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Background: Ischaemic stroke is a leading cause of death and severe disability

worldwide. Given the importance of protein synthesis in the inflammatory

response and neuronal repair and regeneration after stroke, and that proteins

are acquired by ribosomal translation of mRNA, it has been theorised that

ribosome biogenesis may have an impact on promoting and facilitating

recovery after stroke. However, the relationship between stroke and ribosome

biogenesis has not been investigated.

Methods: In the present study, a ribosome biogenesis gene signature (RSG) was

developed using Cox and least absolute shrinkage and selection operator

(LASSO) analysis. We classified ischaemic stroke patients into high-risk and

low-risk groups using the obtained relevant genes, and further elucidated the

immune infiltration of the disease using ssGSEA, which clarified the close

relationship between ischaemic stroke and immune subgroups. The

concentration of related proteins in the serum of stroke patients was

determined by ELISA, and the patients were divided into groups to evaluate the

effect of the ribosome biogenesis gene on patients. Through bioinformatics

analysis, we identified potential IS-RSGs and explored future therapeutic targets,

thereby facilitating the development of more effective therapeutic strategies and

novel drugs against potential therapeutic targets in ischaemic stroke.

Results: We obtained a set of 12 ribosome biogenesis-related genes (EXOSC5,

MRPS11, MRPS7, RNASEL, RPF1, RPS28, C1QBP, GAR1, GRWD1, PELP1, UTP,

ERI3), which play a key role in assessing the prognostic risk of ischaemic

stroke. Importantly, risk grouping using ribosome biogenesis-related genes

was also closely associated with important signaling pathways in stroke. ELISA

detected the expression of C1QBP, RPS28 and RNASEL proteins in stroke

patients, and the proportion of neutrophils was significantly increased in the

high-risk group.
Abbreviations: GEO, Gene Expression Omnibus; RSG, Ribosome Biogenesis Gene; LASSO, least absolute

shrinkage and selection operator; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;

DEGs, differentially expressed genes; ELISA, enzyme-linked immunosorbent assay.
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Conclusions: The present study demonstrates the involvement of ribosomal

biogenesis genes in the pathogenesis of ischaemic stroke, providing novel

insights into the underlying pathogenic mechanisms and potential therapeutic

strategies for ischaemic stroke.
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Introduction

Stroke is a group of diseases with symptoms of ischemic and

hemorrhagic damage to the brain as the main clinical manifestation,

including ischemic stroke and hemorrhagic stroke (1). Among them,

ischemic stroke (IS) accounts for about 80% of all stroke cases,

occurring in middle-aged and elderly people, and is characterized by

high mortality and disability rates. Its treatment and management have

been viewed as a serious medical and public health challenge (2).

Ischemic stroke is primarily caused by a sudden disruption of

blood flow due to thrombosis or embolism. The IS pathological process

involves a complex temporal and spatial cascade of responses and is the

result of multiple cellular pathways. Ischemia caused by stroke restricts

blood flow to specific regions of the brain, inducing a series of

pathological reactions that culminate in the infiltration of immune

cells (3, 4). Furthermore, the immune microenvironment and

inflammatory response play a crucial role in the development of IS

and are closely linked to the severity and prognosis of the condition (5).

Thus, the discovery of new therapeutic targets for IS can be facilitated

by gaining a deeper understanding of stroke pathogenesis and immune

microenvironment changes, which may offer fresh prospects and

avenues for exploration. In general, the standard pathological change

after the onset of IS is the disruption of the blood-brain barrier, leading

to the gathering of various infiltrating immune cells, such as T cells, B

cells, neutrophils, dendritic cells, and macrophages, in the edema area

(6). These immune cells play a dual role (7). Also, immune cells release

a significant number of inflammatory cytokines, which can promote

secondary neuroinflammation. Many immune cells remove necrotic

cell debris, reduce the inflammatory response and play a protective role

in repairing the blood-brain barrier and promoting angiogenesis (8).

Immunomodulation after stroke has therefore become an important

area of research and therapy, aiming to reduce damage and promote

recovery by controlling the intensity and nature of the

immune response.

Ribosome biogenesis, also known as RiboSis, is a highly intricate

process responsible for producing the ribosomes necessary for

protein synthesis during various cellular processes such as

proliferation, differentiation, apoptosis, development, and

transformation (9–12). In stroke, especially in ischaemic stroke,

changes in RiboSis may have an important impact on cell fate and

disease progression. Further, after cerebral ischaemia, cells undergo
02
metabolic reprogramming to adapt to changes in energy demand

(13). This metabolic adjustment affects multiple steps in ribosome

biogenesis. Ribosomes are a common component of autophagy.

After a stroke, cells may break down existing ribosomes and initiate

autophagy mechanisms to recycle damaged cellular components

and gain energy (14, 15). Ribosomes are not only the site of

conventional protein synthesis, but are also involved in the

synthesis of certain neuroprotective proteins such as growth

factors and antioxidant proteins. For example, certain

neuroprotective strategies may enhance neuronal resistance to

ischaemic injury or accelerate its recovery by promoting the

expression of specific ribosomal proteins or modulating certain

steps in ribosome biogenesis. Further, as mentioned earlier, the

inflammatory response to stroke involves the synthesis of a large

number of immune-related proteins, and their production is

directly dependent on ribosome function. Precision medicine has

become the main development trend in the clinical treatment of

many chronic diseases, especially the accurate classification and

hierarchical management of patients. Given the significance of

Ribosis in the cellular response to stroke, to construct a

classification model of Ribosis in the cellular response to stroke,

and to study its regulatory mechanism may find new therapeutic

methods. Previous studies have reported that ribosomal biogenesis

plays a central role in cancer (16, 17). Ribosome biogenetic risk

scores have been reported in cancer (18). To date, few classification

models constructed with ribosome biogenesis-related genes have

been applied to stroke research.

As a member of the predictive modelling and data analysis

toolbox:lasso regression, this technique is appreciated for its

accuracy and versatility in various fields, and is also widely used

in medicine (19). As part of linear regression, Lasso regression

addresses the infamous “curse of dimensionality”, where the

number of predictors exceeds the observed value (20, 21). It

contains penalties for large coefficients to simplify the model and

keep it comprehensibility (21). It has been used to construct

classification models in diseases such as cervical cancer and breast

cancer (22–24). Our study can be briefly described by Figure 1, in

which we constructed a high-risk group model with genes related to

ribosomal biogenesis and assessed the immune infiltration of IS

patients by the CIBERSORT method. We also analysed the

characteristics of observed immune cell subtype specificity by
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scRNA sequencing. In conclusion, we used ribosome biogenesis-

related genes to classify and observe immune cell infiltration in

stroke patients. The proposed strategy may provide further ideas for

future clinical studies on prevention and treatment of high and low

risk groups. It is expected to provide a unique perspective for

exploring new ways of stroke prevention or treatment.
Materials and methods

Datasets and quality control

The RNA-seq gene expression files was obtained from Gene

Expression Omnibus (GEO) database, which can be accessed at

(GEO, https://www.ncbi.nlm.nih.gov/geo/) GSE58294 (25)

(containing 20 Control and 69 Stroke samples), GSE22255 (26)

(containing 20 Control and 20 Stroke samples) GSE16561 (27)

(containing 24 Control and 39 Stroke samples).
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All statistical analyses and graphical representations in this study

were conducted using the R 4.2.2 software. During the data

preprocessing stage, probes without corresponding genes were

removed, and the average was taken when multiple probes

corresponded to one gene. Standardization of the data was

performed, followed by merging the two series. The limma package

in R was utilized to standardize the data and eliminate the batch effect.

It is important to note that this research adhered to the data access rules

and release principles of the database in question.
Ribosome biogenetic genes related
gene collection

We obtained the seven ribosome biological genetic related

pathways from the GO database (https://www.geneontology.org/)

(RIBOSOME BIOGENESIS, RRNA TRANSCRIPTION, obsolete

cleavage involved in rRNA processing, RRNA MODIFICATION,
FIGURE 1

Research flowchart.
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RIBOSOME ASSEMBLY,RIBOSOMAL SMALL SUBUNIT

EXPORT FROM NUCLEUS, RIBOSOMAL LARGE SUBUNIT

EXPORT FROM NUCLEUS). 337 ribosome biogenetic genes

were eventually sorted out after removing duplicate genes.
Identification of IS-RSGs in stroke

The DESeq2 package was utilized to identify differentially

expressed genes (DEGs) between control samples and stroke

samples based on the following criteria: log2(Fold-Change) > 0.232

and adjusted p-value < 0.001. Heatmaps and volcano plots of the

differential analysis results were generated using the pheatmap and

ggplot2 packages, respectively. The analysis involved the examination

of the intersection of differentially expressed genes and RSGs.

Subsequently, ssGSEA scores were conducted using GSVA

packaging, and patients were classified into high and low score

groups based on the median score.
Estimation of immune cells

The CIBERSORT algorithm (Stanford University’s <https://

cibersortx.stanford.edu/>) was employed to determine the

proportion of 22 immune cell types in GC samples, using the

relative mode and 1000 permutations. Specifically, we utilized

CIBERSORT R script v1.04 for the immune infiltration analysis

of the samples. The comparison between the composition of

immune cells in the high-score and low-score ischemic stroke

groups was made. Additionally, the comparison between the

immune cells from ischemic stroke patients in the high-risk and

low-risk groups was also carried out. The box diagram shows the

results obtained through the ggplot2 package in R.
Gene ontology and Kyoto encyclopedia of
genes and genomes analysis

Functional enrichment analysis, including biological processes

(BP), cellular compositions (CC), and molecular functions (MF),

was conducted for IS-RSGs characteristics using the clusterProfiler

package in R. We utilized this package to examine the functional

enrichment of the clusterProfiler in KEGG pathways.
Machine learning to identify
RSG biomarkers

Looking at the intersection of differential genes and RSGs. The best

prognostic model was obtained by utilizing the lasso Cox technique in

the glmnet package with a ten-fold cross-validation set. The prognostic

risk model was determined by multiplying all risk factors and factor-

related coefficients. The patient cohort was then divided into high-risk

and low-risk groups based on the optimal cut-off value calculated by

the maxstat package. coef is in Supplementary Table 1.
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G = Gene expression, N = 11
Single-cell data download and analysis

GSE225948 and conduct the analysis using the Seurat (28).

Principal component analysis (PCA) with 10 principal components

(PCs) selected and visualized through Uniform Manifold

Approximation and Projection (UMAP). The expression of IS-

RSGs gene in different clusters was analysed by cluster

dimensionality reduction, and different subsets of cells were

labelled by their unique marker genes.
RNASEL,RPS28 and C1QBP1 protein
expression by ELISA

100 mL of serum was added into the micropores pre-coated with

the trapped antibodies (RNASEL,RPS28 and C1QBP1), covered

with the sealing plate membrane and incubated for 1 hour at 37°C.

The serum was then discarded, biotinylated antibody was added to

100 mL per well, and the sealing plate was covered at 37°C for 1

hour. After the liquid is discarded, add 300 mL 1X washing solution

to each well and let it stand for 1 minute. Then shake off the

washing solution and pat dry on absorbent paper. Repeat this for 3

times. Add 100 mL enzyme conjugate working liquid, cover the

sealing plate and incubate for 30 minutes at 37°C After discarding

the liquid, the plate was washed for 5 times, and 90 mL substrate was
added to the plate for 15 minutes at 37°C away from light. After

taking out the specimen plate, 50 mL was added to each well, and the
OD value was measured at 450nm wavelength immediately on the

Thermo Fischer Multiscan Go Reader. The concentrations of

RNASEL,RPS28 and C1QBP1 in the sample were determined by

the standard curve of recombinant protein production.
Statistical analysis and visualization of
results: R packages and
significance assessment

This study carried out statistical analyses and generated visual

plots using R (version 4.2.2), with the help of the ggplot2 package

for visualization purposes. (version 3.3.6). Additionally, Seurat

analysis was utilized with the Seurat package (version 5.0.1), while

UMAP (Uniform Manifold Approximation and Projection)

analysis utilized the umap package (version 0.2.7.0). PCA

(Principal Component Analysis) analysis was conducted using the

R package stats (version 3.6.0). The Wilcoxon rank sum test was

used to evaluate discrepancies between groups, with a statistical

significance level set at p < 0.05. Patients’ baseline data were

analysed using Fisher’s exact test. The p-values associated with

this test were *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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FIGURE 2

Visualization of deg and DEGS & RSGS in data sets and immune cell infiltration in IS high-score and IS low-score groups (A) Volcano plot of DEGs in
GSE58294 and GSE16561. (B) Venn diagram of common genes between DEGs and ribosome biogenesis genes. (C) Heatmap for DEGs&RSGs in
Stroke dataset. Red represents high gene expression and blue represents low expression. (D) The relative content of 22 kinds of immune cells high
score stroke patient group and low score stroke patient group were showed in the histograms. (E) The BarPlot illustrated the difference in immune
cell infiltration between high score stroke patient group and low score stroke patient group. ns(no significance) p≥0.05; * p< 0.05; ** p< 0.01;
**** p< 0.0001.
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Results

Biogenetic identification of differences in
ribosome expression between Ischemic
stroke and normal subjects and
assessment of subgroup of immune
cell infiltration

Ribosome biogenesis is the process by which ribosomes are

produced and plays an important role in cell proliferation,

differentiation, apoptosis, development and transformation.
Frontiers in Immunology 06
Therefore, it is urgent to know which ribosome biogenesis genes are

differentially expressed between Ischemic stroke and normal samples.

We obtained 89 Ischemic stroke samples and 40 normal controls after

normalizing the data derived from 2 published Ischemic strokes. We

performed differential gene counting on the expression profiles and

obtained 2,554 differential genes, including 1,078 up-regulated genes

and 1,476 down-regulated genes. DEGs results are presented in the

form of volcano plots (Figure 2A). By intersecting 2554 DEGs with 337

ribosomal biogenesis genes obtained in GO, 53 key genes were finally

identified (Figure 2B).We found in the heat map (Figure 2C) that most

of these genes were highly expressed in normal tissues. We utilized the
FIGURE 3

Construction of ribosome biogenic risk signal and infiltration of immune cells in high-risk groups and low-risk groups. (A, B) The process of Lasso
regression analysis. (C) Venn diagram of common genes between DEGs&RSGs and hub genes. (D) Heatmap for hub genes in Stroke dataset. (E) The
relative content of 22 kinds of immune cells high risk stroke patient group and low risk stroke patient group were showed in the histograms. (F) The
BarPlot illustrated the difference in immune cell infiltration between high risk stroke patient group and low risk stroke patient group. ns(no
significance) p≥0.05; * p< 0.05; ** p< 0.01; *** p< 0.001.
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ssgsea algorithm for immune infiltration analysis to explore differences

in immune system between low- and high-score subgroups, revealing

disparities in the proportions of 22 infiltrating immune cell types.

(Figure 2D). The differences in immune cell content between Ischemic

stroke and healthy individuals were further explored (Figure 2E). The

proportion of neutrophils was found to be significantly higher in the

low group than in the high group, whereas the proportion of

Eosinophils, CD8+T cells, NK cells activated, Mast cells activated and

Macrophages M0 were higher in the high-score group.
Frontiers in Immunology 07
Identification of RSG signalling constructs
and immune cell infiltration in high- and
low-risk populations by machine learning

To replace our scoring model with fewer genes, we used LASSO

Cox regression to build a ribosome biogenesis genes-related feature

(RSG) named ribosome biogenesis genes score (Figures 3A, B). We

ultimately selected 12 genes to calculate the score for each individual

(Figure 3D) and observed the expression of these 12 genes in the
FIGURE 4

Differential expression analysis and functional enrichment analysis between RiskTypes. (A) Volcano plot of differentially expressed genes between
high- and low-risk groups; the red dots represent upregulated genes in the high-risk group. (B) Volcano plot of differentially expressed genes
between high- and low-score groups; the red dots represent upregulated genes in the high-risk group. (C) Scatter plot of 9-quadrant associate
analyses of DEGs from log2 FC Scoretypes and RiskTypes. (D) GO functional enrichment analysis of up DEGs. (E) KEGG pathway analysis of up DEGs.
(F) GO functional enrichment analysis of down DEGs. (G) KEGG pathway analysis of down DEGs.
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Ischemic stroke samples (Figure 3D). Subsequently, we calculated IS-

RSGs scores for each individual, allowing us to categorize all individuals

into high or low risk categories based onmedian IS-RSGs scores. Ssgsea

algorithm is applied to examine immune infiltration, and our findings

revealed that the percentage of 22 distinct immune cell types varied

between high-risk and low-risk groups (Figure 3E). The individuals in

the high-risk group exhibited a significantly higher ratio of neutrophils

to T-cell CD4 memory cells compared to those in the low-risk group.

Conversely, the low-risk group showed a higher proportion of activated

CD8+T cells, NK cells, andMast cells (Figure 3F). At the same time, we

downloaded GSE16561 for grouping and divided them into two sub-

groups using our scoring method.We also used the ssgsea algorithm to

analyse the proportion difference of 22 infiltrating immune cell types

(Supplementary Figure 1A). To further investigate the difference of

immune cell content between ischemic stroke and healthy individuals

(Supplementary Figure 1B). It was also found that the proportion of

neutrophils in the low-risk group was significantly higher than that in

the high-risk group.
Differential expression analysis and
functional enrichment analysis between
risk types

To further understand the differences between these two

subgroups, our analysis involved conducting a differential

expression study, which resulted in the identification of 465 DEGs,

comprising 260 up-regulated and 205 down-regulated genes. The

distribution of these genes is depicted in the volcano plot (Figure 4A).

Compared with the differential genes obtained from the previous high

and low DEG groupings (Figure 4B) had a significant correlation

coefficient of -0.83 (Figure 4C). The next step was to analyse the

DEGs for their GO functional annotation and KEGG pathway

enrichment. The GO analysis (BP) revealed gene enrichment in

regulation of DNA binding, regulation of transcription regulatory

region DNA binding, positive regulation of nitric oxide biosynthetic

process, positive regulation of nitric oxide metabolic process, negative

regulation of transcription regulatory region DNA binding (CC)

shows gene clustering in nuclear chromosome,RPAP3/R2TP/

prefoldin-like complex, integral component of nuclear inner

membrane, intrinsic component of nuclear inner membrane, DNA

polymerase complex (MF) shows excitatory extracellular ligand-gated

ion channel activity, clathrin adaptor activity, cargo adaptor activity,

cyclosporin A binding protein-hormone receptor activity

(Figure 4D). KEGG enrichment analysis showed that these genes

were found to be predominantly enriched in genes such as IL-17

signalling pathway, NOD-like receptor signalling pathway, TNF

signalling pathway, Fluid shear stress and atherosclerosis, NF-

kappa B signalling pathway, Toll-like receptor signalling pathway,

Th17 cell differentiation, Lipid and atherosclerosis, Nucleotide

excision repair, Calcium signalling pathway (Figure 4E). GO

analysis of down-regulated genes revealed that the functions of

chromosome segregation, sister chromatid segregation, regulation

of chromosome organization, negative regulation of chromosome

organization, negative regulation of chromosome organization,

and nuclear chromosome segregation were annotated. KEGG
Frontiers in Immunology 08
enrichment analysis showed that these down-regulated genes were

mainly enriched for Fluid shear stress and atherosclerosis,

Hematopoietic cell lineage, Lipoic acid metabolism, Mineral

absorption, Platinum drug resistance, Proteoglycans in cancer and

ECM-receptor interaction (Figure 4G).
The expression specificity analysis of hub
genes in single cells

The analysis of scRNA-seq data included 4 Ischemic stroke

samples and 7 sham surgery samples. Following quality filtering, a

total of 51,509 cells were screened. Subsequently, the top 10

principal components were selected through principal component

analysis. The neighbourhoods between cells were then calculated at

a resolution of 0.7, followed by downscaling and projection using

UMAP. UMAP downscaling showed that these cells were

categorized into 17 clusters (Supplementary Figure 2A) These 17

cell clusters expressed markers for 8 known cell types as shown

(Supplementary Figure 2B). These 17 cell clusters were further

divided into 8 known cell lineages (Supplementary Figure 2C),

Distribution and cell proportion of 8 known cell types in sham

operation and Ischemic stroke (Figure 5A). Marker expression of

these 8 cell types (Figure 5B) and their proportion in Sham and

Ischemic stroke (Figure 5C). We observed the IS-RSGs gene set

score in all cells, Neutrophils in both the sham and ischemic stroke

groups had lower scores (Figures 5D, E).
Expression specificity analysis of hub genes
in neutrophil cells

In earlier times, we discovered disparities in neutrophils among

the high-risk group. We subsequently isolated a total of 17,181 cells

from the neutrophils subgroup and selected the top ten principal

components following principal component analysis. The

neighbourhood relationships between cells were calculated at a

resolution of 0.3, followed by downscaling and projection using

UMAP. The UMAP downscaling revealed that these cells were

grouped into 6 clusters (Figure 6A). In Figures 6B, C, we found an

increase in neutrophils in cluster 0, cluster 1, cluster 5 in the

ischemic stroke group compared to the sham operation group.

The IS-RSGs score of Cluster1 in neutrophils was lower than that of

cluster0 and Cluster5 (Figure 6D, Supplementary Figure 2D).
Expression specificity analysis of hub genes
in CD4+T cells and CD8+T cells

In the previous analysis, we found that there were also significant

differences in several T cell ratios (Figure 3F), here we analysed the

6928 cells of the T cell subgroup of Figure 5A by principal component

analysis and selected the top 10 principal components.

Neighbourhood relationships between cells were then calculated at

a resolution of 0.3, followed by downscaling and projection using

UMAP. UMAP downscaling showed that these cells were classified
frontiersin.org
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into 9 clusters (Supplementary Figure 3A). Combined with the

expression of Cd4, Cd8a, Ccr7, S100a4 (Supplementary Figure 3B),

we divided the T cell subgroups into two main subgroups CD4+T

(Cluster0, Cluster2, Cluster6, Cluster7, Cluster8), CD8+T (Cluster1,

Cluster3, Cluster4, Cluster5). Finally, 3735 CD4+ T cells were

obtained, and after principal component analysis, the top 10

principal components were selected. Then the neighbour

relationship between the cells was calculated at a resolution of 0.4,

and then UMAP was used for downscaling and projection. UMAP

downscaling showed that these cells were divided into 8 clusters

(Figure 7A). Also, we observed whether these cells were from sham or

from Ischemic stroke (Figure 7B). We previously found that the
Frontiers in Immunology 09
proportion of T cells CD4 memory resting cells increased, and we

combined with the Cd44 fractionation (Figure 7C) to find that

Cluster1 was T cells CD4 memory resting, and we found that

subgroup 5 of T cells CD4 memory resting was significantly higher

in the Ischemic stroke than in the sham-operated group, based on the

distribution of cell proportions (Figure 7E). T cells CD4 memory

resting in cluster 5 was significantly higher in the Ischemic stroke

than in the sham-operated group (Supplementary Figures 3C, D).

Similarly, we observed the IS-RSGs gene set score in CD4+T cells, and

the expression of subgroup 5 was lower in T cells CD4 memory

resting (Figure 7D). CD8+T consisted of 3193 cells. After principal

component analysis, the top 10 principal components were selected.
FIGURE 5

The expression specificity analysis of hub genes in single cells. (A) Cell Type Reduction Map Display (UMAP). (B) Violin map of marer genes in
different cell types. (C) Stacked bar chart shows the proportion of different clusters within each group. (D) UMAP showed the expression of ribosome
biogenesis-related genes set in the all cells subset of Sham. (E) UMAP showed the expression of ribosome biogenesis-related genes set in the all
cells subset of Stroke.
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Neighbourhood relationships between cells were then calculated at a

resolution of 0.3, followed by downscaling and projection using

UMAP.UMAP downscaling showed that these cells were classified

into 7 clusters. (Figure 7F). Among them subclusters 1, 2, 3 were

increased in Ischemic stroke compared to the sham group (Figure 7I),

combined with Figures 7G, H the three subclusters increased

subclusters 1 and 3 were probably CD8(TRLs) cells, where the IS-

RSGs gene set score in the subclusters was not seen to be significantly

reduced (Supplementary Figure 3D).
Expression specificity analysis of hub genes
in microglia cells

Microglia showed different functional states at different stages

after stroke. We obtained 50,773 cells from single cells of mouse

brain tissue after filtration, and then selected the first 5 principal

components through principal component analysis, calculated the
Frontiers in Immunology 10
neighbourhood relationship between cells with a resolution of 0.8,

and then used UMAP for downscaling and projection. UMAP

reduction showed that these cells were divided into 20 clusters

(Supplementary Figure 4A), and we classified the subpopulations by

markers specific to each subpopulation, and eventually we divided

these 20 subpopulations into 9 cell types (Supplementary

Figures 4B, C). We further selected 22,241 microglia, selected the

first 5 principal components by principal component analysis,

calculated the neighbourhood relationships between the cells at a

resolution of 0.5, and then reduced and projected them using

UMAP. UMAP showed that the cells were divided into 9 clusters.

(Figure 8A) We found an increase in microglia in clusters 3, 4, 6,

and 7 in the ischemic stroke group compared to the sham surgery

group (Figures 8B, C). The IS-RSGs scores of Cluster3 and Cluster7

in microglia were significantly lower than those of Cluster4 and

Cluster6 (Figure 8D). We also found that the expressions of P2ry12,

Siglech and Tmem119 were lower in Cluster3 and Cluster7 than in

other clusters (Figures 8E–G).
FIGURE 6

The expression specificity analysis of hub genes in Neutrophil cells. (A) Dimensionality reduction map of Neutrophil cell subsets. (B) Group display of
Neutrophil cell subpopulation type Reduction map (UMAP). (C) Stacked bar chart shows the proportion of different clusters within each group.
(D)The boxplot shows the representation of RSGs Score in the three Clusters.
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Expression of serum RSG protein in
patients with ischemic stroke and
presentation of patient baseline data

We collected serum from 20 stroke patients, and serum ELISA

results showed RNASEL, RPS28andC1QBP1.Patients were divided

into high and low risk groups according to our scoring method. We

analysed the gender, age, hypertension, hyperglycemia, neutrophil

ratio, lymphocyte ratio, smoking history and drinking history of

these 20 patients. The results showed that neutrophil ratio and
Frontiers in Immunology 11
smoking history were different between the high and low risk

groups (Figure 9).
Screening of relevant small molecule drugs

We predicted the differentially expressed genes between RSGs

genes combined with RiskTypes via the CMAp (https://clue.io/

query) website. After analysing and screening for 2131 relevant

small molecule drugs (Figure 10A). We presented the small
FIGURE 7

The expression specificity analysis of hub genes in T cells. (A) Dimensionality reduction map of CD4 T cell subsets. (B) Group display of CD4 T cell
subpopulation type Reduction map (UMAP). (C) UMAP shows the annotation of Cd44 in Cd4 cells. (D) UMAP showed the expression of ribosome
biogenesis-related genes set in the CD4 T cells subset of patients. (E) Stacked bar chart shows the proportion of different groups within each cluster.
(F) Dimensionality reduction map of CD8 T cell subsets. (G) UMAP shows the annotation of Il2rb in CD8 T cells. (H) UMAP shows the annotation of
Cxcr3 in CD8 T cells. (I) Stacked bar chart shows the proportion of different clusters within each group.
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FIGURE 9

Expression of serum RSG protein in patients with ischemic stroke and presentation of patient baseline data.
FIGURE 8

The expression specificity analysis of hub genes in Microglia cells. (A) Dimensionality reduction map of Microglia cell subsets. (B) Group display of
Microglia cell subpopulation type Reduction map (UMAP). (C) Stacked bar chart shows the proportion of different clusters within each group. (D) The
boxplot shows the representation of RSGs Score in the four Clusters. (E) UMAP shows the annotation of P2ry12 in Microglia cells. (F) UMAP shows
the annotation of Siglech in Microglia cells. (G) UMAP shows the annotation of Tmem119 in Microglia cells.
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molecule drugs with the top 5 inhibition rankings and the top 5

promotion rankings (Figure 10B).
Discussion

Stroke is the second leading cause of death and a major cause of

disability worldwide (29). Rehabilitation for stroke can minimize

the impact of disability on normal life, and early diagnosis and

effective treatment of ischemic stroke are key to improving clinical

outcomes (30, 31). Therefore, our study established a link between

ribosome biogenesis genes and the pathogenesis of ischemic stroke.

We identified potential IS-RSGs and explored future therapeutic

targets via data analysis, thereby facilitating the development of

more effective therapeutic strategies and novel drugs against

potential therapeutic targets in ischemic stroke.

In our study, we finalized the set of 12 ribosome biogenesis-

related genes (EXOSC5, MRPS11, MRPS7, RNASEL, RPF1, RPS28,

C1QBP, GAR1, GRWD1, PELP1, UTP, ERI3). These sets of

ribosome biogenesis-associated genes play a key role in stroke

pathogenesis. These sets of ribosome biogenesis-associated genes

play a key role in stroke pathogenesis. Among them, Exosc5 is a

component of the RNA exosome complex and is involved in many

cellular processes related to RNA processing and degradation.

Importantly, mutations in the EXOSC5 gene are associated with

an increased risk of sudden cardiac death (32). In a previous study,

EXOSC5 was suggested to play an important role in stroke (33).

MRPS11 and MRPS7 are members of the mitochondrial ribosomal

proteins (MRPs) family, which is essential for the structural and

functional integrity of the mitochondrial ribosomal complex (34). It

has been shown that MRPS11 shows significant downregulation in

the peripheral blood of ischemic stroke patients (35). It has been
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reported that RNASEL plays an important role in the development

of stroke (36, 37), and RNASE also has the functions of regulating

the cell cycle (38) and apoptosis (39). Our analysis of single-cell data

found that neutrophils increased in the ischemic stroke group.

Neutrophils are the first cells to enter the brain after stroke, and they

aggravate brain damage through a variety of mechanisms (40).

Neutrophil extracellular traps (NETs) that can be released by

neutrophils have been reported to be associated with poorer brain

injury and stroke outcomes by impairs revascularization and

vascular remodelling (41–43). This is consistent with the increase

in Cluster0, Cluster1, and Cluster5 in the neutrophil subsets we

found in the ischemic stroke group. The RSGs Score of Cluater1 is

significantly lower than that of Cluater0 and Cluater5. This

subgroup may be specific to the high-risk group we have

identified. Microglia show different functional states at different

stages after stroke. In our study, two groups of microglia were

found. They also showed low expression of homeostasis related

genes P2ry12 (44), Siglech (45) and Tmem119 (46) with low

ribosome-related gene set scores. Microglia P2ry12 form special

somatic junctions where ATP is released from the neuron’s cell

body, allowing continuous contact and monitoring of the neuron.

After ischemia, the connectome area of microglia covering neurons

increases, and the degree of neuronal damage can be reduced by

regulating the concentration of calcium ions in neurons and

enhancing the activity of mitochondria (47). Decreased P2ry12

expression may affect this function. This is consistent with the

hypothesis that we found that the high-risk group had a poor

prognosis. Studies have reported that By predicting small molecule

drugs through CMAp, we found rilostane, MG-132, troglitazone,

nocodazole and ziprasidone, the top 5 up drugs. It has been

reported that Nocodazole binds to beta-tubulin and disrupts

microtubule assembly/disassembly dynamics, thereby preventing
FIGURE 10

Screening of relevant small molecule drugs. (A) 2131 related small molecule drugs were screened. (B) The top and bottom 5 small molecule drugs
were displayed.
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mitosis and inducing tumour cell apoptosis (48). MG-132 effectively

blocks the proteolytic activity of 26S proteasome complex. MG-132

is a peptide aldehyde and an autophagy activator. MG-132 can also

induce apoptosis (49, 50). These small molecule drugs are expected

to improve outcomes in high-risk patients.

In summary, by using mass transcription and single-cell

transcription techniques, we revealed the association between

Ribosome biogenesis genes and infiltrating immune cells, and

selected the features based on 12 Ribosome biogenesis genes as

the best machine learning model for constructing a high and low

risk group score for grouping patients with moderate scores. The

expression of immune cells was different between the high-risk

group and the low-risk group. At the single-cell level, we found that

the proportion of neutrophils increased, and the score of IS-RSGs

related gene set significantly decreased in neutrophils, while the

neutrophils subsets of the high-risk group cluster0 and cluster5

were significantly increased in the analysis of neutrophils separately.

In microglia, we found that the scores of IS-RSGs related gene sets

in cluster3 and cluster7 were significantly reduced. At the stroke

patient level, we found that patients in the high-risk group had a

higher proportion of neutrophils and more patients with a history

of smoking. Our findings reveal the role of Ribosome biogenesis

genes in the progression of ischemic stroke and provide new

insights into the underlying pathogenic processes and therapeutic

strategies for ischemic stroke.
Limitations and outlook

The limitation of this study was that it was not possible to

collect brain tissue of ischemic stroke patients for single-cell

sequencing, and only relevant data of mouse brain tissue could be

obtained through mouse models for verification. The mechanisms

of how the 13 genes we identified function require further research,

and we need to collect more samples to explore the differences

between high and low risk patients. This study is based on the

characteristics of 12 ribosome biogenetic genes as the optimal

machine learning model for constructing high - and low-risk

group scores. The high-risk group is expected to improve patient

outcomes by increasing ribosome-related gene activity.
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