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The cGAS-STING signaling pathway plays a critical role in innate immunity and

defense against viral infections by orchestrating intracellular and adaptive

immune responses to DNA. In the context of head and neck squamous cell

carcinoma (HNSCC), this pathway has garnered significant attention due to its

potential relevance in disease development and progression. HNSCC is strongly

associated with risk factors such as smoking, heavy alcohol consumption, and

human papillomavirus (HPV) infection. The presence or absence of HPV in

HNSCC patients has been shown to have a profound impact on patient survival

and prognosis, possibly due to the distinct biological characteristics of HPV-

associated tumors. This review aims to provide a comprehensive overview of the

current therapeutic approaches and challenges in HNSCC management, as well

as the involvement of cGAS-STING signaling and its potential in the therapy of

HNSCC. In addition, by advancing the present understanding of the mechanisms

underlying this pathway, Activation of cGAS–STING-dependent inflammatory

signaling downstream of chromosomal instability can exert both anti-tumoral

and pro-tumoral effects in a cell-intrinsic manner, suggesting individualized

therapy is of great importance. However, further exploration of the cGAS-

STING signaling pathway is imperative for the effective management of HNSCC.
Abbreviations: HNSCC, Head and Neck Squamous Cell Carcinoma; GLOBOCAN, Global Cancer

Observatory; cGAS, Cyclic GMP-AMP Synthase; STING, Stimulator of Interferon Genes; TBK1, TANK-

binding Kinase 1; IRF3, Interferon Regulatory Factor 3; HPV, Human Papillomavirus; EGFR, Epidermal

Growth Factor Receptor; IFNs, Interferons; ISGs, Interferon-stimulated Genes; DMXAA, 5, 6-

dimethylxanthenone-4-acetic Acid; CMA, 10-carboxymethyl-9-acridanone; PLCg, Phospholipase Cg; PI3K,

Phosphoinositol-3-hydroxy Kinase; Akt, a-serine/threonine Protein Kinase; MAPK, Mitogen-activated

Protein Kinase; TP53, Tumor Protein 53; JAK/STAT, Janus Kinase/Signal Transducer and Activator of

Transcription; IL, Interleukin; TNFa, Tumor Necrosis Factor Alpha; IMRT+C, Intensity-modulated

Radiation Therapy plus Cisplatin; FDA, Food and Drug Administration; GP, Gemcitabine plus Cisplatin;

FP, Fluorouracil plus Cisplatin; STAT6, Signal Transducer and Activator of Transcription 6; STAT3, Signal

Transducer and Activator of Transcription 3; NLRC3, Nucleotide-oligomerization domain (NOD)-like

receptor subfamily C3.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1451305/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1451305/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1451305/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1451305/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1451305&domain=pdf&date_stamp=2024-09-04
mailto:zhuyongbo7928@163.com
https://doi.org/10.3389/fimmu.2024.1451305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1451305
https://www.frontiersin.org/journals/immunology


Shao et al. 10.3389/fimmu.2024.1451305

Frontiers in Immunology
KEYWORDS

head and neck squamous cell carcinoma (HNSCC), cGAS-STING signaling pathway,
cancer immunotherapy, viral infections, human papillomavirus (HPV)
GRAPHICAL ABSTRACT

HNSCC is primarily caused by smoking, heavy alcohol consumption, and HPV infection. Upon activation, the cyclic cGAS-STING signaling pathway
plays a crucial role in HNSCC progression. cGAS recognizes cytosolic DNA, leading to the production of cGAMP. cGAMP then binds to and activates
the STING receptor, triggering downstream signaling events. This activation results in the production of pro-inflammatory cytokines and type I inter-
ferons, promoting tumor growth and immune evasion. Targeting cGAS-STING signaling pathway is promising for HNSCC treatment. Abbreviations:
HNSCC, Head and Neck Squamous Cell Carcinoma; HPV, Human Papillomavirus; cGAS, cyclic GMP-AMP synthase; STING, Stimulator of Interferon
Genes; cGAMP, cyclic GMP-AMP.
1 Introduction to HNSCC

Head and neck tumors comprise a variety of malignancies that

occur in the neck, ear, nose, throat, and oral and maxillofacial

regions. Most of these tumors arise from the mucosal epithelial cells

of the oral cavity, pharynx, and larynx. More than 90% of head and

neck tumors are squamous cell carcinomas, which are malignant

tumors that arise from the epidermis or skin appendages (1). The

incidence of Head and Neck Squamous Cell Carcinoma (HNSCC)

has been steadily increasing over the years, with an estimated 1.08

million new cases predicted to be added annually, according to the

Global Cancer Observatory (GLOBOCAN) (2, 3). In 2021, HNSCC

is expected to account for 78% of deaths from head and neck

tumors, and the incidence and mortality rates continue to rise (1).

The majority of patients are diagnosed at a locally advanced stage,

and the prognosis is generally poor, with approximately 50%-60%

of patients experiencing local recurrence and 20%-30% developing

distant metastases within two years. The five-year survival rate is

typically less than 50% (4). HNSCC is a significant health problem

due to its high incidence, high mortality rate, and the fact that it is

the most common type of systemic tumor originating in the head

and neck. HNSCC is more prevalent in men than in women, and

men have two to four times the risk of developing HNSCC

compared to women. The age of onset is generally over 50 years (5).

HNSCC is closely associated with smoking and heavy alcohol

consumption, and countries with high tobacco and alcohol
02
consumption have higher incidence rates (6). Human

papillomavirus (HPV) is also a significant factor in the

development of HNSCC (7). The HPV virus family consists of a

group of DNA viruses, categorized into high-risk and low-risk

types. The high-risk HPV viruses primarily include subtypes

HPV16, which are the most common HPV subtypes associated

with HNSCC (8).

In clinical practice, HNSCC is primarily classified into HPV-

positive and HPV-negative cases. Oral and pharyngeal cancers are

mainly associated with smoking and alcohol consumption, while

HPV infection primarily causes oropharyngeal cancer. HPV infects

the mucosal cells of the oral cavity and pharynx, integrating its

DNA into the host cell genome, leading to abnormal cell

proliferation and transformation, overexpression of oncogenes,

and inactivation of tumor suppressor genes, ultimately resulting

in malignant transformation and the development of HNSCC (9).

Compared to HPV-negative HNSCC, patients with HPV-positive

HNSCC exhibit distinct clinical features and treatment responses.

HPV-positive patients are typically younger, have a more benign

disease course, and tend to have a better prognosis. Additionally,

HPV-positive HNSCC often demonstrates higher histological

differentiation and fewer lymph node metastases. In clinical

practice, HPV testing has become an important factor in

evaluating the prognosis and selecting treatment strategies for

HNSCC patients. HPV-positive HNSCC patients generally exhibit

better responses to radiation therapy and chemotherapy, caused by
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limited DNA repair capacity (10), potentially requiring lower

treatment doses and fewer treatment cycles (11). These findings

underscore the urgent need for enhanced personalized treatment

approaches for HNSCC.
2 Molecular mechanisms associated
with cGAS-STING of HNSCC

2.1 cGAS-STING pathway overview

The cGAS-STING signaling pathway serves as a critical

component of the innate immune response, particularly in

recognizing and responding to cytosolic DNA, including those

derived from pathogens or cellular damage. Upon detection of

cytosolic DNA, the cyclic GMP-AMP synthase (cGAS) catalyzes the

synthesis of cyclic GMP-AMP (cGAMP), which then binds to and

activates the Stimulator of Interferon Genes (STING) protein.

STING, a transmembrane protein located primarily on the

endoplasmic reticulum, undergoes a conformational change upon

cGAMP binding, leading to its dimerization and subsequent

activation. Activated STING then translocates from the

endoplasmic reticulum to perinuclear vesicles, where it recruits

and activates TANK-binding kinase 1 (TBK1) (12–14). TBK1

phosphorylates STING, leading to the activation of downstream

signaling cascades, including the phosphorylation of interferon

regulatory factor 3 (IRF3). Phosphorylated IRF3 translocates to

the nucleus, where it induces the expression of type I interferons

(IFNs) and other interferon-stimulated genes (ISGs), ultimately

promoting an antiviral immune response (15). Additionally, STING

activation also triggers the NF-kB signaling pathway. Upon

activation, TBK1 not only phosphorylates IRF3 but also

contributes to the activation of Ift kinase (IKK), which

subsequently phosphorylates Ihos leading to its degradation. This

degradation releases NF-kB, allowing it to translocate into the

nucleus, where it induces the expression of pro-inflammatory

cytokines and other immune-regulatory genes (Figure 1).
2.2 Impact of TP53/Notch and c-MET/
HGF/EGFR pathways on cGAS-STING
in HNSCC

Similar to most solid tumors, the development of HNSCC is a

long-term, multistage process involving the accumulation of

epigenetic changes, including mutations in multiple oncogenes

and tumor suppressor genes. Several classical pathogenic

mechanisms have been identified among the key genes associated

with its pathogenesis, including the TP53/Notch signaling pathway,

the c-MET/HGF signaling pathway (Figure 2).

P53, one of the first tumor suppressor proteins to be identified,

plays a critical role in regulating cell growth, DNA repair, and

induction of apoptosis. Poeta et al. (16) analyzed Tumor Protein 53

(TP53) gene mutations in the DNA of 560 HNSCC patients using

gene microarray and high-performance liquid chromatography and
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found that TP53 mutations were present in 53.3% of HNSCC

patients. The presence of TP53 mutations in HNSCC has been

associated with poorer prognosis, including reduced survival rates

and increased risk of disease recurrence, especially in the context of

surgical and radiotherapy treatments (17). Cell line study has shown

that p53 induces the degradation of TREX1 through the ubiquitin

ligase TRIM24. The degradation of TREX1 leads to the

accumulation of cytoplasmic DNA, which activates the cGAS-

STING pathway and results in the induction of type I interferons.

This means that p53 utilizes the cGAS-STING innate immune

pathway to exert both intrinsic and extrinsic tumor suppressive

activities (18).

The Notch gene encodes a highly conserved class of cell surface

receptors, mutations in the Notch gene can either promote or inhibit

tumor growth, depending on the location and cell type of the tumor. In

head and neck tumors (19), Notch1 inactivating mutations occur in

10%-15% of cases, making it the second most frequently mutated gene

after TP53 (20). The Notch signaling pathway is also altered in

HNSCC, with changes in gene copy number and expression of

Notch pathway components such as JAG1 and JAG2 ligands. These

changes activate the Notch signaling pathway, as demonstrated by the

activation of HES1/HEY1 genes, which are effectors of the Notch

pathway. Additionally, the role of Notch in HNSCC is regulated by the

p53-related transcription factor p63, which acts as a suppressor of the

Notch1 gene (19). Therefore, in HNSCC, while a small percentage of

Notch signaling pathway undergoes inactivating mutations via the

Notch1 receptor, the majority exhibit changes in the expression and

copy number of Notch1 signaling pathway receptors, ligands, and

related effector genes. Although there is no direct literature reporting

the interaction mechanism between Notch signaling and the cGAS-

STING signaling. However, existing studies have found that the Notch

pathway interacts with other signaling pathways, such as NFkB, to
precisely regulate cell fate (19). The cellular-mesenchymal epithelial

transition factor (c-MET) belongs to the receptor tyrosine kinase

family, with hepatocyte growth factor (HGF) serving as its ligand.

The c-MET/HGF/EGFR signaling pathway is frequently activated

during tumorigenesis, promoting tumor formation, invasive growth,

and metastasis. In most HNSCC cases, c-MET expression is

upregulated (21). Upon specific binding to HGF in the extracellular

domain, c-MET undergoes a conformational change and forms dimers

that act on downstream effectors, including phospholipase Cg (PLCg),
cytosolic Src kinase (C-Src), phosphoinositol-3-hydroxy kinase (PI3K),

a-serine/threonine protein kinase (Akt), andmitogen-activated protein

kinase (MAPK) pathways (22). Furthermore, c-MET establishes a

crosstalk pathway with the epidermal growth factor receptor (EGFR)

that promotes chemoresistance in HNSCC through the activation of

downstream signaling molecules, including RAS, RAF, MEK1, MEK2,

and ERK. The cMET/HGF/EGFR signaling pathway and the cGAS-

STING signaling pathway are two important cellular signaling

pathways that play crucial roles in regulating cell proliferation,

immune responses, and inflammation. Although there is currently

no literature directly addressing the interaction between c-MET/HGF/

EGFR and the cGAS-STING signaling pathway, studies have found

that MET-induced CD73 can inhibit the immunogenicity of STING-

mediated EGFR mutant cancer (23), suggesting that the cMET/HGF/
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EGFR signaling pathway indirectly affects the cGAS-STING

signaling pathway.

Given the reported associations of the TP53/Notch and c-MET/

HGF/EGFR signaling pathways target the cGAS-STING signaling

pathway in HNSCC, suggesting a pivotal role for the cGAS-STING

pathway in the response of HNSCC. Previous studies have found

that STING enhances cell death in HNSCC by regulating reactive

oxygen species and DNA damage (24). Therefore, further

investigation into its mechanism of action may provide new

insights for the treatment of HNSCC.
3 The critical role of cGAS-STING
signaling in HNSCC

The cGAS-STING signaling pathway plays a crucial role in the

pathogenesis of HPV-positive HNSCC. During the immune

response to viral infection, the DNA receptor cGAS recognizes

viral DNA as a danger signal and, activates STING, which initiates

downstream signaling, promoting the expression of type I

interferons. Upon binding to their receptors on the cell

membrane, interferons activate the Janus Kinase/Signal

Transducer and Activator of Transcription (JAK/STAT) pathway,
Frontiers in Immunology 04
inducing the expression of ISGs, including cytokines and

chemokines. Some of these ISGs directly contribute to the

elimination of viruses, thereby triggering an immune response

that mediates antiviral reactions (15). HPV, primarily HPV16,

integrates into the host cell genome, leading to the expression of

viral oncogenic proteins E6 and E7. HPV16 oncogene E7 can

inactivate the cGAS-STING signaling pathway, impairing the

immune response to viral infection (25, 26).

Research has revealed STING is differentially expressed in

HPV-positive and -negative HNSCC cell lines, they exhibit a

gross functional defect in signaling through this pathway.

Activation of STING in immune cell populations triggers

antitumor mechanisms, thereby increasing the survival rate of

HNSCC (27). In HPV-positive HNSCC, the activation of the

cGAS-STING pathway is a critical mechanism for detecting and

eliminating viral pathogens. Upon activation, STING coordinates

the induction of type I interferons and other antiviral factors,

promoting an immune response aimed at clearing viral infections.

Additionally, STING participates in the induction of antiviral

chemokines through the Signal Transducer and Activator of

Transcription 6 (STAT6) and Interleukin-4 (IL-4) signaling

pathways. Activation of this pathway leads to the production of

chemokines that recruit immune cells to the site of infection,
FIGURE 1

Introduction to cGAS-STING signaling pathway. Upon invasion by pathogens such as tumors, bacteria, and viruses, cGAS acts as a cytosolic DNA
receptor, recognizing invading DNA and catalyzing the generation of 2’3’-cGAMP from ATP/GTP. STING acts as a downstream bridging molecule,
recognizing cGAMP on the endoplasmic reticulum, dimerizing for transport to the Golgi apparatus, recruiting TBK1 and IKK, and phosphorylating
IRF3, inducing an IRF3-dependent type I interferon response. At the same time, NF-kB is activated, releasing downstream pro-inflammatory
cytokines involved in the adaptive immune response. Created using BioRender (https://biorender.com/).
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enhancing the antiviral immune response. A study by Li et al.

(2018) (28) demonstrated that STING activation in macrophages

induces the production of chemokines such as CCL17 and CCL22

through the STAT6 and IL-4 signaling pathways. The transcription

factor NFkB can also be activated by STING, entering the nucleus

and inducing the expression of pro-inflammatory cytokines such as

Tumor Necrosis Factor Alpha (TNFa), IL-6, IL-12, and IL-1b. The
most secreted cytokine in the STING pathway, IFN-b, can directly

kill tumor cells and promote dendritic cell maturation for antigen

presentation, triggering adaptive immune responses (Figure 3).

Recent studies have shown that the STING pathway is also effective

in HPV-negative HNSCCmodels, suggesting that STING agonists may

improve outcomes in both HPV-positive and HPV-negative HNSCC.

Research using mouse models (24) indicates that STING activation

enhances cell death through the regulation of reactive oxygen species

and DNA damage. Moreover, studies (29, 30) have demonstrated that

STING activation remains effective even in the absence of STING

expression in cancer cells, highlighting the potential therapeutic benefit

of STING agonists across different HNSCC types. Further details on

the role of the cGAS-STING pathway in HPV-positive and HPV-

negative diseases, and the potential of STING agonists in improving

treatment outcomes, are warranted.
Frontiers in Immunology 05
4 Therapy of HNSCC targeting
cGAS-STING signaling

4.1 Clinical therapy of HNSCC
Currently, there is no effective specific screening strategy

identified for HNSCC. While a small proportion of patients with

oral precancerous lesions present with oral erythema or leukoplakia,

which may be caused by cellular anisotropy, most patients are

diagnosed at advanced stages. As a result, clinical data on

precancerous lesions are still lacking. The current treatment for

HNSCC is surgical excision or combination with adjuvant

platinum-based chemotherapy and radiotherapy (CRT). The

EGFR monoclonal antibody cetuximab is approved by the Food

and Drug Administration (FDA) as a radiosensitizer, either alone or

in combination with chemotherapy, for the treatment of patients

with recurrent or metastatic disease (31). However, subsequent

studies have found that its efficacy is not as good as that of cisplatin

as a radiosensitizer (32, 33) (Table 1).

A recent phase II clinical trial published in the Journal of

Clinical Oncology in 2021 found that subjects receiving weekly
FIGURE 2

Molecular mechanisms in HNSCC development. HNSCC is characterized by the accumulation of long-term, multi-stage epigenetic alterations in
multiple genes. Key mechanisms include TP53/Notch, c-Met/HGF/EGFR, and cGAS-STING signaling. TP53 mutations activate Notch signaling,
leading to NICD/CSL complex formation and activation of HES, HEY, and other target genes. The c-Met receptor binds HGF, triggering EGFR
pathway activation and promoting HNSCC invasion, migration, and angiogenesis. In the cGAS-STING pathway, cGAS recognizes HNSCC tumor DNA
and generates cGAMP, which activates STING. This leads to NF-kB pro-inflammatory responses and IRF3-dependent type I interferon responses.
Additionally, after p53 phosphorylates TREX1, TRIM24 ubiquitinates (Ub) TREX1, leading to its degradation and subsequent activation of the cGAS-
STING pathway. Created using BioRender (https://biorender.com/).
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cisplatin chemotherapy (IMRT+C) maintained a good prognosis

and substantial improvement in quality of life compared to patients

treated with radiotherapy alone (34). The IMRT+C group met the

expected endpoints, and a phase III study is expected to be

conducted (Table 1).

For patients who are not suitable for radiotherapy alone, a phase III

clinical trial published in the same journal reported on the efficacy of

Gemcitabine plus Cisplatin (GP) and Fluorouracil plus Cisplatin (FP)

chemotherapy regimens for patients with advanced HNSCC, enrolling

362 patients and showing that the GP regimen was beneficial,

indicating that the GP regimen should be considered as a first-line

treatment for palliative systemic chemotherapy for HNSCC (35). In

contrast, a multicenter, randomized controlled, phase III clinical trial

for refractory recurrent HNSCC or metastatic HNSCC showed that

patients with locally advanced HNSCC who received capecitabine beat

chemotherapy after completing radical radiotherapy further improved

survival with less toxicity (36) (Table 1).

Cisplatin-based radiochemotherapy is the standard of care for

HNSCCs. Genotoxic therapies are potent inducers of the cGAS-

STING signaling pathway and the antitumor IFN-1 response by

generating cytosolic DNA fragments, either free or as micronuclei

(37). The activation of this response by irradiation has also been

demonstrated in vitro for HNSCC cells (38). This is relevant for

achieving synergistic effects of radiotherapy and immune checkpoint

inhibitors in HNSCC, of which the latter has been less effective to date.

CRT can effectively reduce tumor volume, but it often leads to a
Frontiers in Immunology 06
deteriorated quality of life due to its low specificity and significant

toxicities. A randomized controlled, phase III clinical study (39) aimed

at exploring the efficacy of endoscopic surgery or IMRT recourse

radiotherapy showed that surgery was superior to recourse

radiotherapy for locally recurrent HNSCC. In terms of targeted

immunotherapy, the CAPTAIN study (40) with carrilizumab and

the POLARIS-02 study (41) with teraplizumab were the first to

demonstrate the efficacy and safety of first-line use of anti-PD-1

monoclonal antibodies alone in the treatment of advanced HNSCC.

Investigations have shown that HPV-positive patients have a better

prognosis compared to the HPV-negative group, but currently,

therapies fail in 15% of HPV-positive HNSCC with local recurrence

or distant metastases (42). Since cetuximab was found to lead to worse

overall and tumor-free survival rates in HPV-positive HNSCC

compared to cisplatin, there is still no suitable treatment for all

patients (32, 33). Therefore, there is an urgent requirement to

develop new therapies for HNSCC (Figure 4).
4.2 Current therapy targeting cGAS-
STING signaling

Studies have shown that activation of the cGAS-STING

pathway can induce type I interferon production, leading to

CD8+ T cell activation and tumor regression in mouse dendritic

cells (43, 44). Woo et al (45) demonstrated that both STING and
FIGURE 3

The downstream signaling pathways activated by STING. Upon activation and subsequent dimerization, STING translocates from the endoplasmic
reticulum to the Golgi apparatus, where it recruits TBK1 and IKK, leading to the induction of a pro-inflammatory response through NF-kB activation,
an IRF3-dependent type I interferon response, and upregulation of transcription of the antiviral transcription factor STAT6. This drawing was created
using BioRender (https://biorender.com/).
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IRF3 double knockout mice lost the ability to produce interferon

in response to tumors, indicating that the cGAS-STING pathway

can be activated to treat tumors. Analysis of tumor specimens

from HNSCC patients reveals that low STING expression is

associated with worse outcomes (24). Saturated fatty acids

induce the expression of Nucleotide-oligomerization domain

(NOD)-l ike receptor subfamily C3 (NLRC3), thereby

suppressing the STING-IFN-I pathway and reducing the

immunogenicity of HNSCC (46). HPV-positive HNSCCs exhibit

enhanced STING expression correlating with improved patient
Frontiers in Immunology 07
survival and potential benefits from STING agonist therapies in

combination with standard treatments (27).

Several STING agonists, including 5, 6-dimethylxanthenone-4-

acetic acid (DMXAA) and 10-carboxymethyl-9-acridanone (CMA),

have been shown to possess anti-tumor activity and anti-pathogenic

microbial properties (47). DMXAA, a flavonoid that was originally

used as an anti-angiogenic agent (48), was found to be a direct

ligand of STING in mice and induced phosphorylation of TBK1 and

IRF3 to produce type I interferon (49). However, DMXAA acts as

only a partial agonist in humans. This partial agonism is due to

differences in the STING receptor between species; DMXAA

effectively activates STING in mice but fails to fully activate

human STING, which may explain its limited anti-tumor effects

observed in human clinical trials. Despite this, DMXAA reached

phase III in lung cancer clinical trials, though its mechanism of

action against human lung cancer remains unclear (50). Targeted

delivery of STING agonists to tumors can improve cancer

immunotherapy (51). cGAMP, a natural ligand of STING,

induces activation of the cGAS-STING pathway and has been

found to have therapeutic effects in treating tumors by Deng et al

(49, 52). The combined addition of 2’5’-cGAMP also enhanced the

anti-tumor response, reduced tumor size, and increased the survival

rate in mice. Moreover, the synergistic effects of cGAMP with 5-FU

can reduce the therapeutic toxicity of 5-FU and combat tumors

more effectively (53).

In addition, the expression of cGAS and STING proteins varies

across different types of tumor cells . In human lung

adenocarcinoma, the loss of cGAS has been shown to enhance

tumor growth (54), while high expression of STING is associated

with poor prognosis in colorectal cancer patient subgroups (55).

These variations in expression highlight the potential of the cGAS-

STING pathway as an attractive target for cancer therapy.

The presence of HPV is closely associated with patient survival

and prognosis, possibly due to the different biological

characteristics, such as invasiveness and immune response,

induced by HPV infection. Investigations indicate tumor

regression in HNSCC animal models receiving various STING
TABLE 1 Overview of clinical therapy of HNSCC.

Clinical
Trial

Patient
Characteristics

Cancer
Site

Treatment
Method

Phase II
trial (2021)

(34)

Advanced
HNSCC patients

Head
and neck

Weekly cisplatin
chemotherapy (IMRT+C)

Phase III
trial

(published
2021)
(35)

Advanced
HNSCC patients

Head
and neck

Gemcitabine plus
Cisplatin (GP) and
Fluorouracil plus
Cisplatin (FP)

chemotherapy regimens

Phase III
trial

(published
2021)
(36)

Locally advanced or
metastatic HNSCC

Head
and neck

Capecitabine after
radical radiotherapy

Phase III
trial (RCT,
2021) (31)

Locally
recurrent HNSCC

Head
and neck

Endoscopic surgery vs.
IMRT

recurrence radiotherapy

Cetuximab
vs.

Cisplatin
(32)

Recurrent or
metastatic

HNSCC patients

Head
and neck

Cetuximab compared
with cisplatin

as radiosensitizer
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FIGURE 4

Treatment strategies for HNSCC. HNSCC is mainly treated through surgical resection, with adjuvant platinum-based CRT used alone or in
combination. Immune checkpoint inhibitors such as tipifarnib, cetuximab, and endoblituzumab+pembrolizumab have been recently approved by the
FDA for targeted treatment of HNSCC. This drawing was created using BioRender (https://biorender.com/).
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agonists. HPV-negative HNSCC cells respond to cGAS-STING

pathway activators, whereas HPV-positive HNSCC cells exhibit a

poorer response. Additionally, STING activation enhances

cetuximab-mediated NK cell activation and DC maturation, also

correlated with HPV presence (29). cGAS-STING responses are

dampened in high-risk HPV type 16 positive HNSCC (26). HPV16

drives cancer immune evasion through NLRX1-mediated STING

degradation (56). The roles of HPV16 E6 and E7 in suppressing

HNSCC responses are well-established. The presence of the HPV16

E7 oncogene inhibits cGAS-STING pathway activation (25),

primarily due to the highly conserved LXCXE motif of the E7

oncogene obstructing cGAS-STING pathway activation (26).

Furthermore, HPV E5 has been found to directly interact with

STING, inhibiting downstream IFN signal transduction. By limiting

the presentation of antigens on cell surfaces, HPV E5 may

contribute to immune evasion (57). Therefore, targeting the HPV

E7 oncogene and combining it with the use of STING agonists may

represent a better therapeutic and preventative strategy for HNSCC.

Chromosomal instability is one of the key factors in cancer

metastasis. HPV-negative and HPV-positive HNSCC cell lines

exhibit similar numerical but distinct chromosomal aberrations,

with higher genomic instability observed on chromosome 3 in

HPV-positive cell lines compared to HPV-negative ones (58).

Studies have found that chromosomal instability leads to the

release of cytoplasmic DNA, activating the cytoplasmic DNA

sensing pathway and promoting the metastatic ability of cancer

cells. Specifically, chromosomal instability leads to DNA breaks and

damage, resulting in the release of cytoplasmic DNA. The released

DNA is recognized and activates the cGAS-STING signaling

pathway in the cytoplasm, thereby triggering inflammatory

responses and the activation of the transcription factor Signal

Transducer and Activator of Transcription 3 (STAT3). Activation

of STAT3 further promotes the expression of genes associated with

metastasis, enhancing the metastatic ability of cancer cells.

Furthermore, studies have also found that inhibiting the

cytoplasmic DNA sensing pathway or repairing chromosomal

instability can effectively suppress the metastatic ability of cancer

cells (59, 60).

Based on the above, the cGAS-STING pathway may serve as an

effective strategy for treating HNSCC. However, as illustrated by the

examples above, the activity of the STING signaling in head and

neck cancers varies due to different pathogenic factors. Therefore,

personalized therapeutic strategy should be taken into account due

to the different response to cGAS-STING agonists of HPV subtypes

and tumor microenvironment. In addition, constructing

corresponding disease models based on these factors is essential

for exploring and elucidating the pathogenesis of HNSCC and

developing personalized treatment strategies.

Traditional preclinical models include cell lines and murine

models, which are used to mimic the molecular and cellular

complexity of HNSCC. Konrad Klinghammer et al. discuss the

existing cell lines, primary tumor cultures, and animal models,

which are important for understanding HNSCC genetic variants

and treatment resistance (61). Antonio Rueda-Domıńguez et al.
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emphasize the efficiency of these preclinical models and focus future

prospects on establishing new models capable of achieving

metastasis in genetically modified mice (11). Additionally,

personalized medicine is gaining traction in treating HNSCC,

with advances in next-generation sequencing and multi-omic

analysis improving personalized treatment development. Studies

suggest that mimicking the natural tumor microenvironment

through 3D systems and improved in vivo models can effectively

enhance the efficacy of personalized medicine (62). However,

further research and optimization are needed to address the

distinct biological characteristics of HPV-positive and HPV-

negative cases.
5 Discussion

HNSCC stands as a formidable oncological challenge with

escalating incidence and mortality rates, posing a global public

health concern. While smoking and alcohol abuse have traditionally

been regarded as primary risk factors for HNSCC, the role of HPV

infection in its pathogenesis cannot be understated. Distinct clinical

characteristics and treatment responses between HPV-positive and

HPV-negative HNSCC patients underscore the urgent need for

personalized therapeutic strategies. Nevertheless, the diagnostic and

therapeutic differentiation between HPV-positive and HPV-

negative subtypes, as well as issues regarding drug resistance and

recurrence, remain incompletely addressed.

Therapeutic targeting of the cGAS-STING signaling pathway

represents a focal point in current HNSCC research. This pathway,

integral to immune responses, plays a pivotal role in the

development of HPV-positive HNSCC. Activation of cGAS-

STING signaling pathway can induce apoptosis in tumor cells

and promote activation of immune cells, thereby suppressing

tumor growth and metastasis. However, current research

predominantly focuses on animal models, necessitating further

validation of its safety and efficacy in clinical applications.

Notably, chromosomal instability emerges as a key factor in

HNSCC progression. Studies have revealed that chromosomal

instability leads to the release of cytoplasmic DNA, activating the

cGAS-STING signaling pathway and enhancing tumor cell

metastatic capability, indicating that chromosomal instability

(CIN) is also a potent regulator of cGAS-STING signaling in

cancer cells. Activation of cGAS–STING-dependent inflammatory

signaling downstream of CIN can exert both anti-tumoral and pro-

tumoral effects in a cell-intrinsic manner. Expression of type I IFNs

and activation of IFNAR/STAT1 induces the expression of multiple

effectors, including pro-apoptotic and anti-proliferative genes, that

are detrimental to tumor cell survival. Conversely, cGAS–STING-

dependent activation of NC-NF-kB signaling can drive IL6/STAT3

signaling and EMT programs, which promote tumor growth and

metastasis, respectively (60). Therefore, the application of

therapeutic strategy targeting cGAS-STING should be curiously

evaluated due to the contradictory effects, indicating that

individualized therapy is of great importance.
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In summary, while the cGAS-STING signaling pathway

demonstrates immense potential in HNSCC therapy, further research

and clinical practice are required to ascertain its efficacy and safety in

both HPV-positive and HPV-negative patients. Moreover,

comprehensive considerations encompassing personalized treatment,

drug resistance, and metastasis are imperative for achieving improved

clinical outcomes in HNSCC management.
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