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Introduction: Immune dysregulation plays a major role in cancer progression.

The quantification of lymphocytic spatial inflammationmay enable spatial system

biology, improve understanding of therapeutic resistance, and contribute to

prognostic imaging biomarkers.

Methods: In this paper, we propose a knowledge-guided deep learning

framework to measure the lymphocytic spatial architecture on human H&E

tissue, where the fidelity of training labels is maximized through single-cell

resolution image registration of H&E to IHC. We demonstrate that such an

approach enables pixel-perfect ground-truth labeling of lymphocytes on H&E

as measured by IHC. We then experimentally validate our technique in a

genetically engineered, immune-compromised Rag2 mouse model, where

Rag2 knockout mice lacking mature lymphocytes are used as a negative

experimental control. Such experimental validation moves beyond the classical

statistical testing of deep learning models and demonstrates feasibility of more

rigorous validation strategies that integrate computational science and

basic science.

Results: Using our developed approach, we automatically annotated more than

111,000 human nuclei (45,611 CD3/CD20 positive lymphocytes) on H&E images

to develop our model, which achieved an AUC of 0.78 and 0.71 on internal hold-

out testing data and external testing on an independent dataset, respectively. As a

measure of the global spatial architecture of the lymphocytic microenvironment,

the average structural similarity between predicted lymphocytic density maps
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and ground truth lymphocytic density maps was 0.86 ± 0.06 on testing data. On

experimental mouse model validation, we measured a lymphocytic density of

96.5 ± %1% in a Rag2+/- control mouse, compared to an average of 16.2 ± %5% in

Rag2-/- immune knockout mice (p<0.0001, ANOVA-test).

Discussion: These results demonstrate that CD3/CD20 positive lymphocytes can

be accurately detected and characterized on H&E by deep learning and

generalized across species. Collectively, these data suggest that our

understanding of complex biological systems may benefi t f rom

computationally-derived spatial analysis, as well as integration of

computational science and basic science.
KEYWORDS

Rag2 knockout (KO) mouse, inflammatory response, lymphocytes, digital pathology,
pathomics, deep learning, experimental validation
1 Introduction

Inflammatory mechanisms and a well-regulated immune

response are essential for protecting against pathogens, preventing

chronic inflammatory conditions, and responding to tissue damage

(1). In contrast, immune dysregulation can lead to a variety of health

issues, including autoimmune diseases, chronic inflammation,

susceptibility to infection, and the development and progression of

cancer. Inflammatory processes mediated by B and T lymphocytes

play a major role in both cancer immunity (e.g., immune surveillance,

tumor infiltrating lymphocytes, stromal inflammation) and therapy

(e.g., immune checkpoint inhibitors, CAR T-cell therapy, etc.).

Precision and accuracy in quantifying lymphocytic inflammation

are critical for diagnosis and classification of certain disease processes,

enabling use of lymphocytic infiltration as a prognostic marker, and

potentially developing targeted treatments that improve patient

outcomes. Pathomics, i.e., high-throughput extraction and analysis

of features from digital pathology images, represents a promising

approach to derive a multi-scale mathematical representation of

lymphocytic infiltration phenotypes for both clinical and

research purposes.

Image-based quantification and characterization of lymphocytes

on digitized tissue biopsies via deep learning enables spatial

interrogation of the tumor immune microenvironment, thus

providing a better description of the inflammatory spatial

phenotype than other techniques, such as flow cytometry or RNA

sequencing. For example, deep learning has been applied to count

CD3 positive T lymphocytes stained by immunohistochemistry

(IHC) on whole slide images (WSIs) and/or to quantify CD8

expression in prostate (2), colon (2, 3), neuroblastoma (4), gastric

(5), breast (6), and lung (7) cancers. Deep learning has also been used

to quantify other relevant inflammation-related protein markers on

IHC such as Inducible T-cell COStimulator (ICOS), which is involved

in T-cell activation and adaptive immune response (8).
02
Notably, IHC is expensive and often not feasible in routine

pathology and exploratory retrospective research. Consequently,

there is a growing need to develop deep learning algorithms that can

accurately detect lymphocytes onWSIs from hematoxylin and eosin

(H&E) stained tissue (i.e., the standard staining technique used to

visualize tissue morphology and structure). Deep learning-derived

digital staining (9) of H&EWSIs can facilitate efficient and unbiased

detection and quantification of different cell types across various

tissues and diseases, such as melanoma (10), breast cancer (11–13),

colorectal cancer (13), and testicular cancer (14).

However, the application of deep learning to characterize the

immune response on digital pathology presents several key

challenges. First, a notable constraint is that these models

generally require manual annotation of class labels on H&E

during the training process. Obtaining accurate annotations for

large numbers of lymphocytes is a labor-intensive, time-consuming

process that is limited by both inter- and intra-observer variability.

Second, while these models excel at pattern recognition, they lack

the mechanistic understanding required to rigorously evaluate

immune responses. That is, deep learning may not fully capture

basic biological characteristics beyond surface-level image

representation. This hinders the ability of these models to provide

deeper insight into the underlying mechanisms of different immune

responses, highlighting the need for complementary testing of deep

learning solutions under controlled experimental conditions.

In this paper, we address these challenges via an integrated

research design that combines computational (i.e., “dry lab”)

techniques and experimental (i.e., “wet lab”) rigor (Figure 1).

First, we developed a knowledge-guided deep learning framework

to measure lymphocytes on H&E tissue, where the fidelity of

training labels is maximized through single-cell resolution image

registration of H&E to IHC. We demonstrate that such an approach

enables pixel-perfect ground-truth labeling of lymphocytes on H&E

as measured by IHC. Second, we move beyond conventional
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statistical testing of our deep learning model by subjecting it to

rigorous testing in a genetically engineered mouse model, where

Rag2 knockout mice lacking mature lymphocytes are used as a

negative experimental control. Our results demonstrate that the

immune microenvironment can be accurately captured on H&E by

deep learning across species and tissue types, generalizing a model

developed on kidney tissue from humans to various human cancers,

as well as splenic and thymic tissues form mice. Collectively, these

data suggest that our understanding of complex biological systems

may benefit from combining data-driven insights with

empirical biology.
2 Methods

2.1 Experimental tissue preparation and
whole slide image acquisition

Formalin-fixed, paraffin-embedded tissue blocks from

nephrectomies of patients (N=18) with kidney cancer and

moderate-to-severe inflammation in renal tissue away from the

cancer were obtained from the Duke University Pathology Paraffin

Tissue Archives. Nephrectomies were chosen as the basis of

generating scalable deep learning training examples because they

often involve significant inflammation, thus providing a rich source

of lymphocytes and diverse inflammatory microenvironments.

Tissues were cut at 2 microns thick, stained with H&E (Figure 2A),

and digitized into WSIs at 40X magnification (0.25 µm/pixel) using a

Leica Aperio AT2 whole slide scanner (Figure 2B). Following H&E

image acquisition, the same tissue specimens were re-stained with a

CD3/CD20 IHC cocktail to detect T (CD3+) lymphocytes and B

(CD20+) lymphocytes (Figure 2C). The IHC-stained specimens were

then re-scanned at 40X magnification on the same Leica Aperio AT2
Frontiers in Immunology 03
imaging system (Figure 2D), resulting in 2-channel, multi-contrast

WSIs encoding both tissue morphology (on H&E) and tissue CD3/

CD20 expression (on IHC) (Figure 2E).
2.2 Image registration of H&E and IHC at
single-cell resolution

To minimize shift artifacts, each H&E image was co-registered to

its matched IHC image to map the corresponding location of CD3/

CD20 antibody expression on IHC to individual nuclei on H&E. A

multiscale, two-step rigid registration process (Figure 3) was

implemented as follows. First, the H&E and IHC images were each

downsampled to 25% of their native resolution to accommodate

RAM constraints, and their center-of-mass (CoM) was calculated as a

coarse tissue landmark. The IHC image was shifted to the H&E image

based on a CoM alignment. Second, 1024x1024 tiles of pixels were

stochastically sampled at full resolution from both H&E and IHC

images at regions of high CD3/CD20 signal. The IHC tiles and H&E

tiles were co-registered at single-cell resolution and stored as a tiled

database for downstream deep learning model development. The

accuracy of image registration was quantified based on Normalized

Cross Correlation (NCC).
2.3 Knowledge-based lymphocyte labeling
to generate deep learning training data

The set of shift-invariant, co-registered H&E/IHC tile pairs

(Figure 3) were used to curate single-cell deep learning training data

labels. First, using a pre-trained StartDist deep learning model (15), all

nuclei (irrespective of cell type) were detected and segmented on each

H&E image tile (Figure 4A). Next, color deconvolution of the CD3/
FIGURE 1

Overview of research design for lymphocyte deep learning model development and evaluation. We first developed a knowledge-guided deep
learning framework to measure lymphocytes on H&E-stained kidney tissue, where the fidelity of training labels was maximized through single-cell
resolution image registration of H&E to IHC staining with a cocktail of anti-CD3 and anti-CD20 antibodies to stain T and B lymphocytes,
respectively. Following traditional statistical testing of the model based on receiver operating characteristic (ROC) curve analysis, we then
characterized pattern-preserving features of the immune microenvironment based on pathomic feature extraction and calculated their error rates
relative to the shift-invariant IHC antibody measurements. Finally, we performed a preclinical experiment to confirm that our deep learning model is
able to identify lymphocytes in a genetically engineered mouse model, where Rag2 knockout mice without mature lymphocytes are used as a
negative control.
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CD20 stain was used to isolate and threshold lymphocyte-positive

regions on each IHC image tile (Figure 4B). Finally, nuclei on H&E

with at least 70% of their pixels overlapping with the corresponding

IHC signal were labeled as lymphocytes and denoted as the positive

class label (Figure 4C). This 70% overlap threshold was empirically

determined to balance precision and accuracy, as requiring 100%

overlap was too restrictive given that IHC stains can leak beyond the

nuclei, causing variability and potential errors. The nuclei on H&E that

were non-overlapping with IHC were labeled as non-lymphocytes and

denoted as the negative class label (Figure 4C).

2.4 Deep learning detection of
lymphocytes on H&E based on prior-
knowledge of IHC

Using the IHC-guided nuclear labels (Figure 4), a deep learning

model was developed to detect lymphocytes on H&E in the absence
Frontiers in Immunology 04
of IHC (Figure 5). Our model was based on the HoverNet

architecture (16), which is a multi-task deep learning framework

to simultaneously detect, segment, and classify nuclei. The

HoverNet architecture consists of one image encoding branch

and three decoding branches, each with a specific task: (1) a

nuclear segmentation branch, which is responsible for

segmentation of nuclei; (2) a nuclear classification branch, which

is responsible for classifying the segmented nuclei into types; and

(3) an instance separation branch, which is responsible for

separating overlapping nuclei based on distance vector fields (e.g.,

hover maps) from each pixel inside a nucleus to its center. By

encoding directional information, this state-of-the-art architecture

is designed to effectively handle the challenges of nuclear

segmentation in complex tissue environments with dense regions

of overlapping nuclei, such as in lymphocytic inflammation.

The data were split at the patient level into a training/validation

cohort (N=280 tiles from N=14 WSIs) and an internal testing
FIGURE 3

Multiscale H&E to IHC image registration. First, a coarse registration step provides an initial alignment of the entire tissue based on the center-of-
mass shift between the H&E image and the IHC image. Second, a fine registration step aligns individual nuclei on tiled sections (1024x1024 pixels) of
tissue, resulting in a one-to-one matching of nuclei across the H&E channel and the IHC channel. The 2-channel, shift-invariant tiled image data is
stored for downstream deep learning model development.
FIGURE 2

Tissue processing strategy to generate 2-channel, multi-contrast digital images of paired hematoxylin and eosin (H&E) vs. immunohistochemistry
(IHC) stains at single-cell resolution. A 2-micron thick tissue specimen is first (A) stained with H&E and subsequently (B) digitized into a whole slide
image (WSI) at 40X magnification. The specimen is then (C) re-stained with CD3/CD20 IHC (i.e., antibody markers of T and B cells, respectively) and
(D) re-imaged on the same whole slide scanner. This process results in (E) a 2-channel, multi-contrast WSI encoding both (i) the morphological
characteristics of the tissue on H&E and (ii) the corresponding CD3/CD20 expression profile of the tissue on IHC.
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cohort (N=40 tiles from N=4 WSIs). The deep learning input patch

size was 270x270 pixels, which was randomly extracted 50 times

from each 1024x1024 tile. During training, concurrent parameter

optimization was based on Dice loss for nuclear segmentation,

binary cross entropy for nuclear classification, and mean square

error loss for distance prediction between each nuclear pixel and its

center. Training utilized the Adam optimizer (100 epochs) with

learning rate linear degradation every 30 epochs. Various data

augmentation techniques were applied to increase the variability

of the training data. Model parameters were fine-tuned during

training with an 8:2 ratio of training and validation, and

independently evaluated on the held out internal testing cohort.

Specific hyperparameters are provided in Table 1.
2.5 Lymphocyte deep learning model
evaluation and multi-scale
performance metrics

Using the internal testing set, model performance was evaluated

at two different length-scales relative to IHC measurements

(Figure 6A): (1) a local length-scale to characterize the raw, cell-by-

cell deep learning performance of detecting lymphocytes vs. non-

lymphocytes; and (2) a global length-scale to characterize pattern-

preserving pathomic features of the immune microenvironment

derived from deep learning detection of lymphocytes. Local model

performance was based on analysis of precision-recall curves and

receiver operating characteristic (ROC) curves (Figure 6B). Global

model performance was based on extraction of pathomic graph

features and texture features, where graph nodes represent

individual lymphocytes detected via the deep learning model, and

graph edges characterize the spatial connections between different

lymphocytes (Figure 6C). Graph features were compared between the

predicted lymphocytic patterns (based on deep learning detection of

lymphocytes as graph nodes) and themeasured lymphocytic patterns
Frontiers in Immunology 05
(based on the measured IHC staining of lymphocytes as graph nodes)

via arctangent percent error (17). To calculate texture features, a

radial basis function was convolved with the graphs to estimate the

lymphocytic probability density function (PDF) (Figure 6D). From

the predicted lymphocytic PDF on H&E, texture features were

extracted and compared to the measured lymphocytic PDF on

IHC. Finally, the structural similarity index measure (SSIM) (18)

was calculated between the predicted and measured PDFs as an

overall description of predicted topological fidelity. Texture feature

definitions are adopted from the Image Biomarker Standardization

Initiative (IBSI) (19) and graph feature definitions are listed

in Table 2.
2.6 Independent testing of lymphocyte
deep learning model on an external
dataset of diverse human tissues

To independently evaluate the generalization capacity of the

developed lymphocyte deep learning model, we applied it to a

publicly-available, external dataset. Specifically, we analyzed testing

data from the previously completed Multi-organ Nuclei

Segmentation and Classification (MoNuSAC) Grand Challenge

(20), which is designed to systematically evaluate deep learning

detection and classification of different cell types on digital

pathology. Since MoNuSAC data consists of four different human

tissues (breast, kidney, lung, and prostate), it allows us to explore

whether our lymphocyte model performs consistently across

different human tissues and diverse biological contexts. In total,

we applied our model to 146 H&E regions-of-interest (ROI) from

46 TCGA patients, where manual annotation of lymphocytes is

available as ground-truth labels as part of the MoNuSAC Grand

Challenge. On inference, we calculated precision, recall, and F1

score, as well as Panoptic Quality (PQ), which was the evaluation

metric used in the MoNuSAC Grand Challenge.
FIGURE 4

Automatic lymphocyte labeling to generate deep learning training data at single-cell resolution. (A) Nuclei are first identified and segmented using a
pretrained StarDist model. (B) The CD3/CD20 IHC signal (brown stain) is then thresholded and mapped onto the segmented nuclei to identify
lymphocytes on H&E. (C) Deep learning training examples are curated by labeling nuclei as either lymphocytes (positive class: overlap between
nuclear contour and IHC signal) or non-lymphocytes (negative class: non-overlap between nuclear contour and IHC signal).
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2.7 Experimental confirmation of
lymphocyte deep learning model in a
genetically engineered mouse model

To experimentally confirm our lymphocyte model, we conducted

a preclinical experiment (Figure 7) on mice genetically engineered to

lack mature lymphocytes as a negative control. Here, the immune

microenvironment of the mice was systematically modulated under

experimental conditions (i.e., by genotype) to verify that our deep

learning model accurately and reliably identifies lymphocytes.

Essentially, we asked the simple question, “what would happen if a

deep learning algorithm designed to detect lymphocytes experiences

an organism genetically engineered not to have lymphocytes?” To

address this question, we evaluated spleens and thymuses from mice

genetically engineered to lack Rag2 (i.e., a gene required for

lymphocyte maturation). Homozygous knockout mice (Rag2-/-)

were used as a negative control because they do not produce

mature lymphocytes and thus lack the biological basis of the deep

learning positive class label. Meanwhile, a heterozygous littermate

mouse with one intact allele (Rag2+/-) was used as a positive control.

2.7.1 Animal model
All animal studies were performed in accordance with protocols

approved by the Duke University Institutional Animal Care and

Use Committee (IACUC) and adhered to the NIH Guide for the
Frontiers in Immunology 06
Care and Use of Laboratory Animals. Rag2+/- and Rag2-/- mice were

bred at Duke University. The Rag2 gene is essential for B and T cell

maturation. Homozygous knockout mice (Rag2-/-) were used as

negative controls because they do not contain mature lymphocytes.

A heterozygous mouse with one intact Rag2 allele (Rag2+/-) was

used as a positive control with mature lymphocytes present.

2.7.2 Experimental measurements of
lymphocytes in genetically engineered mice

Mice were euthanized via CO2 inhalation. Their spleen and

thymus were excised, formalin-fixed, and paraffin-embedded.

Tissue sections were cut at 2 microns, stained with H&E, and

scanned on the same Leica Aperio AT2 imaging system utilized in

Section 2.1 above. Our pre-trained deep learning model, developed

on human data per Section 2.4 above, was directly applied to the

H&E images to calculate lymphocytic density. Lymphocytic density

measurements were compared between Rag2+/- and Rag2-/- mice.

Importantly, the deep learning model was directly applied to this

experimental data without any re-training, fine-tuning, or transfer

learning. Therefore, the mouse tissues serve as a final testing set for

the deep learning model, where the biology is systematically

controlled (i.e., by mouse genotype) to evaluate the performance

of this model under defined experimental conditions.
3 Results

3.1 Image registration of H&E and IHC at
single-cell resolution and corresponding
lymphocyte training labels

We generated a total of 320 matched pairs of H&E/IHC tiles

from 18 patient cases, evenly distributed among minimal, sparse,

and dense lymphocytic inflammation. Following image registration

of H&E to IHC, the average normalized cross correlation coefficient

was 0.89 ± 06, suggesting minimal error from shift artifacts. In total,

111,110 nuclei were automatically segmented on the H&E via

StarDist. Of the segmented nuclei, 45,611 nuclei were labelled as

lymphocytes based on the co-registered CD3/CD20 IHC reference.
FIGURE 5

Hover-Net model architecture for lymphocyte identification. This multi-task deep learning framework was implemented to simultaneously detect,
segment, and classify lymphocytes (blue predictions) and non-lymphocytes (yellow predictions) on H&E images.
TABLE 1 Hyperparameter settings for Hover-Net.

Hyperparameters Settings

Learning Rate 1e-3 with linear decay every 30 epochs

Data Augmentation Affine, Flip, Crop, Blur, Color, Contrast

Optimizer Adam

Epoch 100

Loss Function BCE loss + Dice loss + MSE loss

Batch Size 16

Pretrained Weights ImageNet-ResNet50-Preact weights
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3.2 Evaluation of lymphocyte deep learning
model on internal testing data

On the internal testing set, model precision, recall, and f1 score

were 0.74 ± 11, 0.73 ± 10, and 0.73 ± 11, respectively, with an area

under the curve (AUC) of 0.78 ± 15. Figure 8 shows illustrating

examples of lymphocyte predictions on H&E testing data relative to
Frontiers in Immunology 07
corresponding ground-truth CD3/CD20 IHC images. These results

demonstrate a strong concordance between the predicted

lymphocytes (i.e., the computationally derived blue signal) and

the shift-invariant ground-truth CD3/CD20 IHC (i.e., the

measured brown signal). The average time to process a

1,024×1,024 image tile was 18 seconds on a single RTX A6000

with 48 GB RAM. As illustrated in Figure 9, the average structural
FIGURE 6

Deep learning model evaluation metrics at different length-scales. (A) All deep learning results were compared to IHC-based computational
measurements of nuclei counts, nuclei topological graphs, and nuclei density maps. (B) Local model performance of individual nuclei predictions
was based on analysis of precision-recall curves and receiver operating characteristic (ROC) curves. (C, D) Global model performance of pattern-
preserving features of the immune microenvironment was based on (C) extraction of graph features, where graph nodes represent individual
lymphocytes detected via deep learning, and graph edges characterize the spatial connections between different lymphocytes; and (D) structural
similarity of lymphocyte probability density functions (PDF), estimated based on a kernel density estimation of the predicted lymphocyte graphs
using a radial basis function.
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similarity between the predicted lymphocytic PDFs and the

measured lymphocytic PDFs was 0.86 ± 06. We found that 19.5%

of pathomic features demonstrated a mean error of <10%, and

56.8% of features demonstrated a mean error of >30%. The

calculated errors of all pathomic graph features and texture

features are reported in the Supplementary Material.

On feature extraction from the predicted lymphocytic graphs vs.

the measured lymphocytic graphs, we found that the graph features

with the lowest errors were: First Order Edge Distance Mean (3.3%),

Laplace Matrix Spectrum Standard Deviation (10.1%), Topology

Max Cardinality Matching Probability (11.1%), Topology Max

Cardinality Not Matching Probability (11.7%), and First Order

Vertex Degree Mean (15.3%). Meanwhile, the graph features

demonstrating the highest errors were Betweenness of Vertex

Mean (75.1%), Betweenness of Vertex Standard Deviation (73.2%),

Betweenness of Edge Standard Deviation (71.1%), Central Point

Dominance (70.4%), and Betweenness of Edge Mean (60.0%).

On feature extraction from the predicted lymphocytic PDFs vs. the

measured lymphocytic PDFs, we found that the texture features with

the lowest errors were Gray Level Co-occurrence Matrix Inverse

Difference (0.1%), Gray Level Dependence Matrix Large Dependence

Emphasis (0.2%), Gray Level Co-occurrence Matrix Correlation (7.1%),

Gray Level Co-occurrence Matrix Maximal Correlation Coefficient

(7.1%), and Gray Level Co-occurrence Matrix Information Measure of

Correlation 1 (13.3%). Meanwhile, the texture features demonstrating

the highest errors were Gray Level Co-occurrence Matrix Cluster

Prominence (71.3%), Gray Level Co-occurrence Matrix Cluster Shade

(65.5%), Neighborhood Gray Tone Difference Matrix Complexity

(59.9%), Neighborhood Gray Tone Difference Matrix Contrast

(54.3%), and First Order Robust Mean Absolute Deviation (32.4%).
TABLE 2 Feature definition and explanation for graph features.

Feature Name Explanation

Centrality_PageRank Measuring the importance of a node by
other important nodes connected to it

Centrality_NodeBetweenness Measuring the centrality of a node using
the number of shortest paths that pass
through this node

Centrality_EdgeBetweenness Measuring the centrality of an edge using
the number of shortest paths that pass
through this edge

Centrality_CentralPointDomiance Calculating the central point dominance
given the betweenness of each node

Topology_MaxCardinality Finding the maximum subset of a graph
such that no two edges share a
common node.

NodeDegree Node degree for each node

EdgeDistance Distance between each pair of
connected nodes

Spectral_Laplacian Laplacian matrix for this

Correlation_Assortativity Measuring how nodes with different types
tend to connect with each other

Correlation_ScalarAssortativity Measuring how nodes with similar degrees
tend to connect with each other

Clustering_Global_Coefficient Computing clustering score of a graph
using the ratio of number of triangles and
number of connected triples

Clustering_TriangleCount Number of triangles in a graph

Clustering_TripleCount Number of connected triples in a graph
FIGURE 7

Experimental confirmation of lymphocytic identification by deep learning in a genetically engineered mouse model. A preclinical experiment was
performed using mice that have been genetically engineered to lack mature lymphocytes as a negative control. Spleens and thymuses from Rag2-/-

or littermate control Rag2+/- mice were formalin-fixed, paraffin-embedded, cut, stained with H&E, and imaged on a whole slide digital pathology
scanner. A pre-trained deep learning algorithm, independently developed on human tissue to detect lymphocytes on H&E images, was applied to
the mouse tissue to measure differences in lymphocytic infiltrate between Rag2-/- and Rag2+/- mice. Homozygous knockout mice (Rag2-/-) were
used as negative controls because they lack mature lymphocytes. A heterozygous mouse (Rag2+/-) with one intact allele was used as a
positive control.
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3.3 Independent testing of lymphocyte
deep learning model on an external
dataset of diverse human tissues

On the external human testing set, model precision, recall, and

f1 score were 0.45 ± 33, 0.87 ± 24, and 0.53 ± 31, respectively, with

an AUC of 0.71 ± 0.15. A summary of external testing results,

including individual performance metrics of specific tissue types,

are reported in Table 3. The illustrating examples shown in

Figure 10 demonstrate that the model was able to generalize well

across diverse human tissues and different biological contexts.

Finally, the model achieved a PQ score of 0.43, which is

consistent with the published MoNuSAC Grand Challenge

leaderboard statistics (average PQ = 0.39 ± 13; range of PQ =

[0.10, 0.56]; N=13).
3.4 Experimental confirmation of
lymphocyte deep learning model in a
genetically engineered mouse model

On pre-clinical interrogation of our deep learning model, we

were able to reliably measure lymphocytes in lymphoid tissues from

genetically engineered mice. Experimental results are shown in

Figure 11, where an average lymphocyte density of 96.5 ± %1%

was measured in the Rag2+/- (i.e., lymphocyte-intact) genotype

compared to 16.2 ± %5% in the Rag2-/- (i.e., lymphocyte

knockout) genotype (p<0.0001, ANOVA). Qualitat ive

interpretation showed distinct differences in lymphocyte density

on H&E when comparing the spleen (Figure 12A) and thymus

(Figure 12B) in Rag2+/- versus Rag2-/- mice.
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4 Discussion

This study introduced an integrated research design to

characterize lymphocytic infiltration on H&E WSIs across

different tissue types and species. Our approach extends the

capability of lymphocyte quantification to archival digital images

of H&E-stained tissue without requiring IHC. Furthermore, it

leverages powerful computational analysis tools to capture spatial

characteristics of lymphocytic inflammation in tissues. By

combining computational image analysis with novel tissue

processing procedures (matched H&E and IHC on the same

slide) and genetically engineered mouse models, we demonstrated

a rigorous approach to deep learning algorithm development and

evaluation under well-controlled laboratory conditions. Although

image-based characterization of lymphocytes identified by IHC

staining has shown success in various cancer studies, our

approach extends this capability to digitized H&E-stained slides,

overcoming limitations associated with the cost and feasibility of

IHC in routine pathology and retrospective research. Furthermore,

deep learning algorithms that identify different cell types on H&E

WSIs offer the opportunity to simultaneously analyze the topology

of those cells and to capture crucial structural details of the tissue,

enabling examination of a broader spectrum of cell types and

tissue organization.

A key innovation of our approach is the tissue processing and

image registration procedure to generate efficient class labeling on

H&E images with high accuracy and precision. This in turn enables

robust deep learning model development. In biomedical imaging

applications of deep learning, generation of reliable ground-truth

labels remains a major challenge (21, 22). To help address this issue,

we optimized training label fidelity through image registration of
FIGURE 8

Deep learning lymphocyte prediction examples. From left to right are input H&E patch (1024x1024), model prediction, and CD3/CD20 IHC
reference. Predicted lymphocytes are highlighted in blue, while other cells are in yellow. Notably, the model’s predictions closely resemble the
brown regions in the IHC reference, indicating its ability to accurately identify lymphocytes in H&E-stained histopathology images.
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H&E and IHC staining performed on the same slide at single-cell

resolution, achieving pixel-perfect, ground-truth labels. As the

knowledge base of our model is IHC antibodies with high

specificity for lymphocytes – and not manual annotation by

pathologists – the training data do not suffer from intra- or inter-

observer variability.

Furthermore, our approach is fundamentally different than

clinical pathology workflows and other studies that typically

employ H&E and IHC staining on sequential slides cut from a

tissue block. While this approach generates both stains on the same

specimen, the information content is not shift-invariant, making it

non-trivial for deep learning applications that resolve data at the

length-scale of individual immune cells. Unlike staining sequential

slides, performing H&E and IHC staining on the same tissue enables

data curation at single-cell resolution and is thus well-suited for deep

learning applications at the physical length-scales of individual cells.
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Same-tissue processing also enables error propagation of

downstream pathomic features derived from the ensemble of

detected cells. This is important because the spatial interplay of cells,

as captured by representative pathomic features, is essential to spatially

characterizing tissue microenvironments. For example, spatial cell-to-

cell interplay has been shown to be linked with therapeutic responses

and tumor biology (23–25), as well as broader applications from

intracellular to extracellular conditions and associations with various

tissue microenvironments (26–29). Many of these topological

characteristics can be computationally measured in various ways,

including cell geographic clusters, cell density distributions (30), cell

topological graphs (31), cell clouds (32), and graph neural networks

(GNNs) (33), potentially leading to deeper insights into the

mechanisms at play in different pathological and immunological states.

Our experiment comparing predicted pathomic features on

H&E to measured pathomic features on IHC suggest that the
TABLE 3 External validation of lymphocyte detection on diverse human tissues from the public MoNuSAC dataset.

ROI count Cell count Precision Recall F1 AUC PQ

Breast 43 4210 0.48±0.38 0.73±0.34 0.52±0.35 0.73±0.20 0.40±0.27

Kidney 30 3628 0.49±0.33 0.93±0.14 0.58±0.31 0.68±0.14 0.46±0.24

Lung 34 2828 0.41±0.27 0.90±0.15 0.52±0.26 0.73±0.12 0.43±0.21

Prostate 39 3315 0.42±0.30 0.96±0.12 0.52±0.30 0.70±0.12 0.42±0.24

Overall 146 13981 0.45±0.33 0.87±0.24 0.53±0.31 0.71±0.15 0.43±0.24
FIGURE 9

An environmental-level modeling system example. From left to right are predicted lymphocytes, cell graphs showing spatial relationship among
lymphocytes, and cell probability density maps (transformed from the cell graphs). The top row showcases the ground truth measurements, while
the bottom row presents the modeled measurements. This figure illustrates a strong alignment between the ground truth and prediction model.
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error-rate of pathomic extraction is largely feature-specific. That is,

certain pathomic features are more sensitive than others to the same

errors in the initial deep learning inference. This has major

implications on pathomic biomarker models that rely on an
Frontiers in Immunology 11
upstream deep learning framework for initial cell detection. For

example, variation induced by deep learning errors, which leads to

inconsistencies in pathomic feature extraction, may consequently

result in variability in the computational biomarkers derived from
FIGURE 11

Validation of lymphocyte identification by a deep learning model in a genetically engineered mouse model. The violin plots depict the distribution of
lymphocyte percentage in the spleens across 256x256 image patches of different mice. The Rag2-/- genetic knockout mice demonstrated an
average lymphocyte density of 16.2%, which was significantly smaller compared to the Rag2+/- experimental control mouse of >90% (p<0.0001,
ANOVA). These experimental data suggest that our deep learning model generalized across species and tissue types, capturing at least the basic
aspects of lymphocytic immune response.
FIGURE 10

Illustrating examples of lymphocyte detection via deep learning on an external dataset of diverse human tissues. The external MoNuSAC dataset
consists of four different human tissues (breast, kidney, lung, and prostate). Each ROI in the figure is paired with a ground truth lymphocyte mask
(binary mask, where white represents ground truth lymphocytes) on the right. Blue and red contours represent model-detected lymphocytes and
other cells, respectively.
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these features. Same-tissue staining at single-cell resolution enables

characterization of this effect, such that propagation of error for

individual features can be better understood. This may be a useful

feature selection strategy to remove highly variable features that

would otherwise introduce noise into downstream biomarker

models. Our results demonstrate that even with modest deep

learning performance, there are pathomic features which still

preserve the global topological patterns of the immune

microenvironment. To the best of our knowledge, there is limited

prior research studying such pathomic feature propagation of error.

Our external testing results on diverse human tissues were

similar to the published MoNuSAC Grand Challenge results (PQ

= 0.43 vs. PQ = 0.39 ± 13), implying that the performance of our

model is comparable to other lymphocyte deep learning models in

the literature. Our lymphocyte model thus demonstrated reasonable

generalization when applied to an independent testing dataset of

different human tissues, suggesting that it can perform consistently

across diverse biological contexts. Furthermore, these external data

were of variable stain quality, tissue processing, and image

acquisition, which is important because laboratory conditions

cannot always be easily replicated across institutions.

However, there are several factors that may contribute to

differences in model performance between the internal and

external datasets. First, the manual lymphocyte annotation of the

MoNuSAC Grand Challenge dataset is fundamentally different than

the IHC-based measurements of our internal dataset, potentially

leading to imprecise definitions of ground-truth. Second, the diverse

tissue types of the MoNuSAC Grand Challenge data – which were

not observed in our internal data – may contribute to a biological

domain shift that requires fine-tuning of models to specific

pathologies. Our external testing results support this concept,

where high recall scores indicate stable lymphocyte morphology

detection in different tissue conditions, yet lower precision scores

suggest variation in tissue content not present in training data,
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where objects with similar characteristics as lymphocytes were mis-

recognized by the model.

Finally, the major novelty of our paper was the cross-species

validation of our lymphocyte model, where we trained our model

on human tissues, and externally validated it using a genetically

engineering mouse model. This is significant, because while deep

learning models demonstrate remarkable proficiency in pattern

recognition, their limitations in mechanistic understanding are

evident. Often, these models fall short in capturing fundamental

biological characteristics beyond surface-level image representation.

This gap underscores a critical challenge, where purely data driven

solutions alone may not sufficiently elucidate the intricate

mechanisms underlying immune responses. Consequently, there

is a pressing need for complementary experimental testing to

validate and refine these models under controlled conditions. We

also note that data assimilation methods (i.e., where mechanistic

models from either physics or biology are integrated with data-

driven solutions, such as deep learning (34–36)), may provide a

more rigorous description of the imaging phenotype and a better

understanding of deep learning (37, 38). Our mouse model results

suggest that integrating computationally-derived spatial analysis

with traditional basic science approaches could enhance our

understanding of complex biological systems.

Although our research demonstrates several technological

innovations and novel findings, our study is not without

limitations. First, our tissue processing scheme may result in

tissue deformations during the re-staining procedure, which could

result in errors during image registration. However, these

deformations are minimal when compared to those from cutting

the tissue. Because we only cut the tissue once, our rigid registration

errors should be smaller than with sequential cuts, where

deformable image registration is required. Second, while total cell

counts were substantial in our data, case level variability was limited

to only 18 unique patient samples used in model development. This
FIGURE 12

Differences in tissue immune phenotype in genetically engineered mice. Computationally-detected lymphocytes via deep learning inference are
shown in blue for both the (A) spleen and (B) thymus. Qualitative differences in lymphocytic architecture were identified by deep learning in the
Rag2-/- genetic knockout mice compared to the Rag2+/- experimental control.
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is unfortunately a consequence of our prospective data curation and

intricate tissue processing procedure, which emphasized data

quality over data quantity. We partially addressed this limitation

by employing case level partitioning for training, validation, and

internal testing, as well as independent external testing on both

human and murine datasets. Future work needs to apply these

strategies to larger, more diverse data sets. Third, the current paper

only focuses on lymphocytes, but immune responses are more

diverse and include non-lymphocytic pathologies (e.g.,

neutrophils, macrophages, etc.). Since our proposed tissue

processing pipeline can be generalized to other antibodies, future

work should focus on development of additional models for

different immune cell types. This would enable a more

comprehensive analysis of the immune microenvironment.

In summary, our results demonstrate that deep learning can

reliably identify lymphocytes on H&E slides and capture differences

in lymphocyte spatial architecture. We plan to continue

mechanistic interrogation of this technique in preclinical animal

models to obtain a deeper, more holistic understanding of

underlying processes that drive disease. This approach will help

to ensure that computational predictions are biologically relevant

and scientifically robust with the goal of ultimately developing

clinically actionable biomarkers.
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