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Single-cell and spatial
transcriptome assays reveal
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Background: Glioma is a highly heterogeneous malignancy of the central

nervous system. This heterogeneity is driven by various molecular processes,

including neoplastic transformation, cell cycle dysregulation, and angiogenesis.

Among these biomolecular events, inflammation and stress pathways in the

development and driving factors of glioma heterogeneity have been reported.

However, the mechanisms of glioma heterogeneity under stress response

remain unclear, especially from a spatial aspect.

Methods: This study employed single-cell RNA sequencing (scRNA-seq) and

spatial transcriptomics (ST) to explore the impact of oxidative stress response

genes in oligodendrocyte precursor cells (OPCs). Our analysis identified distinct

pathways activated by oxidative stress in two different types of gliomas: high- and

low- grade (HG and LG) gliomas.

Results: In HG gliomas, oxidative stress induced a metabolic shift from oxidative

phosphorylation to glycolysis, promoting cell survival by preventing apoptosis.

This metabolic reprogramming was accompanied by epithelial-to-mesenchymal

transition (EMT) and an upregulation of stress response genes. Furthermore,

SCENIC (Single-Cell rEgulatory Network Inference and Clustering) analysis

revealed that oxidative stress activated the AP1 transcription factor in HG

gliomas, thereby enhancing tumor cell survival and proliferation.
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Conclusion: Our findings provide a novel perspective on the mechanisms of

oxidative stress responses across various grades of gliomas. This insight

enhances our comprehension of the evolutionary processes and heterogeneity

within gliomas, potentially guiding future research and therapeutic strategies.
KEYWORDS

glioma, oligodendrocyte precursor cells (OPCs), oxidative stress response, single-cell
RNA sequencing, spatial transcriptomics, heterogeneity
Introduction

Gliomas are the most frequent form of central nervous system

(CNS) tumor (1). China is one of the top three countries in terms of

CNS cancer cases (including glioma) and fatalities (2, 3). In the

United States, the average incidence of malignant brain tumors was

7.08 per 100,000 people, with glioblastoma (GBM, WHO IV high-

grade glioma) accounting for around 15% of all CNS tumors (4).

Despite advances in surgery, chemotherapy, and radiation, these

treatments have not significantly improved the overall survival rates

for glioma patients, particularly those with high-grade gliomas such

as GBM (5, 6). The blood-brain barrier poses a significant challenge

by preventing most antitumor drugs from reaching the brain, thus

limiting the effectiveness of systemic therapies (7). Therefore,

investigating novel mechanisms and pathway alternations in

gliomagenesis may improve diagnostic accuracy, prognosis and

overall treatment outcomes for glioma patients.

Glioblastomas are the most malignant and aggressive type of

gliomas, characterized with high heterogeneity and mortality.

Researchers have showed that gliomas have various subtypes

expressing different marker genes including typical NPC-like,

OPC-like, AC-like and MES-like profiles using multiple datasets

(8). Stress management is critical for cancer cell survival and

evolution. Glioma cells generate more reactive oxygen species

(ROS) than normal cells due to oncogenic activation, increased

metabolic activity and mitochondrial dysfunction, driving

heterogeneity. On the other hand, cancer cells may adapt to

oxidative stress through mechanisms such as boosting antioxidant

status to promotes ROS-driven proliferation while avoiding ROS

levels that would cause senescence, apoptosis, or ferroptosis (9–13).

Such adaptability leads to malignant transformation, metastasis,

and resistance to anticancer treatments (14–17). It is crucial to

examine how glioma cells adapt to various stress during the

heterogeneity process.

Glioma development and heterogeneity is characterized by gene

deregulation through genetic and epigenetic events, as well as

cellular damage caused by ROS production (18). Glioma cells

maintain metabolic balance by altering the expression of key

genes via redox homeostasis pathways such as mitochondrial

respiration, stabilizing pro-apoptotic proteins for survival, and

preventing apoptosis when challenged. For example, in GBM
02
stem cells (GSCs), activation of AMPK (AMP-activated protein

kinase), a master regulator of metabolism, increases glioblastoma

bioenergetics and tumor development (19). Another study showed

that mitochondrial PKM2 (Pyruvate Kinase M2) regulates oxidative

stress-induced apoptosis by stabilizing Bcl2 pro-apoptotic protein

(20). Furthermore, the stemness of glioma stem cells is maintained

through the interaction of TRAP1 and Sirtuin-3, which modulates

mitochondrial respiration and oxidative stress (21). Studies have

also found that PTPN2 induced by the inflammatory response and

oxidative stress contributed to glioma progression (22). JNK

activation increases intracellular ROS production, leading to

oxidative stress-induced glioma cell parthanatos (23). Oncostatin

M (OSMR) increases mitochondrial respiration by interacting with

complex I’s NADH ubiquinone oxidoreductase 1/2 (NDUFS1/2).

OSMR deletion reduces spare respiratory capacity, increases ROS,

and makes glioma stem cells more susceptible to IR-induced cell

death (24). 2-Hydroxyglutarate inhibits transaminase, impairing

glutamate biosynthesis and redox homeostasis in glioma (25). Heat

shock proteins also protect glioma cells from apoptosis through the

endoplasmic reticulum (ER) stress and unfolded protein response

pathways. For instance, the Hsp70 chaperone rescues C6 rat

glioblastoma cells from oxidative stress by sequestering

aggregating GAPDH (26). Recent single-cell RNA-sequencing

(scRNA-seq) studies have explored the heterogeneity of gliomas.

highlighting the importance of stress responses in heterogeneity and

subsequent malignant transformation (27, 28). However, a

comprehensive understanding of oxidative stress and its

consequences across various gliomas subtypes, particularly at the

whole-tissue level, is lacking.

Recent advances in scRNA-seq and spatial transcriptomics (ST)

provided ways to visualize and study gene expression in tissue slices,

enabling the exploration of transcriptional activity at the single-cell

or spatial level (29, 30). scRNA-seq studies have revealed the cellular

plasticity and environmental stress response in gliomas (31, 32).

Additionally, scRNA-seq has been used to develop comprehensive

prognostic signature for glioblastoma patients (33). ST has been

applied to various of cancers, including prostate cancer (34), breast

cancer (35), and pancreatic ductal adenocarcinomas (36). Our study

combines scRNA-seq and ST data from four primary glioma tissue

samples to evaluate oxidative stress and its effects. This study aims

to elucidate regional and transcriptome-wide expression patterns,
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enabling that will enable us to deconvolve molecular processes in

the oxidative stress response and pathway switching.
Materials and methods

Patient recruitment and sample collections

Patients were recruited at the Sichuan Provincial People’s Hospital

Neurosurgery Clinic from July 2019 to September 2020. Detailed verbal

and written information about the study was provided to all

participants, who gave written informed consent before participating.

from the study included two untreated patients: one female withWHO

grade IV glioblastoma in the left temporal lobe (high-grade glioma,

HG) and onemale withWHO grade II oligodendrocyte astrocytoma in

the right temporal lobe (low-grade glioma, LG). Detailed basic clinical

and pathological information for the participants is provided in

Supplementary Table 1.
Single-cell transcriptomic profiling of
glioma samples

Four fresh samples were collected prior to surgery and processed

into single-cell suspensions. These samples were analyzed using

droplet-based single-cell RNA sequencing (scRNA-seq) technology

of the 10 x Genomics Chromium system. The Cell Ranger software

(version 3.1.0) was employed for initial data processing, including

alignment and quality control. Post-quality control, the number of

high-quality cells in each sample ranged from 2,419 to 10,733. Low-

quality cells (doublets, multiplets, and apoptotic cells) were excluded,

resulting in final cell counts ranging from 1,606 to 9,744. The average

number of Unique molecular identifiers (UMIs) per cell ranged from

7,325 to 15,424, the average number of genes per cell is 2,424 to 3,858,

and the mitochondrial genes ratio per cell from 5.69% to 11.90%. We

used the R package Seurat (version 3.1.1) to process the filtered

unique molecular identifier (UMI) count matrix (33), with variable

gene identification using the algorithm provided by Macosko et al.

(37) Principal component analysis (PCA) was used in Seurat to

reduce dimensionality using the RunPCA function (PC num = 15)

(33). Clusters were analyzed using FindClusters function and

visualized via t-distributed stochastic neighbor embedding (t-SNE)

(RunTSNE). Marker genes for each cluster were identified using the

FindAllMarkers function in Seurat (33). Then, cell types were

inferred using the R package SingleR, an automated annotation

method for unbiased scRNA-seq cell type detection, with Human

Primary Cell Atlas fromMabbott et al. as the reference transcriptome

datasets, to infer the cell types (38, 39). Differentially expressed genes

(DEGs) were identified with FindMarkers function in Seurat. The

criterion for substantially different expression was established at P

Value < 0.05 and |log2foldchange| > 0.58. Gene Ontology (GO) and

KEGG Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were performed on of DEGs using

hypergeometric distribution.
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10x Visium spatial RNA-seq
data preprocessing

Spatial transcriptomic analysis was conducted using the 10x

Genomics Visium platform. The Space Ranger software (version

1.0.0) was used for tissue identification, read alignment via the

STAR aligner, feature-spot matrix construction, clustering, gene

expression analysis, and spatial visualization slide images (40). This

analysis contains the spatial transcriptome sequencing of 4 samples

with 4 slices. The number of high-quality spots for Space Ranger

quantitative quality control of each sample ranges from 2,791 to

3,821. The average UMI counts per spot ranges from 7,113 to

22,143, and the average number of genes per spot from 3,093 to

6,002, and mitochondrial genes ratios per spot ranges from 8.24% to

13.21%. To process the filtered unique molecular identifier (UMI)

count matrix, the R package Seurat (version 3.1.1) was utilized (33).

We initially standardized the data to account for differences in

sequencing depth across data points before identifying high-

variance features and storing the data in the SCT assay (41).

FindClusters function was applied to analyze cell groups based on

their gene expression profiles using graph-based clustering in

Seurat. We used the RunTSNE function to display clusters using

a 2-dimensional t-distributed stochastic neighbor embedding (t-

SNE) method and the FindAllMarkers function to find marker

genes in each cluster (33).
Copy number variation analysis

Genomic copy number and subcolonal structure of human

tumors were predicted using the CopyKat and Infercnv packages,

enabling high-throughput genomic analysis from scRNA-seq data

(42–44).
Multimodal intersection analysis

Multimodal intersection analysis (MIA) was used to annotate

spatial transcriptome spot clusters with single-cell transcriptome

data, enhancing cell type resolution at the spot cluster level.
Histopathological examination

The collected glioma tissues were paraffin-embedded, sectioned,

and stained with hematoxylin and eosin (H&E) for morphological

analysis. For immunohistochemistry (IHC), the sections were

routinely incubated with the c-Jun antibody (10586-1-AP from

Proteintech, 1:200), and processed using a rabbit IgG-

immunohistochemical SABC kit (Boster, Wuhan, China).

After PBS washing, sections were counterstained with

hematoxylin for nuclei staining and examined under an Olympus

microscope (Japan).
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Results

ScRNA-seg results reveal the links between
heterogeneity and malignancy in gliomas

To explore the cell compositions in glioma tissues, scRNA-seq

was conducted on all living cells isolated from four fresh primary

glioma samples from two untreated patients with the 10x Genomics

Chromium platform for parallel scRNA-seq and ST analysis
Frontiers in Immunology 04
(Figure 1A and method). The scRNA-seq data consisted of cells

with approximately 7,325–15,424 unique molecular identifiers

(UMIs) and approximately 2,424–3,858 uniquely expressed genes

per cell (Supplementary Figure 1). The average percent of

mitochondrial, ribosome, and hemoglobin subunit genes were

also calculated and used for further data normalization and batch

effects between two samples removed using harmony package (45)

(Supplementary Figure 1). We found 16 cell clusters in this

integrated scRNA-seq data (Figure 1B). We identified them as
FIGURE 1

Isolation and cluster analysis of single-cell transcriptomes from four glioma samples derived from two patients. (A) Workflow of experimental
strategy: isolation of human glioma tissues during clinical surgery, followed by parallel scRNA-seq and Spatial Transcriptomic (ST) analysis profiling
using with the 10x Genomics Chromium platform and subsequent validation by H&E and IHC staining. (B) Uniform Manifold Approximation and
Projection (UMAP) plot showing 16 major clusters. (C) Clusters are annotated for their cell types as predicted using canonical markers and signature-
based annotation using Garnett. (D) Heatmap showing clustering with top 30 highly expressed genes. (E, F) Feature UMAP plots depicting cluster-
specific expression of cell clusters markers including SOX2 (SRY-Box Transcription Factor 2) and EGFR (Epidermal growth factor receptor) to indicate
the major malignant cell clusters.
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endothelial cells (ECs), natural killer T cells (NKTs), mural cells,

microglia, oligodendrocytes, and malignant cells utilizing cell-type-

specific marker genes (Figure 1C). The visualization plot was

generated using the dimensionality reduction method UMAP

(uniform manifold approximation and projection). The heatmap

of the top 30 genes from each cluster is shown in Figure 1D.

Moreover, the tSNE (t-distributed Stochastic Neighbor Embedding

plot) for the expression of marker genes from each cell type is

shown in Supplementary Figure 2A. Two immune-cell clusters

(clusters 4, 11) were initially identified based on the expression

level of PTPRC (CD45), a pan leukocyte marker (Supplementary

Figures 2B; 3A). According to the presence of the typical marker

CSF1R (Colony Stimulating Factor 1 Receptor, CD115), cluster 4

was mononuclear phagocytes (microglia) (Supplementary

Figure 2D). Cluster 11 contains Natural Killer/T cells (NK/T),

which express typical markers such as CD8A, CD8B, NKG7,

CCL4, CCL5, but not CCR7, CD4, CTLA4, FOXP3, and IL2RA

(Supplementary Figures 2C; 3A). In our glioma samples, this

observation suggested the existence of CD8+ T cells rather than

naive or CD4+ T cells. Cluster 9 has been identified as endothelial

cells expressing specific markers such as FLT1, ICAM1, CDH5,

CD34, and ENG (CD105) (Supplementary Figures 2E; 3B). Mural

cells, as an integral part of the neurovascular unit, make up the

majority of cluster 16, expressing specific markers such as ACTA2,

PDGFRB, ZIC1, ABCC9, RGS5, CSPG4, and MCAM (CD146)

(Supplementary Figures 2F; 3C). Clusters 7 and 8 are mature

oligodendrocytes that produce myelinating oligodendrocyte

markers, including SOX10, CNP, MAG, MOG, MBP, and others

(Supplementary Figures 2J; 3D). However, they do not express

proliferative factors such as EGFR, PDGFRA, or L1CAM. Cluster 1

and 12 expresses GFAP, an astrocyte marker, and are therefore

classified as astrocytes. All other clusters express OLIG2, OLIG2,

PDGFRA, and NG2 (CSPG4), indicating that they are OPC groups.

In another cell cluster, we also discovered the high expression of

well-known cancer stem cell markers SOX2 (Figure 1E) and EGFR

(Epidermal Growth Factor Receptor), indicating abnormal

proliferation and malignancy in these cell clusters (Figure 1F).
Malignant cell heterogeneity and copy
number variation analysis

Previous research suggested that four cellular states, NPC-like,

OPC-like, AC-like, and MES-like, drive glioblastoma malignant cell

heterogeneity. These malignant cells were identified OPC-like cell

expression markers like OLIG1 OLIG1, OLIG2, PDGFRA, and NG2

(CSPG4), indicating that they are OPC groups. Infercnv package in

R to further validate the malignant cells to calculate the copy

number variations (CNVs) (42, 46) (Supplementary Figure 5).

The malignant cell group showed a great heterogeneity. As we

expected, the OPC-likes have the most significant alternation in

CNV levels (Supplementary Figures 5B–D). According to the

heatmap, we observed amplification of CNV of chromosome 7/

10, a molecular marker of glioma, while a loss of chromosome 11

from the predicted results (Supplementary Figure 5A).
Frontiers in Immunology 05
Spatial transcriptomics reveals distinct
tumor microenvironments in high-grade
and low-grade gliomas

For ST data, we performed the integrated clustering analysis of

ST and revealed 9 different spatial clusters (Figure 2A). A significant

variation in spatial spot type was observed between HG and LG to

explain the heterogeneity. The spatial characteristics and cluster

distribution of HG and LG are distinct (Figure 2B). Spatial cluster1

and cluster5 are primarily spread on the HG2 edge and the core

portions of LG1 and LG2. While spatial cluster 1 was considered as

mixed cell types, spatial cluster 5 was labeled as oligodendrocytes

due to its MAG, MOG, GFAP, and MBP expressions. It was mostly

found in LG2, although it was also discovered in the HG2 marginal

region. Spatial cluster 8 was found in both HG1 and HG2, and it

was apparently dispersed around the core tumor region (Figure 2B).

The heatmap for the top 30 genes from each ST cluster was

generated (Figure 2C). Interestingly, the extracellular matrix

protein-encoding genes such as FN1, TIMP1, COL3A1, COL4A1,

and COL2A1 were discovered in spatial cluster 8, regarded as tumor

stroma tissues. Endothelial markers such as PECAM1, CD93, and

ENG were also strongly expressed in spatial cluster 8. Cluster 4 was

considered tumor stroma tissues mainly represented by fibroblasts.

The correlations between ST clusters and scRNA-seq cell types were

shown by integrative analysis of cell data and spatial transcriptome

data using Multimodal intersection analysis (MIA). As shown in the

heatmap of Figure 2D, clusters 2 and 4 are most likely to be

malignant OPC-likes, while clusters 5 and 6 could be

oligodendrocytes or astrocytes. Clusters 3 and 8 might be a

mixture of immune cells, endothelial cells, and mural

cells (Figure 2D).

We next annotated the ST spot using SingleR and examined

each sample individually to validate the results, considering tumor

heterogeneity and individual differences among patients. The

most frequent types of malignant cells in HG gliomas are MES-

like (orange), OPC-like (yellow), and unidentified malignant type

(grass green) (Supplementary Figures 4A, B). Oligodendrocytes

(red) and AC-like malignant cells (dark blue) were found near the

periphery of HG2, which can be differentiated from the primary

malignant cells in HG1 (Supplementary Figure 4B). Normal

immune cell infiltration also differs significantly between HG

and LG gliomas. For example, monocyte infiltration (light

purple) is more clearly observed in HG glioma tissue (HG1 and

HG2), likely due to the looser structure of high-grade tumors. In

contrast, LG gliomas (LG1 and LG2) have a tighter arrangement of

tumor cells, and limiting immune cell infiltration. The great

majority of malignant cells in LG glioma spatial spots are

categorized as OPC-like (yellow), unidentified (grass green), or

AC-like (dark blue), with NPC-like (purple) and MES-like

(orange) malignant cells being uncommon (Supplementary

Figure 4C). OPC-like-malignant is primarily found on the

interior of the sample, whereas AC-like-malignant is more

prevalent on the exterior. Simultaneously, LG2 contains more

OPC-like-malignant components, while LG1 has more AC-like-

malignant components (Supplementary Figure 4D).
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OPC clusters revealed activation of stress
response genes

We performed a PCA dimensionality reduction analysis on the

OPC subpopulation single-cell data and used UMAP projection to

obtain the expression matrix (Figure 3A). This analysis revealed 16

subclusters of OPC-like cells (Figure 3A). Using the CopyKat

package, we assessed malignant and normal cells based on

predicted aneuploid and diploid states to detect aberrant cells in

single-cell clusters. The copy number variation (CNV) data show

differences in OPC-like subclusters, with normal diploid cells

primarily identified in subclusters 3, 4, 8, 10, 11, and aneuploid

cells mainly discovered in other subclusters (Figures 3B, C). Both

LG and HG samples shared Clusters 3 and 8 (Figure 3D). A

heatmap displaying the top 30 genes from each OPC-like

subcluster is shown in Figure 3E.

Using Monocle3, we set the start points of the pseudotime

intervals to OPC-like subclusters 3 and 8 (Figure 4A). According

to Monocle3 data, three primary lineages emerge from the
Frontiers in Immunology 06
starting point (Figures 4C, D). We created 28 distinct modules

with varying gene expression patterns (Figure 4B) and found

that several stress response genes exhibit distinct expression

patterns. Oxidative stress-related genes with specific expression

patterns include BTG1, EGR1, ETV1, FOS, HSPA1B, IER2,

JUNB, JUN, DNAJB1, and HSPH1, all showing very similar

trajectories (Figure 4E). Supplementary Figure 6 demonstrates

the elevated levels of oxidative stress response genes and the

elevation in pseudotime in an OPC-like subcluster UMAP plot,

including stress response transcription regulators (BTG1, EGR1,

FOS, IER2, JUNB, JUN) (Supplementary Figure 6A) and heat

shock proteins (HSPH1, HSPA1B), as well as DNA damage

response gene DNAJB1 (Supplementary Figure 6B) .

Additionally, tumor proliferation regulator and metabolic

genes implicated in glycolysis and gluconeogenesis pathways,

including VEGFA, CCN1, VIM, LDHA, LDHB, PKM, ENO1,

and PGK1, were up-regulated in HG OPC-like subclusters (data

not shown), indicating an increase in stress response during

the gliomagenesis.
FIGURE 2

Cluster analysis and annotations of spatial transcriptomes from four glioma samples derived from two patients. (A) t-distributed stochastic neighbor
embedding (tSNE) projection of spots showing 9 major ST clusters. (B) The spatial relationship among 9 major ST clusters in four different samples.
(C) Heatmap showing clustering with top 30 highly expressed genes from each ST clusters. (D) Heatmap showing the correlation matrix generated
from 8 major ST Clusters and 7 major cell types from scRNA-seq calculated through MIA (Multimodal intersection analysis).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1452172
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2024.1452172
Specific expression patterns of stress
response genes near the necrotic core

We validated the expression and cell-type distribution of these

stress response transcription factors (TFs) using the Ivy

Glioblastoma Atlas Project (Supplementary Figure 7). The peri-

necrotic zone and pseudo-palisading cells around necrosis showed

significantly higher mRNA levels of JUN, JUNB, FOS, and FOSL2

compared to other regions of the tumor, such as the leading-edge,

infiltrating tumor, and cellular tumor (Supplementary Figures 7A-

D). Pseudo-palisading cells around central degeneration have been

recognized for nearly a century as a hallmark of GBM and indicate

aggressive tumor behavior. The enrichment of FOSL2 protein in the

peri-necrotic zone and pseudopalisading cells area was further

confirmed by in situ hybridization (ISH) and H&E staining with

tumor feature annotations (Supplementary Figures 7E, F).

Additionally, H&E staining of primary glioblastoma tissues

from three patients (A020-21621, A021-12863, A021-15304)

during surgery illustrated the representative necrotic areas and

pseudo-palisading regions (Supplementary Figure 8A). The

elevation of JUN protein expression around these areas was

confirmed by immunohistochemical staining (IHC) using the

specific antibody against JUN (Supplementary Figure 8B). Data

from GEPIA2 also showed frequently increased FOS, JUNB, JUN,

and ATF3 in glioma, especially GBM samples, compared to normal
Frontiers in Immunology 07
brain tissues (Supplementary Figure 9). These findings suggest that

JUN family members are important regulators in glioma stress

response, especially in GBM.
Oxidative stress response in high-
grade glioma

For both HG1 and HG2, we used the ST transcriptome data and

an enrichment study in R studio using the SPATA package (version

1.0.1). We discovered that the hypoxia response (Hall-Mark

hypoxia pathway) is enriched in twisted bands or spots around

the central areas (Figures 5A; 6A). Following that, we utilized the

Monocle3 package (version 1.0.1) to determine the trajectory of

gene alterations in the process of transitioning from a low hypoxic

response to a high hypoxic response in both HG1 and HG2.

Dimensionality reduction plots indicate cell population clustering

in UMAP and t-SNE for HG1 and HG2 (Figures 5B, C; 6B, C).

As predicted, the hypoxia response increases substantially

throughout this phase (Figure 5F). In HG1, increasing routes

include the initial immune response pathway (BP: GO)

(Figure 5D) and the epithelial-mesenchymal transition

(Hallmark) (Figure 5E), while decreasing pathways include glial

cell differentiation (BP: GO) (Figure 5G) and nerve cell maturation

(BP: GO) (Figure 5H). This suggests that the tumor cells advanced
FIGURE 3

Single-cell RNA-seq of OPC cell populations. The OPC subclusters were extracted from the whole scRNA-seq data and processed for dimensionality
reduction. (A) Uniform Manifold Approximation and Projection (UMAP) plot showing 16 major clusters of 7221 OPC single cells. (B-D) UMAP plot
with CNV (copy number variation) annotations according to CopyKat package calculations. Aneuploid was depicted as red while diploid was shown
as blue. Stacked bar charts showing the distribution of 16 subclusters of OPC with its sample origin and predicted CNV status. (E) Heatmap showing
clustering with top 30 highly expressed genes from each OPC subclusters.
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from a somewhat benign condition to a dedifferentiated or even

invasive status in the central high-grade tumor sample. The rapid

elevation of oxidative stress response gene expression, including

JUNB, JUN, DNAJB1, HSPA1A, and HSPH1, was shown under

oxidative stress (Figure 5I). On the other hand, hypoxia has a

greater impact on cell cycle regulation (Figures 6D, F), DNA

replication (Figures 6E, F), and cell proliferation in HG2. We also

found that immune responses, such as the response to bacteria

(Figures 6F, G) and interferon-gamma signaling (Figures 6F, H), are

highly activated in the hypoxia regions in HG2, located in the

marginal areas of high-grade glioma. This might be triggered by

external stimuli in the brain.
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Thus, it is clear that during gliomagenesis, cells first undergo

uncontrolled proliferation and then respond to stress by

abandoning the essential features of glial cells, leading to

malignant transformation. Consistent with these findings, we

discovered that tumor-proliferative factors such as VEGFA

(Vascular Endothelial Growth Factor A), the representative

downstream regulator of epithelial-mesenchymal transition, VIM

(Vimentin), and the inflammatory cytokine SPP1, which regulates

endoplasmic reticulum stress, are all significantly up-regulated in

peripheral hypoxic regions in both HG1 and HG2 samples

(Supplementary Figures 12, 14). The subcluster of OPC-like was

projected using the ST data; cluster 12 was regarded as malignant,
FIGURE 4

Pseudo-time analysis of OPC subclusters using Monocle3 (A) Monocle3 was used to track cells over pseudotime on the different OPC subclusters.
(B) The heatmap of 39 modules calculating the gene expressions after prediction of trajectory. (C, D) Visualization of clusters (from Figure 1C) onto
the pseudotime map. (E) Pseudo-time plots of gene expression for stress response genes (BTG1, EGR1, ETV1, FOS, HSPA1B, HSPH1, IER2, JUN and
JUNB) with cells colored by OPC subcluster group indicating the similar patterns among those genes.
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and cluster 3 was less malignant (Supplementary Figures 13, 15).

Meanwhile, genes that have functions in the normal brain or

neurons, such as CaMK2N1 (Calcium/Calmodulin Dependent

Protein Kinase II Inhibitor 1), MEG3 (Maternally Expressed 3),

SNCB (Synuclein Beta), SYT1 (Synaptotagmin 1), DKK3 (Dickkopf

WNT Signaling Pathway Inhibitor 3), are almost not expressed in

the tumor core. Additionally, stress-response transcription factors

(JUNB, FOSL2, IER2, EGR1), DNA damage response proteins

(DNAJB1), and heat shock proteins (HSPA1A) are dramatically

up-regulated in the hypoxia regions (Figures 7, 8). They are

concentrated in certain punctate areas, which overlap with
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hypoxia response areas in HG1 (Figure 7). However, on the other

hand, those genes in HG2 are not as active as they are in HG1

regions. While the hypoxia score is growing in the trajectory, there

is only a rapid increase in JUNB expression in HG2 (Figure 8).
Oxidative stress response in low-
grade glioma

We use the Seurat tool to divide the spatial subgroups into 12

groups for both LG1 and LG2. After enrichment analysis by SPATA
FIGURE 5

The crucial pathway altered in the trajectory under an increasing hypoxia stress in HG1 (A) The trajectory in the HG1 with a increasing hypoxia score.
(B, C) tSNE and UMAP plot showing distribution of different ST clusters. (D-H) The significantly altered pathways either descending or ascending in
the trajectory. (I) The expressions of marker genes (DNAJB1, HSPA1A, HSPH1, JUNB and JUND) in the trajectory that response to hypoxia stress.
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package in R studio (Supplementary Figures 10A; 11A). We used

the Monocle3 package analysis of the SPATA toolkit to establish the

trajectory of gene changes in the process from a hypoxic response to

a high hypoxic response (from 0.00 to 1.00) (Supplementary

Figures 10D; 11D). Unlike high-grade gliomas, the hypoxic

response process increases slowly and steadily in low-grade

gliomas. They are distributed on the edge of low-grade gliomas in

a diffuse state. And the accompanying pathways are mainly normal

nerve functions, such as synaptic endocytosis (Supplementary

Figure 10E), neural projection (Supplementary Figure 11H),
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neurotransmitter secretion (Supplementary Figure 11E), and

presynaptic activity area. The accompanying pathways are mainly

normal nerve functions, such as synaptic endocytosis,

neuroprotection, neurotransmitter secretion, and presynaptic

activity area. The differentiation of OPC from core areas into the

oligodendrocytes triggered the hypoxia areas in LG. Also, increased

expression of stress response genes such as JUNB and FOSL2 is

observed in the trajectory of LG1 (Supplementary Figure 11I) but

not in LG2 (not shown). Neuron functional genes such as

CaMK2N1, MEG3, SNCB, SYT1, DKK3 are almost expressed in
FIGURE 6

The crucial pathway altered in the trajectory under an increasing hypoxia stress in HG2 (A) The trajectory in the HG2 with an increasing hypoxia
score. (B, C) tSNE and UMAP plot showing distribution of different ST clusters. (D-H) The significantly altered pathways either descending or
ascending in the trajectory. (I) The expressions of marker genes (JUN, MT1X, PKM and STMN2) in the trajectory that response to hypoxia stress.
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the marginal area of the tumor (not shown). According to previous

MIA analysis, it is believed that it is mainly oligodendrocytes. We

believe that the increased oxidative stress is caused by the

differentiation of OPC cells in glioma.
The metabolic shift in different types of
glioma spatial subtypes

Using spatial transcriptome data, we uncovered an unexpected

fact that mitochondrial gene expression differs in high grades of

gliomas. In HG1, we found that all 13 human mitochondrial genes

in HG1 were primarily expressed in normal oligodendrocytes or

AC-like malignant cells rather than OPC-like or MES-like

malignant cells (MT-ND1, MT-ND2, MT-ND3, MT-ND4L, MT-

ND4, MT-ND5, MT-ND6, MT-CYB, MT-CO1, MT-CO3, MT-

ATP6, MT-ATP8, MT-RNR2) except for MT-CO2 (Supplementary

Figure 20). In the tumorous sections of HG2, the mitochondrial

genesMT-ND1,MT-ND2,MT-ND4,MT-ATP6,MT-CYB,MT-CO3

were completely absent as compared to the normal parts, as shown

in Supplementary Figure 21. A similar situation also occurred in

HG1; the hypoxic area of HG1 nearly overlaps with the regions that

have a poor expression of mitochondrial genes such as MT-CO3,
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MT-ATP6, MT-CO1, MT-ND3, MT-CYB, and MT-ND1. This

finding suggests that mitochondrial dysfunction might be a

hypoxia-induced cellular disorder. However, the results will need

to be double-checked in further study. We saw a fast elevation in

glycolysis-related genes such as PGK1 (Phosphoglycerate Kinase 1),

LDHA (Lactate Dehydrogenase A), PKM2 (Pyruvate Kinase M2),

and ENO1 (Enolase 1) in both HG1 and HG2 at the same time that

mitochondrial genes were absent. When taken together, these

findings imply that the tumor metabolic model might have

changed under hypoxia stress, possibly shifting from mediated by

mitochondria to glycolysis or gluconeogenesis. In The Cancer

Genome Atlas (TCGA)-GBM/low grade glioma (LGG)

(Supplementary Figure 16) and CGGA datasets (Supplementary

Figure 18), we observed a decrease of MT genes in both datasets.

Interestingly, mitochondrial gene expression is related to the overall

survival of patients with glioma in the CGGA and TCGA-GBM/

LGG datasets (Supplementary Figures 17, 19). The percentage of

mitochondrial genes was decreased in HG1 and HG2 samples;

however, the nUMI and nGene were increased (Supplementary

Figure 22). These results indicated a stress response alternation in

metabolism for HGs. The metabolic shift allows glioma cells to

generate energy more rapidly and supports biosynthetic processes

essential for rapid growth. By relying on glycolysis, glioma cells
FIGURE 7

Expression patterns of stress response genes in HG1 spatial transcriptomics data. (A-F) The expressions of stress response gene including JUN,
DNAJB1, FOSL2, HSPA1A, IER2 and EGR1 was shown in the ST profile from HG1 tissues.
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reduce oxidative stress and ROS production, which helps them

evade apoptosis and resist cell death. Additionally, this metabolic

reprogramming aids in immune evasion and correlates with

increased tumor aggressiveness, contributing to a poorer

prognosis for patients with high-grade gliomas (47, 48). In

summary, this metabolic shift from oxidative phosphorylation to

glycolysis is crucial for glioma progression as it enhances tumor

proliferation, survival, and adaptation to hypoxic conditions

(48, 49).
Discussions

Gliomas are heterogeneous tumors originating from glial cells

and remain the deadliest form of brain cancer. Despite significant

research, the mechanisms by which glioma stem cell contribute to

the diverse cellular composition of gliomas remain inadequately

define (50). Although previous studies have revealed the

involvement of multiple pathway alternations and genes, such as

those involved in the Wnt pathway, the precise mechanisms driving

glioma pathogenesis are still not fully understood (51). Advances in

single-cell sequencing technologies have provided new insights into
Frontiers in Immunology 12
tumorigenesis, including glioma, from different aspects. For

example, Ochocka et al. identified sex-specific gene expression in

glioma-activated microglia that may influence the incidence and

outcomes of glioma patients (52). Müller et al. profiled the human

gliomas using single-cell RNA-seq and revealed macrophage

ontogeny as a factor contributing to regional differences in

macrophage activation within the tumor microenvironment (53).

Venteiche et al. proposed a unifying model for IDH-mutant gliomas

and a comprehensive framework for analyzing the differences

across human tumor subclasses (54). The interaction pattern

between GSC and immune cells during carcinogenesis

demonstrated by Zhai et al. provides a theoretical basis for GSC-

targeted immunotherapy (55). However, the ST analysis of primary

glioma remained mainly unexplored.

Various subtypes of gliomas have been identified, including

OPC-like, AC-like, MES-like and NPC-like. By integrating single-

cell and spatial transcriptomics. we observed the distribution of

these subtypes in glioma samples. We discovered that oxidative

stress response genes play a vital role in the generation of OPC-like

subtype. We observed increased expressions of oxidative stress

response genes, heat-shock proteins, and DNA damage response

genes throughout the evolutionary trajectory of OPC subclusters.
FIGURE 8

Expression patterns of stress response genes in HG2 spatial transcriptomics data. (A-F) The expressions of stress response genes including JUN,
DNAJB1, FOSL2, HSPA1A, IER2 and EGR1 was shown in the ST profile from HG2 tissues.
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These findings suggest that stress responses are activated and

potentially enhance the gliomagenesis. Notably, the situation was

different between HG and LG gliomas. In HG gliomas, the hypoxic

state is associated with uncontrolled proliferation and subsequent

malignancy in the tumor core. Especially for HG1, the EMT was

observed in the core region. For HG2, the pathways altered were

more about the proliferation and cell cycle regulation.

We especially focused on JUN (AP1) and related TFs that regulate

apoptosis and cell survival in various types of cancer. Our results

revealed that the expression of AP1 in scRNA-seq data was associated

with the EMT and expression of abnormal proliferation markers, such

as VEGFA and VIM. In ST data, AP1 is enriched in more malignant

OPC subtype MES-like and correlated with hypoxia stress. Histological

analysis, including H&E and IHC results, confirmed that these genes

were expressed in the necrotic areas and glioma pseudo-palisade

regions typically surround necrotic foci (53). Pseudo-palisades in

glioblastoma are characterized by hypoxia, extracellular matrix

protease expression, and an actively migrating cell population (54).

These observations were corroborated by IVY, an anatomic

transcriptional atlas of human glioblastoma. We used the RNA-Seq

as well as the image data from a cellular resolution of ISH tissue

sections and adjacent H&E stained sections annotated for anatomic

structures and found that JUN (AP1) was highly expressed in necrotic

and pseudopalisade regions. These findings implied that oxidative

stress-induced expression of JUN-AP1 might impact gliomagenesis

and malignant transformation. AP1, a well-known stress-responsive

TF, responds to various stimuli, including cytokines, growth factors,

and stress signals. It plays a key role in various cancers, including

glioma, by regulating its downstream targets. For instance, inhibition of

c-Jun N-terminal kinase enhances temozolomide-induced cytotoxicity

in human glioma cells (55). FRK controls the migration and invasion of

human glioma cells by regulating JNK/c-Jun signaling (56). Similar

situations were found for c-FOS, a major component of the AP1

complex. Silencing c-Fos sensitized glioma cells to radiation by

increasing radiation-induced DNA double-strand breaks (DSBs),

disturbing the DNA damage repair process, promoting G2/M cell

cycle arrest, and enhancing apoptosis (57). Our results implied that

these TFs might activate in response to oxidative stress sounded by the

necrotic areas and trigger the protective role in cancer cells.

Additionally, we observed a loss of mitochondrial genes in HG

glioma samples, particularly in the malignant MES-like subtype.

Mitochondria are critical for apoptosis activation in mammalian

cells; thus, mitochondrial dysfunction is often in gliomas as a

mechanism to evade apoptosis (58). Previous studies showed a

pathway-based classification of glioblastoma associated with a

mitochondrial subtype with therapeutic vulnerabilities (59). These

results suggested that mitochondrial subtype in OPC-like might

associated with its therapeutic results. For instance, oncogene AIF-2

regulates proliferation, migration, and invasion of human glioma

cells via mitochondrial dysfunction (60). HIF-1a, a key regulator of
metabolism, affects Tregs migration and immunosuppression by

switching between glycolytic and oxidative phosphorylation

pathways (61). Moreover, failed apoptosis has a specific

transcriptional signature regulated by JNK (an upstream kinase of

AP1) and is enriched in metastatic melanoma (62). Our results also

showed that mitochondrial gene lost is associated with high hypoxia
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score in HG gliomas, accompanied by increased expression of

EGFR and other proliferative markers. This suggests that stress

response TFs might regulate mitochondrial genes.

Furthermore, we observed distinct heterogeneities between LG1 vs

LG2 and HG1 vs HG2. LG2 contains more OPC-like malignant

components, whereas LG1 has more AC-like malignant components.

This suggests that different subtypes of gliomas may have distinct

cellular hierarchies andmolecular characteristics, potentially influenced

by intrinsic variations in glioma stem cells or microenvironmental

factors. Additionally, genes in HG2 are less active compared to HG1

regions, likely due to varying microenvironmental conditions and

stress responses. HG1 is characterized by a hypoxic state and EMT,

driving uncontrolled proliferation, while HG2 focuses more on

proliferation and cell cycle regulation pathways. The rapid increase

in JUNB 1 expression observed in HG2 regions could be linked to

differential stress responses and microenvironmental factors, indicating

that glioma cells in these regions might experience unique stress

conditions that promote specific gene regulatory mechanisms to

enhance survival and proliferation.

Taken together, for the first time based on the scRNA-seq and

ST data, this study provides novel insights into oxidative stress-

induced distinct pathways in HG and LG, JUN (AP1) might be a

critical regulator in the tumorigenesis processes of OPC-like glioma

under stress conditions.

Our study, while comprehensive, has several limitations. Firstly, the

combination of single-cell RNA sequencing (scRNA-seq) and spatial

transcriptomics (ST) provided valuable insights, but the spatial

resolution might not fully capture the complex cellular interactions

and heterogeneity within gliomas. Additionally, our findings are based

on a limited number of high-grade (HG) and low-grade (LG) glioma

samples, which restricts the generalizability of the results across

different glioma subtypes and patient demographics. The cross-

sectional nature of our data further limits the understanding of

temporal changes during gliomagenesis and the progression from

low-grade to high-grade gliomas, necessitating longitudinal studies to

capture these dynamic processes. Furthermore, our study primarily

relies on transcriptomic data to infer gene function and pathway

activation, underscoring the need for functional validation through

in vitro and in vivo experiments to confirm the roles of identified genes

and pathways in glioma progression. Lastly, while we identified

potential therapeutic targets such as JUN (AP1), the translational

aspect of these findings requires further investigation, including drug

efficacy studies and clinical trials.

To build on our findings, several future directions can be pursued.

Enhancing spatial resolution using advanced technologies can provide

more detailed insights into the cellular architecture and interactions

within the glioma microenvironment. Integrative multi-omics

approaches that combine transcriptomics with proteomics,

metabolomics, and epigenomics can offer a more holistic view of the

molecular mechanisms driving gliomagenesis and progression.

Conducting longitudinal studies to monitor the temporal evolution

of gliomas and the impact of therapeutic interventions will be crucial

for understanding disease dynamics and treatment responses.

Functional studies, including gene knockdown or overexpression

experiments and the use of animal models, are necessary to validate

the roles of key genes and pathways identified in our study.
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Investigating the clinical relevance of identified biomarkers and

therapeutic targets, including their predictive value for patient

prognosis and response to treatment, will be a critical step towards

translating these findings into clinical practice. Exploring the

interactions between glioma cells and their microenvironment,

including immune cells, stromal cells, and extracellular matrix

components, will provide insights into the mechanisms of tumor

progression and resistance to therapy. Lastly, developing targeted

therapies that modulate stress response pathways and metabolic

shifts identified in our study could offer new treatment strategies for

glioma patients.
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