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Identification and validation
of diagnostic biomarkers
and immune cell abundance
characteristics in Staphylococcus
aureus bloodstream infection
by integrative
bioinformatics analysis
Junhong Shi1, Li Shen1, Yanghua Xiao1, Cailing Wan1,
Bingjie Wang1, Peiyao Zhou1, Jiao Zhang1, Weihua Han1,
Rongrong Hu2, Fangyou Yu1* and Hongxiu Wang1*

1Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji
University, Shanghai, China, 2Shanghai Institute of Immunity and Infection, Chinese Academy of
Sciences, Shanghai, China
Staphylococcus aureus (S. aureus) is an opportunistic pathogen that could cause

life-threatening bloodstream infections. The objective of this study was to

identify potential diagnostic biomarkers of S. aureus bloodstream infection.

Gene expression dataset GSE33341 was optimized as the discovery dataset,

which contained samples from human and mice. GSE65088 dataset was utilized

as a validation dataset. First, after overlapping the differentially expressed genes

(DEGs) in S. aureus infection samples from GSE33341-human and GSE33341-

mice samples, we detected 63 overlapping genes. Subsequently, the hub genes

including DRAM1, PSTPIP2, and UPP1 were identified via three machine-learning

algorithms: random forest, support vector machine-recursive feature

elimination, and least absolute shrinkage and selection operator. Additionally,

the receiver operating characteristic curve was leveraged to verify the efficacy of

the hub genes. DRAM1 (AUC=1), PSTPIP2 (AUC=1), and UPP1 (AUC=1) were

investigated and demonstrated significant expression differences (all P < 0.05)

and diagnostic efficacy in the training and validation datasets. Furthermore, the

relationship between the diagnostic markers and the abundance of immune cells

was assessed using cell-type identification by estimating relative subsets of RNA

transcripts (CIBERSORT). These three diagnostic indicators also correlated with

multiple immune cells to varying degrees. The expression of DRAM1 was

significantly positively correlated with B cell naive and mast cell activation, and

negatively correlated with NK cells and CD4/CD8+ T cells. The expression of

PSTPIP2 was significantly positively correlated with macrophage M0,

macrophage M1, B cell naive, and dendritic cell activation, while the expression

of PSTPIP2 was negatively correlated with NK cells and CD4/CD8+ T cells.

Significant negative correlations between UPP1 expression and T cell CD4

memory rest and neutrophils were also observed. Finally, we established a

mouse model of S. aureus bloodstream infection and collected the blood

samples for RNA-Seq analysis and RT-qPCR experiments. The analysis results
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in RNA-Seq and RT-qPCR experiments further confirmed the significant

expression differences (all P < 0.05) of these three genes. Overall, three

candidate hub genes (DRAM1, PSTPIP2, and UPP1) were identified initially for

S. aureus bloodstream infection diagnosis. Our study could provide potential

diagnostic biomarkers for S. aureus bloodstream infection patients.
KEYWORDS

Staphylococcus aureus, bloodstream infection, machine-learning, biomarkers, immune
cell abundance
Introduction

The opportunistic pathogenic bacterium Staphylococcus aureus

has successfully adapted to the human body’s environmental

conditions (1). It causes a spectrum of infections in communities

and hospitals, ranging from skin and soft tissue infections to life-

threatening bloodstream infections (2). A critical feature of

bloodstream infections by S. aureus is the coordinated and timely

expression of virulence factors and other relevant genes by the

pathogen. Due to its prevalence, S. aureus ranks among the leading

pathogens causing bloodstream infections (3). The S. aureus

bloodstream infections are characterized by high mortality rates

(ranging from 20% to 50%), frequent recurrence (5-10%), and

sustained injury in over one-third of survivors (3–5). Over the

past three decades, the incidence rate of S. aureus bloodstream

infection has been increasing in developed countries (3, 4), but

remains a significant but often overlooked issue in developing

countries (6). Therefore, there is an urgent need to identify

biomarkers for the diagnosis of S. aureus bloodstream infection.

During infections, S. aureus could trigger inflammatory

responses, including the secretion of cytokines and chemokines that

recruit leukocytes to the area of infection. These recruited neutrophils,

monocytes, macrophages, NK cells, Dendritic cells (DCs), and CD4/

CD8+ T cells play crucial roles in both the direct killing of bacteria and

the indirect control of infection, such as contributing to the cytokine

milieu, clearing damaged cells, and presenting antigen to initiate

adaptive immunity (7). Hence, discovering new immunological

biomarkers was important not only for the diagnosis but also for

the application of immunotherapy in S. aureus bloodstream infection.

High-throughput sequencing was a valuable method for

investigating changes in disease gene expression and distinguishing

possible disease-related genes for new diagnostic and therapeutic

biomarkers (8). Gene expression levels serve as essential indicators for

diagnosing various disorders, including S. aureus bloodstream

infection (9). Machine learning method assists in assessing high-

dimensional transcriptome data and identifying biologically

significant genes (10).

In this study, we integrated multiple high-throughput

sequencing datasets of S. aureus bloodstream infections and
02
employed machine learning algorithms for the first time to

identify three characteristic genes associated with these infections,

distinguishing our work from previous studies (8, 11–13). In

addition, using a mouse model of S. aureus bloodstream

infection, we validated the diagnostic value of these three genes

through RNA-Seq and RT-qPCR experiments. Additionally, we

investigated the relationship between diagnostic markers and

immune cel l abundance to acquire a more in-depth

understanding of the molecular immune mechanisms underlying

S. aureus bloodstream infections. Our study may offer potential

diagnostic biomarkers and select potential candidates receiving

immunotherapy for patients with S. aureus bloodstream infection.
Methods

Public gene expression datasets

Accessing the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/), which is a public collection

of high-throughput gene expression data, chips, and microarrays,

was how the information was collected. We searched the GEO

database with the keywords “Staphylococcus aureus” [MeSH Terms]

AND “Bloodstream infection”[All Fields]. None of the included

samples were associated with any other diseases. The sample size of

both the pediatric sepsis group and the normal group was greater

than 10. Finally, GSE33341 (14) was utilized as the discovery

dataset, which contained samples from human and mice. Another

dataset GSE65088 (15) was applied as a validation dataset.
Identification of the differentially
expressed genes

The Wilcoxon test was utilized to identify differentially expressed

genes (DEGs) between the S. aureus bloodstream infection group and

the control group. A volcano plot was generated to visualize the

differential expression of DEGs. A P value < 0.05 and |log2FC|> 1

were considered to be the cutoffs for DEGs.
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Evaluation of functional enrichment

Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were conducted

via the “clusterProfiler” (16) package in R to explore possible

biological features of DEGs. Gene set enrichment analysis (GSEA)

(17) was also used to investigate the enrichment pathways via the

“clusterProfiler” package in R.
Screening and validation of
diagnostic markers

Firstly, we intersected the up-regulated genes in the human S.

aureus infection group and the mice S. aureus infection group in

GSE33341 to obtain genes associated with S. aureus bloodstream

infection. Subsequently, these genes were further screened using

three machine-learning algorithms, random forests (RF), support

vector machine-recursive feature elimination (SVM-RFE), and least

absolute shrinkage and selection operator (LASSO) logistic

regression, to identify robust biomarkers for S. aureus

bloodstream infection. The “randomForest” R package in R was

used to implement the random forest technique with 100 trees

genera t ed for each da tapo in t , and genes wi th top

MeanDecreaseAccuracy were screened out (18). LASSO logistic

regression investigation was conducted with the R package

“glmnet”, and minimal lambda was considered optimal. In our

study, the selection of optimization parameters was cross-verified

by a factor of 10, and the partial likelihood deviation met the

minimum criteria (19). The DEGs were also determined by

applying a support vector machine recursive feature elimination

(SVM-RFE) algorithm based on a nonlinear SVM using R package

“kernlab”, “e1071”, and “caret” (20). It was evaluated based on the

study of receiver operating characteristic (ROC) curves, and the

area under the curve (AUC) was calculated to assess the predictive

capability of these markers. The GSE65088 dataset was enrolled to

validate the predictive power of these biomarkers.
Assessment of immune cell abundance

Immune cell abundance was assessed by computing the

differential abundances of 22 immune cells using the CIBERSORT

(21) algorithm. The correlation between gene expression and

immune cells were assessed using Pearson’s correlation

coefficients. Correlation plots were plotted using the “ggpubr”

R package.
Construction of S. aureus
bloodstream infection

Methicillin-sensitive Staphylococcus aureus (MSSA) Newman

strain was grown for 16 h on TSB medium at 37°C. Overnight

cultures were centrifuged at 2683g (RCF) for 5 min at room
Frontiers in Immunology 03
temperature and adjusted to a concentration of 2 × 109 CFU/mL

using phosphate-buffered saline (PBS). Next, injected into female

Balb/c mice via the tail vein with 100 mL PBS containing 2 × 108

CFU bacterial cells suspended. At 8 h.p.i., anesthetized the mice

with 2,2,2-tribromoethanol (5 mg/25 g). Used surgical scissors to

remove mouse whiskers, then clamped the eyeball with tweezers

and quickly removed it, allowing blood to flow from the eye socket

into the EP tube. The blood sample was immediately placed in

liquid nitrogen and maintained at −80°C until RNA extraction.
RNA-Seq and data processing

After the blood samples were collected from mice infected with

S. aureus, the RNA for RNA-Seq samples were immediately mixed

with Trizol Reagent (Ambion®) and then sent to Shanghai

Personal Biotechnology Cp. Ltd for the subsequent RNA

transcriptome sequencing work. Following library preparation

and pooling of different samples, the samples were subjected to

Illumina sequencing. Commonly, the RNA-Seq use PE150 (paired-

end 150nt) sequencing. Raw data (raw reads) of FASTQ format

were first processed through in-house perl scripts. In this step, clean

data (clean reads) were obtained by removing the following reads:

(1) reads with adapter; (2) reads with more than 3 N; (3) reads with

more than 20% nucleotides with Qphred<=5; At the same time,

Q20, Q30 and GC content of the clean data were calculated. Then,

map the clean reads to the silva database to remove the rRNA. All

the downstream analyses were based on clean data without rRNA.

Paired-end clean reads were aligned to the reference genome using

Hisat2 (22). Featurecount (23) was used to count the reads numbers

mapped to each gene.
RNA extraction and real-time polymerase
chain reaction

The total RNA of blood was isolated by Trizol Reagent (24) and

then was reverse transcribed into cDNA using the PrimeScript RT

reagent kit with gDNA Eraser (Takara). Real-time quantitative PCR

(RT-qPCR) was performed using TB GreenTM Premix Ex TaqTM

II (Takara) on QuantStudioTM 5 Real-Time PCR System (Applied

Biosystems). RNA expression levels of DRAM1, PSTPIP2, and

UPP1 genes unified to GAPDH were calculated by the formula

2−DDCt. All primers used in this study were listed in Supplementary

Table 1. Each reaction was performed trice.
Statistical analysis

R version 4.2.2 was utilized for all statistical analyses and

graphics except for RT-qPCR results which were analyzed by

GraphPad Prism 8 (GraphPad Software Inc. San Diego, CA,

USA). Statistical significance was determined by a two-tailed test

with a P value of less than 0.05. **P < 0.01, ****P < 0.0001.
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Results

Screening of DEGs in S. aureus
bloodstream infection

The clinical characteristics of the two groups of samples are

presented in Supplementary Table 2. Figure 1 displays the study

design of this research. The human blood samples in GSE33341,

consisting of 31 S. aureus infection samples and 43 control samples,

were applied to obtain 482 DEGs. Following the identification of

DEGs, heatmap (Figure 2A) and volcano plots (Figure 2B) were

drawn to present these findings.
Functional enrichment analysis of DEGs

Functional analysis was performed to gain a more thorough

understanding of the biological functions of these DEGs. GO

enrichment analysis showed that up-regulated DEGs were related

to positive regulation of cytokine production and activation of the

immune response (Figure 3A, left). Down-regulated DEGs were

enriched in mononuclear cell differentiation, lymphocyte

differentiation, and immune response-regulating signaling

pathway (Figure 3A, right). Likewise, KEGG analysis for up-

regulated DEGs was associated with Prion disease, Parkinson

disease, and NOD-like receptor signaling pathway (Figure 3B,

left). KEGG analysis for down-regulated DEGs was enriched in

hematopoietic cell lineage, Th1 and Th2 cell differentiation, and

Th17 cell differentiation (Figure 3B, right).
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Screening and validation of
diagnostic markers

The human blood samples in GSE33341, consisting of 31 S.

aureus infection samples and 43 control samples, and the mice

blood samples in GSE33341, including 10 S. aureus infection

samples and 21 control samples, were exploited for analyzing the

up-regulated genes separately. There were 482 up-regulated DEGs

in the GSE33341-human samples and 305 up-regulated DEGs in

the GSE33341-mice samples. A Venn plot was drawn to present the

up-regulated genes intersected by GSE33341-human and

GSE33341-mice samples (Figure 4A). Then we adopted three

machine-learning algorithms to identify feature genes: Random

Forest selected the top 10 genes (Figure 4B); SVM-RFE screened

4 genes (Figure 4C) and LASSO regression analysis was utilized to

select 3 predicted genes from among the statistically significant

univariate variables (Figure 4D). The three algorithms finally

identified DRAM1, PSTPIP2, and UPP1 as the diagnostic

markers (Figure 5A).

In the GSE33341, these three genes not only were highly

expressed in the S. aureus infection group but also presented with

good discriminative power between S. aureus and the control group

(Figure 5B; Supplementary Figure 1). ROC curves for DRAM1,

PSTPIP2, and UPP1 also highlighted them as potential diagnostic

biomarkers (Figure 5C).

Meanwhile, we also acquired another independent cohort with

S. aureus infection to validate the above findings. In GSE65088, the

significantly high expression for DRAM1, PSTPIP2, and UPP1 in S.

aureus group was also observed (Supplementary Figure 2A), along
FIGURE 1

The flowchart depicting the investigation procedure. GEO, gene expression omnibus; GSEA, gene set enrichment analysis; CIBERSORT, cell-type
identification by estimating relative subsets of RNA transcripts; DEGs, differentially expressed genes; GO, gene ontology; KEGG, Kyoto Encyclopedia
of Genes and Genomes; LASSO, Least absolute shrinkage and selection operator; RF, random forest; SVM-RFE, support vector machine-recursive
feature elimination; ROC, receiver operating characteristic curve.
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with high AUC values (Supplementary Figure 2B), which indicates

that the biological markers had high predictive value accuracy.
Association of biomarkers with immune
cells abundance

CIBERSORT algorithm was utilized to evaluate the immune

cell abundance. Based on a correlation analysis, we assessed the

relationship between immune cells and three diagnostic

biomarkers. We found DRAM1 was significantly positively

associated with B cell naive and Mast cell activated. However,

the expression of DRAM1 was negatively associated with NK
Frontiers in Immunology 05
cells and CD4/CD8+ T cells (Figure 6A). Meanwhile, PSTPIP2

was notably positively correlated with Macrophages M0,

Macrophages M1, B cell naive, and Dendritic cells activated,

the expression of PSTPIP2 was negatively associated with NK

cells and CD4/CD8+ T cells (Figure 6B). Furthermore, UPP1 was

remarkably negatively related to T cells CD4 memory resting and

Neutrophils (Figure 6C). The above results of analysis suggested

there was a potential connection between these three biomarkers

and a wide variety of immune cells. Immunological prophylaxis

and therapy for S. aureus are attractive goals. Our findings

provided reasonable application of these markers for screening

potential patients with S. aureus bloodstream infection

for immunotherapy.
FIGURE 2

Detection of differentially expressed genes from datasets GSE33341 on S. aureus patients. (A) A heatmap comparing the genes that were differentially
expressed in S. aureus bloodstream patients and control patients; (B) Volcano plot of the 482 DEGs. DEGs, differentially expressed genes; FC, fold-change.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1450782
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2024.1450782
Validation of diagnostic markers using
RNA-Seq and RT-qPCR for S. aureus
bloodstream infection mice models

To further confirm the diagnostic value of these three genes, we

constructed a mice model of S. aureus bloodstream infection and

collected the blood of mice for RNA-Seq analysis and RT-qPCR
Frontiers in Immunology 06
experiments. The reason we chose the S. aureus Newman strain was

that it is a hypervirulent stain that has been widely applied in the

various models of S. aureus. We isolated the total RNA of the blood

and synthesized the cDNA. RNA-Seq analysis results confirmed the

above results (Figure 7A), with ROC results showing the high

diagnostic value for these three genes (Figure 7B). RT-qPCR

results further validated that the RNA expression levels of
FIGURE 3

Functional enrichment analysis of DEGs. (A) GO enrichment analysis of upregulated (left) and downregulated (right) genes in the dataset GSE33341
human group; (B) KEGG pathway enrichment analysis of upregulated (left) and downregulated (right) genes in the dataset GSE33341 human group.
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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DRAM1, PSTPIP2, and UPP1 genes were significantly increased in

the S. aureus Newman tread group compared to the control group

(Figure 7C). Meanwhile, these three genes were significantly higher

in S. aureus group in the combined mouse dataset including

GSE33341 mice and blood infection mouse model sequencing

data (Figure 7D).
Frontiers in Immunology 07
Discussion

The opportunistic pathogen S. aureus adapted to human hosts,

could result in fatal bloodstream infection (25). It represented a

heterogeneous clinical entity with a high risk of metastatic

complications and a high in-hospital mortality rate of 20% to
FIGURE 4

Detection of diagnostic markers using a thorough method. (A) Venn diagram of upregulated genes of human S. aureus infection versus mice group
in GSE33341; (B) based on RF algorithm to screen biomarkers; (C) Based on SVM-RFE to screen biomarkers; (D) LASSO logistic regression algorithm
to screen diagnostic markers. RF, random forest; SVM-RFE, support vector machine-recursive feature elimination; LASSO, least absolute shrinkage,
and selection operator.
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30%. Optimized diagnostic and therapeutic approaches can

improve patients’ outcomes (26). The Agr quorum-sensing

system, one of the earliest regulators discovered to be involved in

S. aureus bloodstream infections, is essential for the secretion of

numerous toxins and other soluble virulence factors (27). Another

virulence regulatory system closely related to S. aureus bloodstream
Frontiers in Immunology 08
infections is the two-component ArlRS system, and its downstream

effector, the global regulator MgrA (27). Under the background of S.

aureus bloodstream infections, this cascade reaction was shown to

regulate plasma aggregation, adhesion, and interactions with

endothelium (28, 29). Furthermore, the ArlRS-MgrA cascade

regulates the expression of several immune evasion genes to
FIGURE 5

Hub genes for S. aureus blood infection diagnosis. (A) Venn diagram showed the intersection of diagnostic markers obtained by the three
algorithms; (B) Boxplot showed the expression of hub genes between the S. aureus infection group and control group in discovery dataset
GSE33341 human group; (C) The ROC curve of the diagnostic efficacy verification between the S. aureus infection group and control group in
discovery dataset GSE33341 human group.
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evade host defense (30–32). These findings underscore S. aureus’s

ability to cause bloodstream infection by expressing a series of

virulence genes, emphasizing the urgency of finding biomarkers for

bloodstream infection of S. aureus for early diagnosis

and treatment.

In recent years, extensive studies have attempted to discover

diagnostic biomarkers for S. aureus bloodstream infections. Erin

et al. found that S. aureus induced a muted host response in human

blood that blunts the recruitment of neutrophils to promote the

survival of pathogens during invasive infection (33). Sun et al.

constructed a predictive model for sepsis in children with S. aureus

bloodstream infections, which could guide clinicians in optimizing

the treatment plan according to these risk factors and drug

sensitivity results for minimizing unnecessary invasive procedures

(34). Rachel et al. found that manipulation of autophagy in

phagocytes facilitated S. aureus bloodstream infection (35). Sinead

et al. carried out a prospective study in 61 patients with S. aureus

bloodstream infection and revealed that IL-6 might be an early

inflammatory marker of complicated S. aureus bloodstream

infection (36). However, these diagnostic biomarkers more or less

suffer from some limitations. Identifying new diagnostic markers

for S. aureus bloodstream infection was urgently needed.

In this study, we attempted to identify new diagnostic

biomarkers for S. aureus bloodstream infection. First, we

identified the up-regulated genes in the S. aureus infection group

common to the GSE33341-human and GSE33341-mouse datasets.
Frontiers in Immunology 09
Subsequently, the hub genes including DRAM1, UPP1, and

PSTPIP2 were certificated by the use of three machine-learning

algorithms. Further, we verified the findings by another dataset

GSE65088, and developed a mice model of S. aureus bloodstream

infection to collect the blood of mice for RNA-Seq analysis and RT-

qPCR experiments. The receiver operating characteristic curve was

employed to verify the efficacy of the hub genes. To summarize, our

results suggest that DRAM1, UPP1, and PSTPIP2 were potential S.

aureus bloodstream infection diagnostic indicators.

Currently, many studies have focused on the three genes

mentioned above in S. aureus or other bacterial infections. DNA

damage-regulated autophagy modulator 1 (DRAM1) is a stress-

inducible regulator of autophagy and cell death (37). Xie et al.

confirmed that DRAM1 could independently promote the zebrafish

host defense against Mycobacterium marinum (38), and its role in

facilitating Lysosomal Delivery of Mycobacterium marinum in

murine RAW264.7 macrophages (39), suggesting DRAM1 is a

host resistance factor against intracellular mycobacterial infection.

Similarly, Zhang et al. demonstrated that deficiency in DRAM1

exacerbated pyroptotic cell death of Mycobacteria-infected

macrophages (40). Han et al. found that DRAM1 expression was

up-regulated in the S. aureus-treated bovine mammary epithelial

cells and triggered the production of autophagosome (41). This

appeared to coincide with our results since we demonstrated that

DRAM1 was highly expressed in the blood of mice infected with S.

aureus. Sun et al. proved upregulation of DRAM1 was involved in
FIGURE 6

There is a correlation between hub genes and immune cells. (A) Correlation between DRAM1 and immune cells; (B) Correlation between PSTPIP2
and immune cells; (C) Correlation between UPP1 and immune cells.
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regulating autophagy and glycolysis in C10_ULK1 cells in response

to both Escherichia coli (E. coli) infection and E. coli sepsis (42).

Uridine phosphorylase 1 (UPP1) encodes uridine phosphorylase, a

key enzyme that participates in the regulation of intracellular

uridine homeostasis and the metabolism of pyrimidine
Frontiers in Immunology 10
ribonucleosides (43). Fan et al. revealed that UPP1 emerged with

remarkable diagnostic value in pediatric septic shock and was

involved in immune cell infiltration (44). Similarly, Lai et al.

analyzed GEO datasets and found that UPP1 was upregulated in

the sepsis group, and confirmed this finding by establishing a sepsis-
FIGURE 7

Validation of hub genes for S. aureus blood infection diagnosis. (A) Validation of diagnostic markers using RNA-Seq; (B) The ROC curve of the
diagnostic efficacy verification in RNA-Seq analysis; (C) Validation of diagnostic markers using RT-qPCR; **P < 0.01 and ****P < 0.0001. d Validation
of diagnostic markers via the combined mouse sequencing data including GSE33341 mice and blood infection mouse model sequencing data. AUC,
area under the curve; ROC, receiver operating characteristic curve.
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induced acute lung injury model (45). Our research further

expanded the diagnostic value of UPP1 and indicated its

likelihood as a diagnostic biomarker. Proline-serine-threonine

phosphatase Interacting Protein 2 (PSTPIP2), also known as

macrophage F-actin–associated and tyrosine-phosphorylated

protein (MAYP), is a Fes CIP4 homology domain (FCH) and

Bin/Amphiphysin/Rvs (BAR; F-BAR) protein, predominantly

expressed in the myeloid lineage (46). Johnny et al. uncovered

that PSTPIP2 was highly expressed in the confirmed bacterial

infection patients, correlating with infection status (47). Chen

et al. validated the high expression of PSTPIP2 in patients

infected with E. coli by analyzing GEO datasets and ex-vivo

human blood models (48).

Additionally, the relationship between these diagnostic markers

and infiltrating immune cells was further studied. The changes in

various immune cell infiltration may be relevant to the occurrence

and progression of S. aureus bloodstream infection (33, 49). NK cells

are pivotal in the first line of defense of the human immune system

(50, 51). They mediated some immune responses during anti-tumor

and various viral infections and were the “natural barrier” in the

human immune system (52). Under the stimulation of LPS and so on,

dormant macrophages (M0) could induce polarization into M1 type

macrophages, secreting a large number of pro-inflammatory factors,

including IL-1, IL-6, and TNF-a, to promote inflammation, bacterial

killing, and phagocytosis (53). M2 macrophages were mainly

activated by IL-4 inflammatory factors and inhibit M1

macrophages by secreting anti-inflammatory cytokines such as

IL10 (54). Neutrophils are one of the important cells in the

immune system, with various functions, including chemotactic,

regulatory, phagocytic, degranulation, and bactericidal effects (55,

56). Dendritic cells could uptake, process, and present antigens, and

were initiators of adaptive immune responses (57, 58). CD4+ T cells

mainly recognized foreign antigens presented by antigen-presenting

cells (APCs) and generated responses (59). CD8+ T cells cloud secrete

cytokines including TNF-a, IFN-g, and the production and release of

cytotoxic particles to defend against intracellular viruses and bacteria

(60). In our research, DRAM1 expression was significantly positively

correlated with B cell naive and mast cell activation, and negatively

correlated withNK cells and CD4+/CD8+ T cells. PSTPIP2 expression

was significantly positively correlated with macrophage M0,

macrophage M1, B cells naive, and dendritic cells, while negatively

correlated with NK cells and CD4/CD8+ T cells. UPP1 expression

showed significant negative correlations with T cell CD4memory rest

and neutrophils. Li et al. (61) associated PD-1/PD-L1 signaling with

the immunosuppressive state in S. aureus osteomyelitis, suggesting

potential novel therapies combining PD-1/PD-L1 blockade with

antibiotics for the treatment of S. aureus osteomyelitis. Therefore,

our proposed diagnostic biomarkers may also be used to select

potential patients with S. aureus bloodstream infection for the

utilization of immunotherapy.
Frontiers in Immunology 11
However, this study also had some limitations. Despite having

reported the diagnostic value of these three markers in S. aureus

bloodstream infections, unfortunately, we have not yet collected

blood samples from patients with S. aureus bloodstream infection,

which is a limitation of our study. Additionally, the S. aureus

bloodstream infection-related molecular mechanisms should be

investigated further by constructing animal models and cellular

experiments. Meanwhile, the differences in immune response

between mice and humans might affect the translational relevance

of our findings.

Here, our study initially identified that DRAM1, PSTPIP2, and

UPP1 were potential diagnostic indicators for S. aureus

bloodstream infection. Furthermore, these three diagnostic genes

also correlate with multiple immune cells to varying degrees and

may be used for the S. aureus selection of potential patients for the

utilization of immunotherapy.
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