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Helminth infections are a major public health problem as they can cause long-

term chronic infections in their hosts for which there is no effective vaccine.

During the long-term interaction between helminths and their hosts, helminth-

derived extracellular vesicles (EVs) can participate in host immunomodulatory

processes by secreting bioactive molecules (BMAs). Growing data suggests that

microRNAs (miRNAs) in helminth EVs have a significant impact on the host’s

immune system. The let-7 family is highly conserved among helminth EVs and

highly homologous in the host, and its function in host–parasite crosstalk may

reflect active selection for compatibility with the host miRNA machinery. In-

depth studies targeting this aspect may better elucidate the mechanism of

parasite-host interactions. Hence, this review summarizes the current studies

on the cross-species involvement of helminth EV-derived let-7 in host immune

regulation and discusses the barriers to related research and potential

applications of helminth EVs.
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Introduction

Helminthiosis, caused by nematodes, cestodes, and trematodes, are a major public

health concern and result in ∼60 million disability-adjusted life years (DALYs) globally (1).

Recent estimates indicate that 2 billion people in low- and middle-income countries, mostly

in endemic areas of Asia, the Americas, and Africa, have been infected by one or more

parasitic worms (2). Unfortunately, there are currently no broad-spectrum anthelmintic

vaccines available (3). Therefore, most helminth infections are controlled with the use of

anthelmintic drugs, which do not prevent reinfection (4). However, prolonged and over use

of these drugs can lead to the development of anthelmintic resistance (5–7). Hence, new

control and prevention strategies against helminth infections are urgently needed.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1449495/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1449495/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1449495/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1449495&domain=pdf&date_stamp=2024-10-28
mailto:yameijin@shvri.ac.cn
https://doi.org/10.3389/fimmu.2024.1449495
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1449495
https://www.frontiersin.org/journals/immunology


Zhong et al. 10.3389/fimmu.2024.1449495
As a result of complex life cycles and long-term symbiosis with

the host, helminths release various mediators involved in host–

parasite crosstalk, which promote immunomodulation, immune

evasion, and pathogenesis (8, 9). Previous studies have primarily

focused on helminth excretory/secretory products (ESPs) involved

in regulating the host immune response (10, 11). However, as the

study of host–parasite interactions has entered a deeper molecular

realm, there has been a gradual emergence of helminth-derived

microRNAs (miRNAs), mainly loaded in extracellular vesicles

(EVs), involved in this intricate crosstalk (9, 12, 13).

EVs are small membrane-bounded secretory vesicles released by

almost all cell types. EVs play essential roles in cell–cell communication

via a wide variety of bio-active molecules (BMAs), including small

RNAs, DNAs, messenger RNAs (mRNAs), proteins, lipids, and glycans

(14, 15). These BMAs are encapsulated by EVs that are protected by a

membrane to prevent degradation in the extracellular environment

(16). Among these diverse BMAs conveyed by EVs, miRNAs are

regarded as multifunctional regulators of various biological functions

(17). MiRNAs play a pivotal role in regulating gene expression, affecting

critical cellular functions such as growth, differentiation, and apoptosis

(18). Their biogenesis begins with the transcription of primary miRNA

(pri-miRNA) by RNA polymerase II. This pri-miRNA is processed in

the nucleus by the Drosha-DGCR8 complex into precursor miRNA

(pre-miRNA), which is then transported to the cytoplasm via Exportin-

5. In the cytoplasm, Dicer further processes the pre-miRNA into

mature miRNA. The mature miRNA is then integrated into the

RNA-induced silencing complex (RISC), where it directs the

repression of target mRNAs through sequence-specific binding,

thereby modulating various biological processes and contributing to

disease mechanisms (19). However, little is known about the

mechanisms that drive and regulate the incorporation of miRNAs

into helminth EVs and how specific miRNAs are preferentially selected

as cargo (20). Nonetheless, both helminth EV-derived miRNAs and

corresponding host targets are remarkably similar, suggesting that the

packaging and release mechanisms of specific miRNAs during long-

term host–parasite interactions and related immunomodulatory

functions are evolutionarily conserved (13).

The most common miRNA clusters in helminth EVs are let-7,

miR-2, miR-9, miR-10, miR-31, miR-71, miR-87, and miR-125 (21).

As a conserved miRNA family that is highly homologous to the host,

the function of helminth EV-derived let-7 in host–parasite interactions

may reflect active selection for compatibility with the host miRNA

machinery. This is because the let-7 miRNA from helminths and hosts

may function similarly due to their similar sequences, and that the

parasite miRNA, once taken up by the host cell, may rely on the host

miRNA machinery to modulate gene expression (13). As one of the

earliest identified miRNAs, let-7 is associated with reproductive

development of Caenorhabditis elegans, while deficiency or

overexpression of let-7 can lead to developmental abnormalities (22,

23). Although the importance in reproductive development of

helminths remains unclear, let-7 can regulate host immune responses

through EVs (24–27). Target gene prediction software is often used to

analyze host target genes against the let-7 family-specific seed sequence

(GAGGUAG) or the full-length sequence of helminth let-7 (26–29).

Most of these target genes are associated with the TGF-b, MAPK, and

Wnt signaling pathways, which play crucial roles not only in cell
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inflammatory reactions. This multiple involvement suggests different

roles of helminth EV-derived let-7 in host–parasite crosstalk (13).

Therefore, an in-depth study of helminth EV-derived let-7 will further

enrich our understanding of this crosstalk and may further clarify the

mechanisms underlying the crosstalk between helminth EVs and

host cells.

Therefore, the aim of this article is to summarize current studies

on the cross-species involvement of helminth EV-derived let-7 in

host immune regulation (Table 1), while addressing shortcomings

of related research and potential applications of helminth EVs.
Helminth EV-derived let-7 in host-
parasite crosstalk

Trematodes

Diseases caused by blood fluke (e.g. schistosomiasis), liver flukes

(clonorchiosis, opisthorchiosis, fascioliosis etc.) and lung flukes

(paragonimiosis) severely hamper health and productivity of humans

and animals (24, 26, 30, 31). These diseases induce severe pathological

impacts, including chronic inflammation, fibrosis, and extensive tissue

damage in affected organs. Specifically, schistosomiasis and fascioliosis

primarily target the liver, clonorchiosis and opisthorchiosis lead to

biliary obstruction and elevate the risk of cholangiocarcinoma, while

paragonimiosis causes pulmonary fibrosis and systemic symptoms due

to parasite migration (32, 33).

Schistosomes are dioecious, presenting as separate male and female

sexes (34). Following dialysis, ultrafiltration, and ultracentrifugation

combined with a commercial kit, EVs derived frommale and female S.

japonicum were successfully enriched from the supernatant of in vitro

cultures and contained a high abundance of sja-let-7 (24, 31, 35). Our

group recently reported that SjEVs reduced expression of collagen type

I alpha 2 chain (Col1a2), one of the host target genes of sja-let-7,

thereby alleviating liver fibrosis (24). The same relationship between

helminth let-7 and host Col1a2 was also reported in S. mansoni (21).

Since sja-let-7 is not highly abundant in S. japonicum egg ESPs or EVs

(36, 37), this regulatory effect might not be caused by eggs deposited in

the host liver, but rather remotely mediated via worm-derived EVs,

suggesting that worms can manipulate the host immune responses to

alleviate pathological damage, thereby preventing expulsion and

promoting a state of tolerance that benefits the parasite by

prolonging the host’s life (12). Therefore, it is not surprising that

helminth miRNAs can inhibit the pathological processes underlying

the establishment of chronic infection (Figure 1). However, due to the

large number of mRNAs targeted by miRNAs, the consequent

biological functions may vary at different stages of infection (18).

Fontenla et al. (30) reported that EVs from F. hepatica contained fhe-

let-7 that could potentially interact with target genes related to different

regulatory roles, although the specific mechanisms remain unclear.

Notably, let-7 of C. sinensis promotes inflammation in the host (26).

Yan et al. (26) isolated EVs from C. sinensis (CsEVs) by

ultracentrifugation combined with iodixanol-based density gradient

centrifugation. Further analysis revealed that csi-let-7a, a highly
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1449495
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2024.1449495
enriched miRNA delivered by CsEVs, plays a pivotal role in the

activation of M1-like macrophages and subsequent proinflammatory

responses to biliary injury by targeting the host genes suppressor of

cytokine signaling 1 and c-type lectin domain containing 7A (26).
Cestodes

Cestodes are zoonotic parasites that are usually widely spread in

susceptible impoverished areas with poor hygiene practices, especially

urban settings with livestock (38). In taenid cestodes such as Taenia

solium, T. saginata, and Echinococcus spp., an intermediate host ingests

contaminated vegetation or food containing cestode eggs, which hatch

into larvae in the intestines. These larvae are then transported through

the bloodstream to various tissues where they develop into cysts or

metacestodes. When the definitive host consumes the infected meat,

the infection is established. These metacestodes can cause chronic

pathology, reflecting the parasite’s evolved mechanisms to evade the

host’s immune response. In humans, T. solium can lead to cysticercosis,
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causing severe neurological damage, while Echinococcus spp. may result

in hydatid disease with life-threatening cysts in the liver and lungs. In

livestock, these infections cause economic losses due to reduced

productivity, meat condemnation, and increased veterinary costs (39).

Cysticercus pisiformis, the larval stage of Taenia pisiformis, can

infect rabbits and cause digestive disorders and growth retardation,

resulting in great economic losses to the breeding industry. Co-

incubation of RAW264.7 macrophages with EVs of T. pisiformis

(TpEVs) collected by ultracentrifugation increased levels of tpi-let-7

in the cell, which reduced M1 phenotype expression and enhanced M2

phenotype polarization by inhibiting the target gene transcription

factor CCAAT/enhancer-binding protein d (27, 40). Likewise, co-

incubation of rabbit peritoneal macrophages with TpEVs resulted in

detectable levels of tpi-let-7 in the host cells, demonstrating the delivery

of tpi-let-7 by TpEVs (25). Moreover, another potential target gene of

tpi-let-7, nuclear factor kappa B subunit 2, was differentially expressed,

as determined by proteomic analysis of the same cell samples,

suggesting that the tpi-let-7/NFkB2 axis may also be involved in

modulating the host immune response by TpEVs (25).
TABLE 1 Current research involving helminth EV-derived let-7 and their target genes.

Category miRNA
name

Species EV
Origin

EV Purification
method

Target gene Reference

Trematodes sja-let-7 Schistosoma
japonicum

Adult
worm ESPs

Dialysis, ultrafiltration, and
ultracentrifugation combined
with commercial kit

COL1A2 (24)

sma-let-7 Schistosoma
mansoni

Adult
worm ESPs

Differential centrifugation
followed by membrane filtration
and sucrose
density ultracentrifugation

COL1A2, MAP3K1, MSN, RASGRP1, SMAD2,
FBXO32, LTN1, MUC20, RANBP2, RICTOR

(21)

fhe-let-7 Fasciola hepatica Adult
worm ESPs

Ultracentrifugation CD200R1, CNOT4, HIF1AN, HOXA9,
HSPA14, MAP3K1, MAPK8, PMAIP1, PTAFR,
SMAD4, SNAP23, TNFRSF1B, TP53,
TRIM71, ZBTB16

(30)

csi-let-7 Clonorchis
sinensis

Adult
worm ESPs

Ultracentrifugation, iodixanol-
based density
gradient centrifugation

SOCS1, CLEC7A (26)

dde-let-7 Dicrocoelium
dendriticum

Adult
worm ESPs

Ultracentrifugation coupled to
membrane filtration

Not validated (52)

tsp-let-7 Trichinella
Spiralis

Larvae ESPs Ultracentrifugation Not validated (53)

Cestodes tpi-let-7 Taenia pisiformis Larvae ESPs Ultracentrifugation C/EBP d, NFkB2 (25, 27)

egr-let-7 Echinococcus
granulosus

Protoscolece
ESPs
Hydatid
fluid

Ultracentrifugation IGF2R (43)

Nematodes hpo-let-7 Heligmosomoides
polygyrus

Adult
worm ESPs

Ultracentrifugation DUSP1 (16)

bma-let-7 Brugia malayi Adult
worm ESPs

Commercial kit EIF4E (50)

asu-let-7 Ascaris suum Adult worm,
L3, L4 larvae
ESPs
Adult worm
body fluid

Ultracentrifugation, size
exclusion
chromatography

CD86, PARP8, SENP1, TRIM32 USP15 (49)
EVs, Extracellular vesicles; ESPs, Excretory/secretory products.
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Echinococcosis is a zoonotic disease induced by adult or larval

cestodes of the genus Echinococcus (41). Echinococcus granulosus is

a medically significant cestode and a public health concern (42).

EVs of E. granulosus collected by ultracentrifugation contained high

levels of egr-let-7, which might play an immunomodulatory role by

targeting insulin like growth factor 2 receptor, although the specific

mechanisms remain unclear (43).
Nematodes

Nematodes are highly diverse, widely distributed, and well-

adapted to almost all habitats. Based on complex and varied

evolutionary histories, nematodes can be categorized into three

main groups: free-living, saprophytic, and parasitic (44).

Heligmosomoides polygyrus is a gastrointestinal nematode that

infects mice and belongs to the same nematode clade as C. elegans

(45). During long-term interactions with the host, H. polygyrus may

induce a strong Th2 response and simultaneously secrete

immunomodulatory molecules, which can suppress the host immune

response (46). EVs isolated from H. polygyrus (HpEVs) by

ultracentrifugation were reported to suppress type 2 innate responses

and reduce eosinophilia in mice (16). Subsequent microarray analysis

revealed that hpo-let-7 from HpEVs could suppress expression of dual

specificity phosphatase 1, which is a crucial regulator of inflammation

and immunity, to manipulate host cells. In addition to H. polygyrus,

Haemonchus contortus is another significant gastrointestinal nematode

that affects livestock, particularly small ruminants such as sheep and

goats (47). H. contortus is a major cause of parasitic gastroenteritis,

leading to severe anemia, reduced productivity, and significant

economic losses in the livestock industry (48). Although the specific
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role of let-7 in HcEVs remains underexplored, understanding its

involvement in parasite-host interactions could open new avenues

for developing targeted therapies and diagnostic tools for managing

infections in livestock.

Interactions between helminth EV-derived let-7 and host targets

have also been reported in other nematodes (49, 50). Brugia malayi is a

pathogen of lymphatic filariasis, commonly known as elephantiasis, a

neglected tropical disease that affects millions of people, and an

important public health issue due to the high prevalence. Ricciardi

et al. (50) isolated EVs from B. malayi with a commercial kit that were

absorbed by human dendritic cells and monocytes, which

downregulated the mammalian target of rapamycin pathway in host

cells via the bma-let-7/eukaryotic translation initiation factor 4E axis.

Ascaris suum is a prevalent parasitic nematode that infects pigs and was

found to reduce nutrient utilization and weight gain, ultimately

resulting in production loss (51). Through ultracentrifugation and

size exclusion chromatography (SEC), EVs were obtained from A.

suum adults, as well as L3 and L4 larvae, for miRNA profiling (49). The

results of target gene prediction showed that asu-let-7 interacted with

CD86, which facilitates T-cell activation, suggesting that this axis might

be involved in host–parasite interactions (49).

In addition to these species, let-7 has been identified in the EVs

of other helminths, although the specific target genes have not yet

been identified (52, 53). Details can be found in Table 1.
Current challenges and
future perspectives

Although current evidence confirms that the helminth EV-

derived let-7 cluster is involved in various pathological and
FIGURE 1

Cross-species sja-let-7 mediates host–parasite interactions in schistosome-induced liver fibrosis. Schistosoma japonicum worms residing in the host
portal vein release SjEVs that contain sja-let-7, which alleviates schistosome-induced liver fibrosis through the regulation of Col1a2. This figure was
created with Biorender.com.
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physiological processes, considerable challenges still exist to gain a

deeper understanding of the roles of let-7 in host–parasite crosstalk.

First, helminth EVs are typically isolated from in vitro culture

supernatants of a single formulation, such as Dulbecco’s modified

Eagle’s medium or Roswell Park Memorial Institute 1640 medium

supplemented with EV-free fetal bovine serum and antibiotics (24–26,

52–55). However, the viability of the worms is gradually decreased in

these mediums, which may compromise the quality of helminth EVs.

In addition, the evolutionary history of helminths is complex and the

acquisition of essential substances from the host varies among

parasitized stages. Whether there are differences between helminth

EVs collected by in vitro culture and those involved in host–parasite

interactions remain unknown. Recent studies have reported medium

suitable for the reproductive development of some helminths in vitro

(56, 57). Thus, the use of such a medium to obtain helminth EVs may

be a direction for further research.

Second, in most studies, helminth EVs are collected by

ultracentrifugation of ESPs as the primary separation and

isolation method (25–27, 37, 39, 40, 53–55, 58). However, there

has been a recent shift towards the use of other methods, such as

SEC (59). While ultracentrifugation is commonly used to isolate

EVs, it can compromise vesicle integrity due to high shear forces

(60). SEC offers an alternative by separating molecules based on size

through a column of porous beads, which enables high-purity

isolation of EVs, preserving their biological activity and ensuring

reproducibility. Additionally, SEC is scalable for larger volumes,

making it ideal for studies requiring substantial quantities of

purified EVs (61). Since the collection method influences the

number, purity and type of enriched helminth EVs, each study

should include detailed information based on a recent publication,

titled “Special considerations for studies of extracellular vesicles

from parasitic helminths: A community-led roadmap to increase

rigor and reproducibility” (62).

Third, further studies are needed to determine whether

helminth miRNAs are delivered to host cells as primary or

precursor miRNAs, how miRNAs are processed and loaded in the

EVs, and whether there are differences in the predicted target genes

in vivo vs. in vitro. Investigating these mechanisms is crucial for

advancing our understanding of host-parasite interactions. Future

research should focus on exploring the molecular machinery

involved in miRNA incorporation into EVs and identifying

factors that determine the selectivity of miRNA cargo. These

studies will provide valuable insights into how helminth EVs

modulate host immune responses and contribute to parasite

survival. To preliminarily confirm the interactions in vitro, our

group conducted fluorescence in situ hybridization to label co-

localized sja-let-7 and the related target gene Col1a2 in liver

sections of mice with schistosome-induced liver fibrosis (24).

Fourth, to explore the biological functions of helminth EVs or

miRNAs, recent studies have applied mimics either directly to a

single cell type or directly to mice via tail vein injection. However,

the use of mimics differs from natural helminth infection. Also,

since miRNAs target a large number of mRNAs, potential side

effects in the host should be considered. Interestingly, our group

administered a mimic of sja-let-7, which resulted in a relatively high

abundance miRNAs in SjEVs and an anti-fibrotic effect in mice with
Frontiers in Immunology 05
schistosome-induced liver fibrosis, as well as carbon tetrachloride-

induced liver fibrosis, which alleviated pathological changes,

demonstrating the potential application of helminth-derived

miRNAs (63). Certainly, it is also necessary to assess safety in

future studies.
Conclusions

This article summarized the roles of helminth EV-derived let-7

in host–parasite interactions. In addition to helminth let-7, in-depth

studies are warranted to clarify the biological functions of other

BMAs, such as miR-71 (21, 37) and miR-125 (43, 64), to further

elucidate potential roles on host–parasite crosstalk and provide a

theoretical basis for helminth prevention and control. Moreover,

the potential therapeutic and diagnostic applications of let-7 are

promising areas for future research. As understanding of the

molecular mechanisms governing let-7 and its role in modulating

host immune responses deepens, targeted therapies could be

developed to inhibit or enhance specific pathways affected by let-

7. Similarly, the presence of let-7 in extracellular vesicles could serve

as a biomarker for parasitic infections, aiding in the early diagnosis

and monitoring of disease progression.
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