By Figdraw). A

comprehensive differential expression analysis identified a total of

2,192 DEGs, comprising 595 upregulated and 1,597 downregulated

DEGs, in MM samples compared to control samples (Figure 2A).

The heatmap of DEGs in MM and control groups is presented

in Supplementary Figure 1. Thirty candidate genes were obtained

by intersecting the 2,192 DEGs with 1,136 MRGs and 1,548

PCDRGs (Figure 2B). The heatmap showcased the high and

low expression patterns of these candidate genes across the

samples (Figure 2C).

GO and KEGG enrichment analyses revealed that the candidate

genes were significantly enriched (p < 0.05) in 574 GO terms and 33

KEGG pathways. In the GO analysis, the candidate genes were

enriched in intrinsic apoptotic signaling pathways, apoptotic

mitochondrial changes, regulation of mitochondrion organization

were enriched by candidate genes (Figure 2D). Regarding KEGG

pathways, the candidate genes were primarily enriched in lipoic acid

metabolism, apoptosis, central carbon metabolism in cancer, and

associated pathways (Figure 2E). These findings indicate a strong

correlation between the candidate genes and mitochondrial

function, programmed cell death, and cancer development.

Furthermore, MM samples were stratified into high and low

scoring groups based on the median value of the ssGSEA score

calculated from the candidate genes. Survival analysis demonstrated

that patients in the low scoring group exhibited poorer overall

survival compared to those in the high scoring group

(Supplementary Figure 2).
3.2 TRIAP1, TOMM7, PINK1, CHCHD10,
PPIF, BCL2L1 and NDUFA13 were identified
as prognosis genes

Following the identification of candidate genes, univariate Cox

regression analysis was performed to screen for survival-related

genes, resulting in the selection of 10 genes (Figure 3A). Nine out of
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these 10 survival-related genes (TRIAP1, TOMM7, PINK1,

CHCHD10, PPIF, BCL2L1, PDHA1, NDUFA13, and GCSH)

passed the proportional hazards (PH) assumption test (p > 0.05)

and were subsequently included in the analysis. Further, the LASSO

regression analysis identified all 9 genes as candidate prognostic

genes (Lambda min = 0.001) (Figures 3B, C).

Multivariate Cox regression and stepwise regression analyses

were then performed, revealing that TRIAP1, TOMM7, PINK1,

CHCHD10, PPIF, BCL2L1, and NDUFA13 were significant

prognostic genes. Results from the multivariate Cox regression

demonstrated that TOMM7, PINK1, CHCHD10, and BCL2L1

were protective factors, whereas TRIAP1, PPIF, and NDUFA13

were risk factors (Figure 3D). KM survival curves showed that

patients with high expression levels of TOMM7, PINK1, CHCHD10,

and BCL2L1 had poorer survival outcomes, while those with high

expression levels of TRIAP1, PPIF, and NDUFA13 exhibited better

survival (Figures 3E–K). Chromosome localization analysis revealed

that PINK1, TOMM7, PPIF, TRIAP1, NDUFA13, BCL2L1, and

CHCHD10 are located on chromosomes 1, 7, 10, 12, 19, 20, and

22, respectively (Figure 3L).

Based on the expression patterns of the prognostic genes,

consensus clustering was performed, which stratified the MM

samples into two subtypes (cluster 1: cluster 2 = 414: 349)

(Figures 3M, N). To evaluate the reliability of consensus clustering,

a KM survival curve was plotted, and survival difference analysis

demonstrated that samples in cluster 1 had a better overall survival

compared to those in cluster 2 (p < 0.0001) (Figure 3O).
3.3 A risk model was constructed to
predict the survival probability of
MM patients

A risk model was constructed based on the identified prognostic

genes, and the risk scoring formula was derived as follows: risk score

= (0.5887) × expression level of TRIAP1 + (-0.5210) × expression

level of TOMM7 + (-0.3938) × expression level of PINK1 +

(-0.1795) × expression level of CHCHD10 + (-0.2508) ×

expression level of PPIF + (-0.2562) × expression level of BCL2L1

+ (0.4431) × expression level of NDUFA13.

We validated this risk model across three distinct datasets by

evaluating patient survival stratified by their calculated risk scores.

KM curves demonstrated a distinct separation between high- and

low-risk groups within the MMRF training dataset, exhibiting

significant differences in overall survival (p < 0.0001) (Figure 4A).

This stratification was similarly observed in the validation datasets

GSE4581 (Figure 4B) and GSE24080 (Figure 4C), both exhibiting

statistically significant separations (p < 0.05). After stratifying

patients according to ascending risk scores, we generated risk

curve plots for each dataset (Figures 4D–F). These graphs

revealed a higher mortality rate in the high-risk group compared

to the low-risk group, indicating a lower mortality rate and

improved survival outcomes for patients classified as low-risk in

MM. The heatmap visualizing the differential expression of

prognostic genes across datasets (Figures 4G–I) demonstrated

downregulation of TOMM7, PINK1, CHCHD10, and BCL2L1 in
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the high-risk group across all datasets (MMRF in Figure 4G,

GSE4581 in Figure 4H, and GSE24080 in Figure 4I). Conversely,

TRIAP1, PPIF, and NDUFA13 were upregulated in the same group,

reinforcing their roles as potential risk factors.
Frontiers in Immunology 06
Time-dependent ROC curve analyses further substantiated the

robustness of our risk score across datasets. In the MMRF dataset,

the area under the ROC curve (AUC) at 1, 2, and 3 years was 0.690,

0.676, and 0.682, respectively (Figure 4J). For GSE4581, AUC values
FIGURE 1

Flowchart for studying mitochondrial function and programmed cell death patterns in multiple myeloma. From the GSE47552 dataset, DEGs between MM
and control samples were screened and intersected with MRGs and PCDRGs to obtain candidates (The pink part in the figure). GO and KEGG enrichment
analyses were performed on these candidates (The blue part in the figure). Prognostic genes were then identified through univariate and multivariate Cox
regression, with Kaplan-Meier curves plotted and cluster analyses conducted. A risk model was constructed based on the prognostic genes and validated in
two independent sets. Independent prognostic factors were screened, and a nomogram was built to evaluate predictive ability (The purple part in the figure).
Expression differences of the prognostic genes between MM and controls were validated (The green part in the figure). Finally, GSEA enrichment and
immune infiltration analyses were performed comparing high- and low-risk groups (The yellow part in the figure). This study elucidates molecular
mechanisms underlying MM development and potential therapeutic targets by examining 18 cell death forms and mitochondrial roles in MM.
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were 0.634, 0.640, and 0.657 (Figure 4K), while GSE24080 exhibited

AUCs of 0.5593, 0.621, and 0.619 at the same time points

(Figure 4L). Collectively, these results underscore the consistent

performance and reliability of our risk prediction model across

various datasets.

Moreover, correlation analysis of risk score and clinical

features showed ISS stage had significant difference between 2 risk

groups (p < 0.0001), and ISS-III had higher proportion in higher

risk group (Figure 5A). Besides, risk score was also significantly

differential in ISS stage. From ISS-I to ISS-III, corresponding risk

score was higher and higher in turn (Figure 5B). The Sankey

diagram effectively distinguished patients with ISS Stage II into high

and low risk groups. Notably, a considerable proportion of patients

with ISS Stage III fell into the high-risk category, while the majority of
Frontiers in Immunology 07
patients in the low-risk group survived (Figure 5C). In the clinical

subgroup analysis, significant differences in clinical features were

observed between the two risk groups, irrespective of the patient’s

gender, age (whether over 65 years or not), and ISS Stage (II or III)

(Figures 5D–I).
3.4 A nomogram was established to
predict the survival of MM

To evaluate the prognostic utility of the identified gene

signature in conjunction with cl inical parameters , a

comprehensive analysis was conducted. Initially, univariate Cox

regression analysis and assessment of proportional hazards (PH)
FIGURE 2

(A) Volcano plot of DEGs in the GSE47552 dataset. (B) A Venn diagram showing the intersection of DEGs, MRG and PCDRGs. (C) Candidate genes
expression heatmap. (D) GO Analysis for candidate genes: Categorized by Biological Process (BP), Cellular Component (CC) and Molecular Function
(MF). (E) Kyoto Encyclopedia of Genes and Genomes Pathways for candidate genes.
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assumption were performed to identify potential independent

prognostic factors. Subsequently, multivariate Cox regression

analysis confirmed the independent prognostic significance of the

risk score, age, gender, and International Staging System (ISS) stage
Frontiers in Immunology 08
for MM patients (Figures 6A, B). All these factors were identified as

independent risk factors for MM.

Based on the identified independent prognostic factors, a

nomogram was constructed to facilitate the prediction of overall
FIGURE 3

(A) Univariate Cox regression analysis of candidate genes. (B) Sample clustering consistency assessing the coherence of group assignments.
(C) LASSO regression selected the best predictive variables through 10-fold cross-validation. (D) Multivariate Cox demonstrated that 7 genes were
protection factors. (E–K) Prognostic genes KM curve: (E) TRIAP1; (F) TOMM7; (G) PINK1; (H) PPIF; (I) BCL2L1; (J) CHCHD10; (K) NDUFA13.
(L) Chromosomal localization of prognostic genes. (M–O) Consensus Clustering Analysis: (M) Cumulative distribution curve depicting the distribution
of values. (N) Cluster heatmap visualizing patterns across subgroups. (O) KM survival curves comparing survival outcomes among different
MM subgroups.
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survival rates in MM patients (Figure 6C). The calibration curve

demonstrated an excellent concordance between the predicted

and observed survival probabilities (Figure 6D), the predicted

lines closely aligned with the diagonal, indicating a good fit and our

model’s ability to make accurate predictions. The AUC values
Frontiers in Immunology 09
exceeded 0.7 across multiple time points, indicating satisfactory

discriminatory ability (Figures 6E–G). These results collectively

underscore the robust predictive performance of the nomogram.

Furthermore, DCA revealed a clinically significant net benefit

associated with the nomogram, surpassing the predictive utility of
FIGURE 4

(A–C) KM Survival Curves Highlighting Differences Between Risk Groups: (A) MMRF. (B) GSE4581. (C) GSE24080. (D–F) Risk factor plot for the high-
risk and low-risk groups: (D) MMRF. (E) GSE4581. (F) GSE24080. (G–I) Heatmap of prognostic gene expression levels in high and low-risk groups:
(G) MMRF. (H) GSE4581. (I) GSE24080. (J–L) Time-Dependent ROC Curves Assessing the Accuracy of Survival Predictions: (J) MMRF. (K) GSE4581.
(L) GSE24080.
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individual factors, including the ISS stage (Figures 6H–J). The ROC

and DCA analyses of the prediction model exhibited superior

performance compared to the ISS stage alone. These findings

highlight the potential clinical utility of the nomogram in guiding

therapeutic decisions and risk stratification for MM patients,

offering improved prognostic stratification compared to the

conventional ISS staging system.
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3.5 Analysis of mutations and
corresponding pathways

To investigate the primary genetic mutations among different risk

groups, we analyzed the somatic mutations in tumors from multiple

myeloma patients in the MMRF-COMMPASS dataset. We

constructed waterfall plots for the top 20 most frequently mutated
FIGURE 5

(A) The proportion of ISS staging clinical feature subgroups in high and low-risk groups. (B) Risk score differences among the clinical feature
subgroups of the ISS staging system. (C) Sankey diagram associated with different clinical feature subgroups. (D–I) KM curves for high and low-risk
groups within different clinical feature subgroups: (D) Female; (E) Male; (F) Age < 65; (G) Age >= 65; (H) ISS-II; (I) ISS-III. Statistical significance is
indicated as follows: ****p < 0.0001, ns = no statistical significance.
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genes in both the high-risk and low-risk groups. The plots revealed

that the top three genes with the highest mutation frequencies in the

low-risk group were IGHV2-70, IGLV3-1, and IGHV2-70D

(Figure 7A). In the high-risk group, the top three genes with the

highest mutation frequencies were IGHV2-70, IGLV3-1, and KRAS

(Figure 7B). To further explore the corresponding signaling pathways
Frontiers in Immunology 11
and biological mechanisms involved in the two risk groups, we

performed GSEA. The results showed that 28 pathways were

significantly enriched, and the top 5 up- and down-regulated

pathways are displayed in Figures 7C–F (|normalized enrichment

score (NES)| > 1, p < 0.05). The up-regulated pathways included cell

cycle, p53 signaling pathway, DNA replication, and others
FIGURE 6

(A) Univariate Cox regression analysis depicting the association between clinical parameters and the risk score. (B) Multivariate Cox regression
analysis elucidating the combined effects of clinical parameters and the risk score. (C) Nomogram presenting the scores assigned to each factor and
the aggregated prognostic indicator. (D) Calibration Curves for the Prognostic Model at Different Time. (E–G) ROC Curves for Overall Survival Over
Time Based on Various Factors and the Nomogram: (E) 1 Year; (F) 3 Years; (G) 5 Years. (H–J) Decision Curve Analysis for Different Factors and the
Nomogram at Various Time: (H) 1 Year; (I) 3 Years; (J) 5 Years.
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(Figures 7C, D), indicates increased cell proliferation, dysregulated cell

cycle control, and potential genomic instability in the high-risk

tumors. Conversely, ribosome, neuroactive ligand-receptor

interaction, and cell adhesion molecules (CAMs) were among the

main down-regulated pathways (Figures 7E, F). These distinct

molecular patterns may contribute to the aggressive clinical

behavior and poor prognosis observed in the high-risk group.
3.6 Different immune microenvironment
between different groups

We conducted a systematic and comprehensive analysis of the

immune cell infiltration in both the high-risk and low-risk groups of
Frontiers in Immunology 12
MM patients. Utilizing the ESTIMATE algorithm, we found that

patients in the low-risk group exhibited significantly higher

ESTIMATE scores and Stromal scores compared to patients in

the high-risk group (p < 0.01) (Figures 8A, B), indicating a more

prominent presence of stromal and immune cells in the low-risk

group. The infiltration levels of 28 immune cell types across the two

risk groups are shown in Figure 8C. A total of 9 immune cell types,

including effector memory CD8 T cells, gamma delta T cells,

macrophages, neutrophils, and others, displayed remarkable

differences between the two risk groups (Figure 8D). Additionally,

a total of 19 immune checkpoints exhibited significant differences

between the two risk groups. CD160, CD48, CD70, CTLA4,

TMIGD2, TNFRSF8, and TNFSF9 were upregulated, while the

remaining 12 immune checkpoints were downregulated in the
FIGURE 7

(A) Waterfall plot of the top 20 most frequently mutated genes in the low-risk group. (B) Waterfall plot of the top 20 most frequently mutated genes
in the high-risk group. (C–F) GSEA of DEGs between high and low-risk groups. (C, D) Upregulated. (E, F) Downregulated.
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high-risk group (Figure 8E). The risk score had a significantly

positive correlation with activated CD4 T cells and a negative

correlation with immune B cells (p < 0.05) (Figure 8F).

Furthermore, the risk score exhibited the highest positive

and negative correlations with CD70 and TNFRSF14, respectively

(p < 0.01) (Figure 8G).
Frontiers in Immunology 13
Additionally, five immune-related functions, including antigen-

presenting cell (APC) co-inhibition, checkpoint, major

histocompatibility complex (MHC) class I, T cell co-inhibition,

and type II interferon (IFN) responses, exhibited significant

differences between the two risk groups (Figure 9A). The risk

score had a significantly positive correlation with MHC class I
FIGURE 8

(A) ESTIMATE Score in high-and low-risk groups. (B) Stromal Score in high-and low-risk groups. (C) Stacked bar chart of immune cell infiltration
proportions. (D) Immune Cells between high-and low-risk groups, utilizing the ssGSEA algorithm. (E) Immune Checkpoint between high-and low-
risk groups. (F) Correlation between risk score and immune cells. (G) Correlation between risk score and immune checkpoints. Statistical significance
is indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns= no statistical significance.
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expression and a negative correlation with APC co-inhibition (p <

0.05) (Figure 9B). Results from the correlation analysis showed that

PINK1 had the highest positive correlation with activated B cells,

while TOMM7 had the highest negative correlation with type 2 T

helper cells (p < 0.001). Regarding immune-related functions,

BCL2L1 had the highest positive correlation with T cell co-

inhibition, and TRIAP1 had the highest negative correlation with

APC co-inhibition (p < 0.001) (Figure 9C).

To further investigate the possibility of tumor immune evasion,

we utilized the Tumor Immune Dysfunction and Exclusion (TIDE)

framework. The analysis revealed that the high-risk group had

significantly higher TIDE scores (Figure 9D), myeloid-derived

suppressor cell (MDSC) levels (Figure 9E), tumor-associated

macrophage (TAM) M2 levels (Figure 9F), and Exclusion scores

(Figure 9I) compared to the low-risk group (p < 0.05), indicating a

higher likelihood of tumor immune evasion and a more

immunosuppressive microenvironment in the high-risk group.

Conversely, the high-risk group showed significantly lower levels

of Merck18 scores (Figure 9G) and Dysfunction scores (Figure 9H)

compared to the low-risk group (p < 0.001).
3.7 Regulatory networks and potential
drugs of prognosis genes

Based on the identified prognostic genes, 273 and 99

microRNAs (miRNAs) were respectively obtained from the

starBase and miRTarBase databases. By taking the intersection of

these miRNAs, 29 key miRNAs and 30 relational pairs were

identified (Figure 10A). Next, 111 key long non-coding RNAs

(lncRNAs) and 338 relational pairs were obtained by overlapping

516 and 340 lncRNAs, which were respectively predicted by the

miRNet and starBase databases (Figure 10B). Finally, a lncRNA-

miRNA-mRNA regulatory network was constructed comprising 5

mRNAs, 29 miRNAs, and 111 lncRNAs (Figure 10C). SNHG12,

SNHG4, HEIH, and others are involved in the regulation of BCL2L1

via hsa-let-7c-5p. Similarly, MIR181A1HG, PAX8-AS1, TTN-AS1,

and others regulate TRIAP1 through hsa-miR-107. Drug sensitivity

analysis was performed to explore the differences between the two

risk groups. Among 198 drugs, 89 drug types exhibited significantly

different estimated IC50 values between the two risk groups.

Notably, Cisplatin, Docetaxel, Entinostat, Fludarabine, Lapatinib,

Nelarabine, Talazoparib, and Vorinostat showed better therapeutic

efficacy for high-risk MM patients (Figures 10D–K), these drugs

have already been studied in MM.

Finally, 57 drugs were predicted to interact with the prognostic

genes, and a drug-prognostic gene network was constructed

comprising 64 nodes and 85 relational pairs. Notably, Bisphenol

A was simultaneously predicted to interact with six prognostic

genes (Figure 11A). Therefore, molecular docking simulations were

performed to investigate the binding interactions between

Bisphenol A and the prognostic genes. The binding free energy of

Bisphenol A with PINK1 and NDUFA13 was less than -5 kcal/mol

(Table 1), indicating favorable binding interactions. The hydrogen

bonding sites between PINK1 and Bisphenol A were identified at
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LYS553 (Figures 11B, C), while the hydrogen bonding site between

NDUFA13 and Bisphenol A was GLU108 (Figures 11D, E).
3.8 Prognosis genes had different
expression in MM and control groups

The expression levels of the identified prognostic genes were

analyzed by intergroup wilcoxon rank sum test in the GSE47552

(Figure 12A) and GSE6477 (Figure 12B) datasets. Among the six

prognostic genes, the expression trends of TRIAP1, TOMM7,

PINK1, BCL2L1, and NDUFA13 in the validation set were

consistent and significantly different from those in the training

set, and the expression trend of PPIF gene in the validation set was

not significant, but the expression trend was also consistent with the

training set. Subsequently, we verified the expression trends of the

seven prognostic genes in different subtypes. The results showed

that six prognostic genes were all significantly different between

different fractions in the training and validation sets

(Figures 12C, D).

To further investigate the expression patterns of the prognostic

genes, the single cell GSE151310 dataset, which comprehensively

covers various cell types, was utilized. Four cell populations

(CD4Tconv, Tprolif, CD8T, and CD8Tex) were annotated

(Supplementary Figures 3A, B). The distribution of the prognostic

genes across different cell clusters is shown in Supplementary

Figures 3C–I. Notably, the expression levels of TRIAP1,

CHCHD10, TOMM7, and NDUFA13 were significantly elevated

in MM samples, while PINK1 and BCL2L1 exhibited conspicuously

reduced expression levels in MM.

To validate these findings in a clinical setting, samples were

collected from both MM patient’s bone marrow and healthy donors

(HD), and quantitative real-time polymerase chain reaction (qRT-

PCR) was performed. Our observations indicated that the mRNA

expression levels of TRIAP1, TOMM7, CHCHD10, PPIF, and

NDUFA13 were significantly elevated in MM patients compared

to healthy donors (Figures 12E, F, H, I, K). Conversely, the mRNA

expression of PINK1 and BCL2L1 were downregulated in MM

patients (Figures 12G, J). Although the mRNA expression of

TOMM7 and CHCHD10 in MM were not statistically significant,

potentially due to a limited sample size, the overall trend was

consistent with the bioinformatics analyses.
4 Discussion

MM is a malignant hematological malignancy characterized by

uncontrolled plasma cell proliferation, lacking a definitive cure and

posing a severe threat to patients’ lives. Mitochondria play a pivotal

role in MM cell survival, proliferation, and drug resistance (42–46).

PCD, encompassing apoptosis, necrosis, and autophagy, is crucial

for maintaining homeostasis and is dysregulated in MM

progression (47, 48). Mitochondrial dysfunction can induce

cellular stress and initiate PCD pathways (49). To elucidate the

pathogenesis of MM, this study delved into the roles of
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mitochondria and programmed cell death-related genes in multiple

myeloma, identifying seven key prognostic genes correlated with

patient outcomes, lower immune cell infiltration and altered

immune function in the high-risk group, potential immune

checkpoints and therapeutic drugs, regulatory miRNAs and

lncRNAs, and validated the prognostic utility of the identified

genes in clinical samples, providing novel insights into MM
Frontiers in Immunology 15
pathogenesis and evidence for prognostic assessment and

treatment strategies.

We identified the DEGs in MM that overlapped with MRGs and

PCDRGs. Prognostic analysis revealed seven key genes: TRIAP1,

TOMM7, PINK1, CHCHD10, PPIF, BCL2L1, NDUFA13, and their

chromosomal locations were determined. TRIAP1, a small anti-

apoptotic protein, is vital for mitochondrial protection. It interacts
FIGURE 9

(A) Immune-related functions high-and low-risk groups, utilizing the ssGSEA algorithm. (B) Correlation between risk score and immune-related
functions. (C) Heatmap of the correlation between prognostic genes and differential immune cells as well as immune-related functions. (D) TIDE
Score. (E) MDSC Score. (F) TAM M2 Score. (G) Merck18 Score. (H) Dysfunction Score. (I) Exclusion Score. Statistical significance is indicated as
follows: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns= no statistical significance.
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with TP53 (50), a known regulator of apoptosis, implying that

TRIAP1 is involved in the regulation of cell death. In MM cells,

TRIAP1may influence cell survival and proliferation by modulating

related signaling pathways. The PINK1 gene encodes a

mitochondrial serine/threonine protein kinase, and previous

studies in MM cells have shown that PINK1-dependent

mitophagy plays a key role in regulating myeloma migration,
Frontiers in Immunology 16
homing, and tumorigenesis (51, 52). The protein encoded by the

TOMM7 gene is an integral component of the mitochondrial outer

membrane transporter complex, essential for mitochondrial protein

transport and assembly. While the specific role of TOMM7 in MM

remains elusive, mitochondrial protein transport is necessary to

maintain mitochondrial function, thereby affecting energy

metabolism and survival of MM cells. CHCHD10, located on the
FIGURE 10

(A) miRNA Venn diagram. (B) lncRNA Venn diagram. (C) ceRNA network: Red triangles represent mRNAs, green circles represent miRNAs, and blue
rectangles represent lncRNAs. (D–K) Estimated IC50 values comparing the drug sensitivity of high-and low-risk groups.
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mitochondrial inner membrane, plays a pivotal role in

mitochondrial function maintenance, including mitochondrial

DNA stability and respiratory chain complex assembly. In MM,

an abnormal elevation of CHCHD10 may prevent mitochondrial

destruction inMM cells and promote disease onset and progression.

PPIF is a peptidyl-prolyl cis-trans isomerase located on the

mitochondrial inner membrane that influences apoptotic

signaling transmission. The BCL2L1 gene belongs to the bcl-2

protein family, and its encoded protein, located on the

mitochondrial outer membrane and regulates apoptosis. In MM,

abnormally low expression of BCL2L1 may lead to apoptosis

resistance and disease progression (23, 53). The NDUFA13 gene
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encodes a subunit of mitochondrial complex I, which is crucial for

mitochondrial energy metabolism. NDUFA13 may affect energy

metabolism in tumor cells, particularly adapting to mitochondrial

dysfunction and oxidative stress (54). Additionally, our research

also found significant differences in 7 prognosis genes in MM, and

how they affect prognosis.

The risk score model based on seven mitochondrial and PCD-

related genes exhibited stable prognostic stratification across three

independent datasets. KM analysis revealed significant survival

differences across clinical subgroups. While initial AUC values

around 0.6 indicated potential for improvement, the model’s

performance could be enhanced through incorporating additional
FIGURE 11

(A) Network diagram of prognostic gene-targeted compounds. (B–E) Molecular docking binding site diagrams: (B, C) PINK1 protein with Bisphenol
A; (D, E) NDUFA13 protein with Bisphenol A.
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relevant features, optimizing hyperparameters, increasing sample

size and diversity, controlling for confounders, and integrating

ensemble learning methods. Notably, higher risk scores associated

with advanced ISS stages, highlighting broad clinical applicability.

Multivariate analysis confirmed the risk score as an independent

prognostic factor. Notably, the nomogram achieved AUC values

exceeding 0.7 at 1, 2, and 3 years, outperforming ISS staging in

predicting patient prognosis. Functional enrichment analysis

indicated higher activity in key biological processes like cell cycle,

p53 signaling, and DNA replication in the high-risk group

compared to the low-risk group. Previous study showed that, cell

cycle (55, 56), p53 signaling pathway (57), and DNA replication

(58) may play a crucial role in promoting the development of MM.

As a therapeutic strategy for multiple myeloma, the nongenotoxic

activation of the p53 pathway had potential application value (59).

Therefore, the enriched pathways identified in the high-risk group

may hold significant importance in MM pathogenesis and

therapeutic targeting.

The role of the immune microenvironment in cancer is

becoming increasingly important; therefore, this study explored

the differences in immune cells and immune functions between

multiple MM and the control group. We also conducted

correlational analyses to identify cells significantly associated with

prognostic genes and risk scores. Previous research showed

immunosuppression in MM patients, manifested by increased

CD8+ T cell exhaustion marker levels, hindering immunotherapy

efficacy (60). gd T cells exhibit potential antitumor effects in MM,

and bisphosphonates that stimulate them may contribute to

reduced plasma cell survival (61). Study showed that there was a

bidirectional interaction between macrophages and MM tumor

cells (62). Targeting bone marrow resident macrophages as a

potential new therapeutic strategy for identified and recurrent

multiple myeloma (63). Our study revealed significant differences

in immune cell composition between high- and low-risk

groups, with reduced infiltration of activated B cells, effector

memory CD8+ T cells, gd T cells, and macrophages in the high-

risk group, consistent with previous findings and associated

with poor prognosis. Significant differences were observed in

immune functions like APC co-inhibition and checkpoints.

Genetic interactions correlated with prognostic genes, and TIDE

and ESTIMATE analyses suggested higher tumor immune
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evasion probability in the high-risk group, providing a

rationale for immunotherapy. Notably, expression differences

in immune checkpoint genes like CD48 (64), CD70 (65),

and CTLA4 (66) offer potential intervention targets for

future immunotherapy.

When exploring the regulatory mechanisms of MM, we also

conducted an in-depth analysis of miRNAs and lncRNAs. The results

indicated that several molecules, including hsa-miR-107, may play

crucial roles in regulating the fate of MM cells (67, 68), although their

specific functions require further investigation. Additionally, based

on the characteristics of prognostic genes, we predicted potential

therapeutic drugs for MM, some of these drugs have already been

studied in MM. Cisplatin is used with other drugs, not alone, for MM

treatment (69). In multiple myeloma with renal dysfunction, low-

dose fludarabine/cyclophosphamide enabled successful idecabtagene

vicleucel CAR T-cell therapy and complete remission (70).

Preclinically, PARP inhibitors like olaparib and talazoparib

synergized with melphalan against MM (71). FDA-approved

histone deacetylase inhibitors vorinostat, belinostat, and romidepsin

disrupt tumor growth processes, showing significant anti-MM

activity (72). Our study found Cisplatin (73, 74), Entinostat (75),

Fludarabine (76, 77), Talazoparib (71) and Vorinostat (78, 79) more

effective in high-risk MM, potentially targeting pathophysiology.

Cisplatin and docetaxel may inhibit tumor cell proliferation (80),

while entinostat enhances anti-MM activity when combined with

proteasome inhibitors (81). Fifty-seven drugs were predicted to

interact with the prognostic genes, and molecular docking

simulations revealed favorable binding of Bisphenol A with PINK1

and NDUFA13, mediated by specific hydrogen bonding sites. These

findings support future drug development. Last but not least, qPCR in

clinical samples from MM patients and healthy donors validated the

expression levels of the seven key prognostic genes, corroborating the

bioinformatic findings.

In summary, this study utilized public transcriptomic data and

provided novel insights into MM through systematic bioinformatic

analyses. We identified prognostic mitochondrial and programmed

cell death-related genes in MM and comprehensively explored the

tumor immune microenvironment and immunotherapeutic

potential. Future research should focus on functional studies to

elucidate the specific mechanisms and clinical applications of these

prognostic genes in MM.
TABLE 1 Hub molecule dock.

PDB Molecule Name PubChem CID Affinity(kcal/mol) Hydrogen bonds

8AG0

Bisphenol A 6623

-4.68 1

AF-Q9P0U1-F1 -3.99 1

AF-Q9BXM7-F1 -5.04 1

AF-Q8WYQ3-F1 -4.14 0

7TH6 -4.8 1

1R2D -4.52 1

AF-Q9P0J0-F1 -5.13 1
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5 Conclusion

This study conducted delved into the roles of mitochondria and

PCD-related genes in MM. We successfully identified seven key

prognostic genes whose expression patterns were closely correlated

with patient outcomes. Furthermore, our analysis indicated lower
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level of immune cell infiltration in the tumor microenvironment of

the high-risk patient group, along with variations in immune

function. Additionally, we uncovered several potential immune

checkpoints and therapeutic drugs, paving the way for future

treatment approaches. Through the analysis of miRNAs and

lncRNAs, we also revealed key molecules that may be involved in
FIGURE 12

(A, B) Expression level of prognostic genes: (A) GSE47552; (B) GSE6477. (C, D) Expression levels of prognostic genes at different stages of plasma cell
diseases: (C) GSE47552; (D) GSE6477. (E–K) The mRNA expression of TRIAP1 (E), TOMM7 (F), PINK1 (G), CHCHD10 (H), PPIF (I), BCL2L1 (J) and
NDUFA13 (K) by qRT-PCR in primary bone marrow mononuclear cells from MM and normal donors. Statistical significance is indicated as follows:
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns= no statistical significance.
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the regulation of MM. Importantly, we validated the prognostic

utility of the identified genes in clinical samples. Overall, this study

provides novel insights into the pathogenesis of MM and offers

valuable scientific evidence for prognostic assessment and

treatment strategies.
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