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Background: As a prevalent malignancy in women, ovarian cancer (OC) presents

a challenge in clinical practice because of its poor prognosis and poor

therapeutic efficacy. The mechanism by which cuproptosis activity is

accompanied by immune infiltration in OC remains unknown. Here, we

investigated cuproptosis-related OC subtypes and relevant immune landscapes

to develop a risk score (RS) model for survival prediction.

Methods: Cuproptosis-related genes (CRGs) were identified to construct

molecular subtypes via an unsupervised clustering algorithm based on the

expression profiles of survival-related CRGs in the GEO database. Single-cell

datasets were used to estimate immune infiltration among subtypes. The RS

oriented from molecular subtypes was developed via LASSO Cox regression in

the TCGA OC dataset and independently validated in the GEO and TCGA

datasets. Hub markers from RS were identified in tissues and cell lines. The

function of the key gene from RS was identified in vitro.

Results:We investigated cuproptosis activity and immune infiltration to establish

three clinical subtypes of OC based the differentially expressed genes (DEGs)

from CRGs to create an RS model validated for clinical efficacy and prognosis. Six

hub genes from the RS served as ongenic markers in OC tissues and cell lines.

The function of GAS1 in the RS model revealed that it exerts oncogenic effects.

Conclusions: Our study provides a novel RS model including 6 hub genes

associated with cuproptosis and immune infiltration to predict OC prognosis

as well as clinical efficacy.
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GRAPHICAL ABSTRACT
1 Introduction

As the leading cause of cancer death in the female reproductive

system, OC is defined as a “silent killer” because of its insidious

symptoms at an early stage and advanced disease at the time of

diagnosis. According to the World Health Organization, there were
Abbreviations: AUC, area under the curve; BP, biological process; CRGs,

cuproptosis-related genes; CMGrisk, cuproptosis marker gene risk score;

CIBERSORT, cell type identification by estimating relative subsets of RNA

transcripts; CC, cell composition; DEGs, differentially expressed genes; GSVA,

gene set variation analysis; GSEA, gene set enrichment analysis; GO, Gene

Ontology; GEO, Gene Expression Omnibus; ICI, immune checkpoint inhibitor;

IPS, immunophenoscore; IHC, immunohistochemistry; KM, Kaplan−Meier;

KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, least absolute

shrinkage and selection operator; MT, metastasis tissue; MSigDB, Molecular

Signature Database; MF, molecular function; OS, overall survival; OC, ovarian

cancer; PCs, principal components; PCA, principal component analysis; qRT

−PCR, quantitative real-time polymerase chain reaction; RS, risk score; ROC

curve, receiver operating characteristic curve; ScRNA-seq, single-cell RNA

sequencing; SNVs, single nucleotide variants; TCGA, The Cancer Genome

Atlas; TIDE, tumor immune dysfunction and exclusion; UMAP, uniform

manifold approximation and projection.
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approximately 313,959 new cases worldwide and approximately

207,252 deaths due to OC in 2022 (1). Given the high morbidity and

mortality of OC, current diagnostic tools, such as the International

Federation of Gynecology and Obstetrics (FIGO) stage system (2)

and several common serum biomarkers, such as carbohydrate

antigen 125 (CA125) (3) and human epididymis protein 4 (HE4)

(4), are far from ideal models for precisely estimating the prognosis

and curative effect of each patient. A reliable prognostic model is

needed to accurately evaluate the prognosis of patients, which is

crucial for optimal individualized management and treatment.

The tumor microenvironment (TME) is a highly complex and

heterogeneous ecosystem consisting of tumor cells, infiltrating

immune cells, and stromal cells intertwined with noncellular

components, in which immune‐related genes and immune

infiltrating cells play indispensable roles (5). Despite its high

morbidity and mortality, OC is a recognized immunogenic

tumor, and immunotherapies have attracted substantial attention

because of their promising potential in OC therapy. However,

cancer immunotherapy is not effective for everyone, and distinct

immune cell infiltration patterns result in different responses to

cancer immunotherapies (6). In addition, the variability in therapy

response and the determinants underpinning these tumor immune

phenotypes remain elusive (7). Thus, there is an urgent need to

discover key molecular determinants involved in immune
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infiltration signatures and construct prognostic signatures based on

these signatures.

Recently, a novel form of cell death pathway triggered by

copper, named “cuproptosis”, which differs from apoptosis,

pyroptosis, necroptosis, and ferroptosis, was discovered by Peter

Tsvetkov and colleagues in 2022 (8). Copper is an extremely

essential element involved in all types of biological procedures in

the human body, especially in tumor growth and metastasis (9).

Additionally, cuproptosis-related genes (CRGs) have been reported

to be associated with immune cell infiltration in melanoma (10),

esophageal carcinoma (11), and hepatocellular carcinoma (12), with

an increase in protumor or antitumor immune components in

tumors; however, few CRGs have been reported in OC (9). Due to

the promising future of immunotherapy in the treatment of OC and

the crucial role of cuproptosis in immune cell infiltration, evaluating

cuproptosis may be an effective way to predict the prognosis and

therapeutic benefit for patients.

In this study, molecular subtypes and prognostic models of

CRGs in OC were established, and their relationships with the

characteristics of immune infiltrating cells in OC were elucidated at

the single-cell level. The results were further validated using four

cohorts from major public databases. In addition, we aimed to

illustrate the potential of the risk model to predict the efficacy of

immunotherapy and chemotherapy. Our study revealed a potential

association between cuproptosis, prognosis, and the TME in OC

patients. These findings may provide a new method to predict

outcomes in OC patients and ameliorate them.
2 Materials and methods

2.1 Data download and preprocessing

The FPKM expression profile data of OCs in the TCGA

database were downloaded via the R package (TCGAbiolinks),

and log2(FPKM+1) transformations were performed to calculate

their abundance. Corrected TCGA survival data (13) were used for

prognostic survival analysis without samples whose survival time

was less than 30 days. Mutation data were also downloaded for

genomic variation analysis. The clinical information of the

patients in the TCGA_OC cohort used for the analysis is

presented in Table 1. The expression and metadata files from

the GSE130000 dataset were downloaded from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/) as the input files to construct

Seurat single-cell objects for the analysis of the dataset.

The expression and survival data of the GSE26712 dataset were

downloaded from the GEO database as the GEO external validation

set for the risk model. Moreover, the expression and clinical

annotation data of the uroepithelial carcinoma dataset

IMvigor210 were downloaded from http://research-pub.gene.com/

IMvigor210CoreBiologies as the immunotherapy dataset without

samples whose survival time was less than 30 days. Sample

information for each of the above external datasets is shown

in Table 2.
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2.2 Gene set acquisition

The HALLMARK and GO gene sets were obtained from the

MsigDB database (Table 3), as were the immune function-related

gene sets from a previous article (14) (Supplementary Table 1:

Immune_function_geneset). A total of 43 copper death-related

genes were a l so obta ined from prev ious work (15)

(Supplementary Table 1: cuproptosis_related_gene).
2.3 Differential expression analysis

Molecular subtypes of the TCGA_OC cohort were analyzed for

differential expression via the limma R package, and differentially

expressed genes (DEGs) were subsequently screened with Benjamini

−Hochberg (FDR)-corrected thresholds of p values<0.01 and |log2FC|> 0.5.
2.4 Single cell identification and profiling

The single-cell dataset was analyzed via the specialized single-

cell transcriptome analysis tool R package Seurat, which includes
TABLE 2 Sample information table for GEO dataset.

Cohort Subgroup Category Information Number

GSE26712 Status Alive 56

Dead 129

IMvigor210 Response CR/PR 68

SD/PD 227

Status Alive 108

Dead 187
fr
TABLE 1 TCGA OC cohort sample clinical information sheet.

TCGA cohort Information Number

Status Alive 131

Dead 211

Age Age>=55 221

Age<55 121

Grade G1/2 41

G3/4 292

Stage Stage I/II 19

Stage III/IV 320

venous_invasion YES 60

NO 32

lymphatic_invasion YES 92

NO 40
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the steps of constructing objects, data normalization, data

downscaling and clustering, identifying marker genes, and

visualizing the analysis results. First, the single-cell sequencing

results were selected for data merging, and the Seurat object was

then constructed via CreateSeuratObject() of Seurat. After

harmony, the data were further downscaled via uniform manifold

approximation and projection (UMAP) to classify the cell types in

the low-dimensional space. The cell subpopulations were identified

via FindClusters(), and all the marker genes of all the

subpopulations were identified via the FindAllMarkers() function.

The function DimPlot() was used to visualize the results of

dimensionality reduction of single-cell expression data and the

distribution of active cell populations. Moreover, the R package

plot1 cell was used for cell type proportion analysis and

visualization of marker gene expression.
2.5 Single cell annotation

The R package SingleR was used to annotate the subpopulation

results on the basis of Seurat 0.6 resolution, and BlueprintEncodeData

were selected as the cell type reference database.
2.6 Identification of cuproptosis-active
cell populations

The cuproptosis-associated marker genes of our malignancy cell

subpopulation were used to calculate the activity score of each

malignant cell via the R package AUCell and to determine the

threshold for delineating active cells in the current gene set via the

AUCell_exploreThresholds() function. The cell clustering UMAP

embedding was then colored based on the AUC score of each cell to

show which subpopulation-specific cuproptosis-associated factors

were active in which cell subpopulations.
2.7 Construction of the prognostic
risk model

One-way Cox analysis was first performed to screen the genes

related to prognosis for intersubtype differences, and a prognostic

risk score model for ovarian cancer was then constructed on the

basis of this gene via least absolute shrinkage and selection operator

(lasso). The Tibshirani (1996) method was used to screen the

variables to reduce the number of genes in the risk model. The

final multifactorial Cox regression model was established to

construct the OC risk score (Riskscore) model.
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2.8 Survival curves of gene expression

The TCGAOC tumor samples were divided into high- and low-

expression groups, with the median gene expression as the

threshold point. Survival curves for prognostic analysis were

generated via the Kaplan−Meier method, and the significance of

the differences was determined via the log-rank test.
2.9 Estimation of the proportion of
immune infiltrating cells and the
immune score

Based on the expression profile of the TCGA_OC dataset, four

algorithms, CIBERSORT, TIMER, ssGSEA, and ESTIMATE, of the

R package IOBR were applied to calculate the proportion of

infiltrating immune cells.
2.10 Gene set enrichment analysis

Gene set (immune function gene set/HALLMARK) enrichment

scores were calculated for each cancer sample on the basis of gene

expression in TCGA OC samples via the ssGSEA algorithm of the R

package GSVA, which first performs a kernel estimate of the

cumulative distribution density function for each gene in all

samples. The enrichment score differences between subgroups were

then calculated via statistical tests, and the enrichment score heatmap

was plotted via the R package pheatmap combined with the clinical

characteristics of the samples. The correlations among the expression

of model genes, risk scores and enrichment scores were also calculated

via the cor() function and visualized via the R package corrplot.

Gene set enrichment analysis (GSEA) uses a predefined set of

genes to rank genes according to their differential expression in two

types of samples and then tests whether the predefined set of genes

is enriched at the top or bottom of this ranking table. Enrichment

analysis was performed through the R package clusterProfiler on the

basis of GO functional gene sets and KEGG pathways, and the top 8

gene sets with significant enrichment results were then selected to

generate bubble plots showing the enrichment results.
2.11 Genomic SNV analysis

Based on the maf file of somatic mutation detection results of

the TCGA_OC cohort, the oncoplot() function of the R package

mafTools was used to draw waterfall plots to show the differences in

SNV mutations between different model groupings. Finally, the maf

data of the high- and low-risk groups were analyzed via the

mafCompare() function to obtain genes with significant

differences in mutations between the two groups.
2.12 Immunotherapy response prediction

The algorithm is based on expression profiles prior to tumor

treatment and scores multiple published transcriptomic biomarkers

to predict patients’ immunotherapeutic response. The TIDE score
TABLE 3 Table for immune infiltration.

Cohort Information

GSE130000 immune cell infiltration

MsigDB immune function
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(http://tide.dfci.harvard.edu) integrates T-cell dysfunction and

exclusion features, simulates tumor immune escape with different

levels of tumor-infiltrating cytotoxic T cells, and appears to be

highly advantageous compared with other biomarkers. The

immunophenoscore (IPS) can be used to identify immunogenicity

and predict the response to immunotherapy in multiple tumor

types. We obtained IPS scores for tumor samples in the TCGA_OC

dataset via an online website (https://tcia.at/home) and performed

between-group difference analysis via statistical tests.
2.13 Samples and cell collection

All tumor tissues were obtained from Jiangxi Cancer Hospital and

stored in liquid nitrogen at -80°C until use. This research was approved

by the ethics committee of Jiangxi Cancer Hospital (Approval number:

2022ky305). Every patient provided informed consent prior to the

collection and usage of these clinical materials. The OC cell lines used

in this study were obtained from the ATCC cell bank.
2.14 Quantitative real-time polymerase
chain reaction (qRT−PCR)

mRNAwas extracted from tissues with TRIzol reagent (Invitrogen,

Carlsbad, CA, USA) according to the manufacturer’s protocol. The

SYBRGreen PCRMaster One-Mix Kit (TransGen, Beijing, China) was

used for qPCR to determine mRNA expression. Detailed information

about all the primers used is listed in Supplementary Table 12.
2.15 Wound healing assay

Approximately 3×105 A2780 and SKOV3 OC cells were seeded in

a 6-well plate. After the cells filled the entire area, the culture inserts

were removed. The cells were treated with PB (1.0 or 2.0 µM) or DMSO

for 48 h. The cells were then rinsed twice with PBS to remove floating

cells. Images were obtained under an optical microscope (ix71,

Olympus, Japan) at 0 h, 24 h and 48 h after wound induction.
2.16 Western blot analysis

The details of the assay were as described in our previous study

(16). The antibodies used are listed in Supplementary Table 12.
2.17 Immunohistochemical analysis

The details of the assay were as described in our previous study

(17). The antibodies used are listed in Supplementary Table 12.

When tissue slices are observed under an optical microscope, they

are graded based on the degree of staining and the extent of

positivity. The degree of staining can range from 0 to 3,

representing varying depths of color (negative staining, pale

yellow, light brown, and dark brown). The extent of positivity can
Frontiers in Immunology 05
range from 1 to 4, representing different percentages of positive cells

(0-25%, 26-50%, 51-75%, 76-100%). By grading the intensity of

cellular staining and the percentage of positive cells, these two

scores are multiplied to obtain the final score.
2.18 Plasmid construction and transfection

Stably transfected small interfering RNAs (siRNAs) were obtained

from ElifeBio (Hangzhou, China) and transfected into cells via

Lipofectamine iMax(Invitrogen,AL,USA) following themanufacturer’s

instructions.ThetransfectionefficiencywasverifiedviaqRT−PCR.
2.19 Transwell assays

The premixed matrix gel was added to the Transwell chamber,

which was then placed in a 24-well deep-well plate and incubated in a

cell culture incubator for 2 hours. Adherent cells were digested with

trypsin solution, resuspended by pipetting, and counted via a cell

counter. OC cells transfected with GAS1 were digested and seeded in

the upper chamber, which was supplemented with 0.2 ml of serum-free

medium. Then, 700 µl of complete medium containing serum was

added to the 24-well deep-well plate housing the Transwell chamber.

After 24 hours, the Transwell chamber was removed, and the cells were

processed for subsequent fixation, staining, and counting.
2.20 Cell proliferation analysis

We evaluated the proliferation of OC cells transfected with GAS1

via colony formation and EdU assays. The specific experimental

procedures were performed as described previously (18).
2.21 Description of the statistical analysis

For statistical mapping, theWilcoxon test was used to compare the

differences between two groups of samples, and the Kruskal−Wallis test

wasused to compare thedifferencesbetweenmultiple groupsof samples.
3 Results

3.1 Single-cell landscape and cuproptosis
activity in OC

3.1.1 Expression of the TME and CRGs in OC
A total of 13,511 cells from OC tissue in GSE130000 (Table 3) were

obtained. For initial data dimensionality reduction analysis (PCA), we

selected the top 15 PCs for subsequent PCA and then drew a clusterree

(clustree.res.pdf) to annotate the cell subtypes with SingleR

(Supplementary Table 1: cell_info). We classified all epithelial cells,

including seven cell subtypes, in tumor tissue as a malignant cell group

(Figure 1A). To investigate the differences in the immune function of

different cell types in different tissues, we first plotted an expression
frontiersin.org
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bubble chart of antitumor response factors and antitumor immune

genes, which revealed low expression levels of these genes in malignant

cells, whereas the antitumor response factor in CD8+ T cells was active

in both metastatic and primary cancer tissues. Moreover, antitumor

immune factors from macrophages, fibroblasts, and endothelial cells

exhibitedmuch greater activity in primary andmetastatic tissues than in

recurrent tissue (Figure 1B). We also plotted an expression bubble chart

of the CRGs, which revealed that CP was expressed at higher levels in

themalignant cells of primary and recurrent tissues and thatMT2Awas

expressed at higher levels in the primary myocardial cells. However,

SOD1 preferred CD8+ T cells in metastatic tissue (Figure 1C). Next, we

explored the distribution of different cell types across different tissue

sources, revealing the diverse proportions of malignant cells, CD8+ T

cells, myofibroblasts and macrophages in different tissues (Figure 1D).

Finally, according to the expression of each gene in single cells, we

calculated the ssGSEA scores of the CRGs (Supplementary Table 1:

cuproptosis_ssGSEA), which revealed that the enrichment level of

CRGs in malignant cells was relatively high (Figure 1E). Moreover,

the enrichment score of CRGs in recurrent tissue was greater than that

in primary and metastatic tissue (Figure 1F).
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3.1.2 CRGs associated with cellular immunity
in OC

We subdivided the 10,358 malignant cells into three malignant

subgroups (Figure 2A) and then generated an expression bubble

map of all the CRGs by identifying the marker genes of each

cluster, which revealed that the expression of CRGs was

significantly greater in subgroup 2 than in subgroups 1 and 0

(Figure 2B). Moreover, the enrichment scores of the CRGs were

highest in subgroup 2, followed by subgroups 1 and 0 (Figure 2C).

We also performed immune functional analysis of the three

malignant subtypes, which revealed that the enrichment scores

for tumor cell immune response ability and interferon-g response
genes were significantly greater in subgroup 2 than in subgroups 1

and 0 (Figures 2D, E).
3.1.3 Identification of cuproptosis activity in
malignant cells

To further investigate the expression and functional

characteristics of CRGs at the single-cell level, we identified 192
FIGURE 1

Differences in the tumor microenvironment at the single-cell level. (A) UMAP distribution map of cell clustering and annotation results, where the circles
represent cell annotation results. From outer to inner, they respectively indicate cell type, sample source, and tissue type; (B) Bubble plot of the expression of
anti-tumor immune and anti-tumor response genes combined with different cell types from various tissue sources, with the size of the dots representing the
number of cells expressing the genes and the color indicating the level of expression; (C) Bubble plot of the expression of ferroptosis-related marker genes
combined with different cell types from various tissue sources, with the size of the dots representing the number of cells expressing the genes and the color
indicating the level of expression; (D) Bar chart depicting the distribution of cell types in different tissues, with different colors representing different cell types;
(E) Violin plot showing the enrichment scores of ferroptosis-related genes in various cell clusters; (F) Violin plot illustrating the differences in ferroptosis
enrichment scores among primary tissue, metastatic tissue, and recurrent tissue. The blue color represents cells from metastatic tissue, red indicates cells
from primary cancer tissue, and green represents cells from recurrent tissue. ****p < 0.0001.
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cells as an active malignant population related to active cuproptosis

in malignancies (Figure 3A) and used the optimal threshold to

determine cell viability (Supplementary Table 2: cell_info). A

cumulative distribution histogram was subsequently plotted to

display the distribution of active and inactive cuproptotic

malignant cells in each tissue type, which revealed that the

number of active cuproptotic malignant cells was highest in the

recurrent tissue (Figure 3B). In addition, a bubble chart of CRGs in

three subtypes and different active types revealed that CRGs were

enriched in the active population of all malignant subtypes,

especially in subtype 2 (Figure 3C). To identify functional

differences between the active and inactive populations, we

compared their immune functions and identified the active

population with a significantly lower level of immune response to

tumor cells and interferon-g response gene enrichment scores

compared with the inactive population (Figures 3D, E). Finally,

differential expression analysis was conducted on the two cell

populations, with 157 DEGs identified (Supplementary Table 2:

Active_cells_DEGS), which were enriched mainly in response to

metal ions such as copper, zinc, and cadmium, as well as in the

detoxification of organic compounds, according to GOBP

enrichment analysis (Figure 3F).
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3.2 Role of the identification of molecular
subtypes associated with active
necroptosis DEGs

3.2.1 Immune infiltration between molecular
subtypes in OC

Based on the identification of DEGs between active and inactive

cuproptotic malignant cell populations via single-cell analysis, we

identified OC molecular subtypes with the best clustering

performance achieved via the PAM clustering algorithm,

Spearman distance, and K=3 (Figures 4A–D; Supplementary

Table 3). The consistency clustering cumulative distribution

function (CDF) with the KM curves revealed clear boundaries

between the three subtypes, indicating good clustering results,

and K=3 was the result of our molecular subtype identification

(Figures 4E–K; Supplementary Table 3: cc_group). We also

explored the different cuproptosis expression patterns of the three

subtypes (Supplementary Figure 1).

With the results of the immunoreactive cell proportion

analysis of the TCGA OC samples (Supplementary Table 4), we

analyzed the proportion of immunoreactive cells among the three

subtypes, which revealed that the stromal, immune, and
FIGURE 2

Characteristics of cuproptosis in malignant cells. (A) UMAP distribution map of the re-clustering results of malignant cells; (B) Bubble plot showing
the expression of all ferroptosis-related marker genes in malignant subtypes, where the size of the dots represents the number of cells expressing
the genes and the color represents the level of expression; (C) Violin plot displaying the differences in enrichment scores of ferroptosis-related gene
sets among malignant subtypes; (D, E) Violin plots illustrating the differences in enrichment scores of tumor cell immune response and interferon
response gene sets among malignant subtypes. ****p < 0.0001.
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ESTIMATE scores of the C3 subtype were significantly greater

than those of the other two subtypes, whereas the tumor purity

was lower (Figure 5A). Moreover, the B-cell infiltration level was

lower in the C3 subtype than in the other subtypes, whereas the

infiltration of T cells, macrophages, DCs, and neutrophils was

greater according to the TIMER algorithm (Figure 5B). Finally, we

explored the infiltration proportions of 28 immune cells among

the three subtypes via the ssGSEA algorithm and found that there

were significant differences in the infiltration proportions of 24

cell types and that the infiltration proportion of the C3 subtype

was significantly greater than those of the other two subtypes

(Figure 5C). Furthermore, we also detected differences in the

enrichment scores of the six immune-related gene sets among

the three MSs, from which we found that the immune factor

enrichment score in C3 was higher than that in C1 and C2 and

that C2 had a higher score than C1 (Figures 6A–F). Additionally,

the enrichment of four immune function gene sets among the

subtypes revealed that T-cell activation and innate immunity in

C3 were significantly stronger than those in C2 and C1

(Figures 6G–J).
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3.2.2 Differential expression of immune markers
across molecular subtypes

The expression levels of immune checkpoints from the TISIDB

database in the C3 subtype were generally significantly greater than

those in the C1 and C2 subtypes (Supplementary Figure 2A).

Second, to explore the differences in other biological functions

between molecular subtypes, we identified the upregulated genes in

each subtype relative to those in the other two subtypes and then

combined the three upregulated gene sets as the DEGs between

subtypes. A total of 1033 subtype-specific DEGs were obtained

(Supplementary Table 3: All_diff_gene). The KEGG pathway results

revealed that the subtype-specific DEGs were enriched mainly in

ECM−receptor interactions, proteoglycans in cancer, the PI3K−Akt

signaling pathway, protein digestion and absorption, complement

and coagulation cascades, phagosomes, and Staphylococcus aureus

infection (Supplementary Figure 2B). Moreover, the GO functional

enrichment results revealed that the DEGs were enriched mainly in

biological processes related to cell tissue, migration, adhesion,

regulation of vasculature development regulation, and wound

healing; molecular functions such as extracellular matrix
FIGURE 3

Identification of active cuproptosis malignant cell population. (A) Single-cell AUC scores for ferroptosis genes, with the optimal threshold being 0.45;
(B) Bar chart displaying the distribution of active populations in different tissue types, where red represents inactive populations and green represents
active populations; (C) Bubble plot depicting the expression of ferroptosis marker genes in various malignant cell subtypes and different activity
types, with a redder color indicating higher average expression values and the size of the dots representing the number of expressing cells; (D, E)
Violin plots showing differences in immune function between active and non-active malignant cell populations with respect to ferroptosis activity,
where green represents the active population and red represents the non-active population; (F) Line plot illustrating the enrichment results of
differentially expressed genes between the active and non-active ferroptosis groups based on GOBP-GSEA. ***p < 0.001, ****p < 0.0001.
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structural constituents, glycosaminoglycan binding, and growth

factor binding; and cellular component gene sets such as the

collagen-containing extracellular matrix, endoplasmic reticulum

lumen, and collagen triple helix complex (Supplementary

Figures 2C–E).
3.3 Construction and validation of a
prognostic risk model for OC

We identified 24 genes significantly associated with OC

prognosis from the DEGs associated with OC among the

cuproptosis subtypes (Figure 7A; Supplementary Table 5:

cox_res). We subsequently applied Lasso linear regression to

eliminate redundant genes according to these 24 genes, resulting

in six prognosis-related signatures (Figures 7B–D; Supplementary

Table 5: lasso_res). Then, we established Kaplan−Meier survival

curves for these genes in the overall TCGA cohort. We found that
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there were significant differences between the KM curves for four

genes: PRSS16 and CXCL11 had better prognostic values in the

high-expression group, whereas PI3 and GAS1 had better

prognostic values in the low-expression group (Figures 7E–J).

Furthermore, we calculated the RS for each sample via the

formula RiskScore = PRSS16*-0.223 + CXCL11*-0.166 +

PI3*0.127 + GALNT10*0.032 + GAS1*0.127 + AKAP12*0.036,

which led to high-risk and low-risk groups via the median risk

score of 0.4525444 as the threshold (Supplementary Table 5:

TCGA_Train). These six model genes were diverse in the high-

and low-risk groups of the training set and were related to prognosis

(Supplementary Figures 3A–D). The receiver operating

characteristic (ROC) curve of the prognostic signature, with area

under the ROC curve (AUC) values of 0.709, 0.711, and 0.773 at 3,

5, and 8 years, revealed good predictive performance of the model

score (Supplementary Figure 3E). Similar results were also validated

in the TCGA test set, TCGA_OC dataset, and GEO dataset

GSE26712 (Supplementary Figures 4–6).
FIGURE 4

Identification of TCGA molecular subtypes in OC. (A–D) Clustering results for different numbers of clusters, specifically k=2, k=3, k=4, and k=5; (E)
Distribution of the cumulative distribution function (CDF) curve for consensus clustering; (F) Distribution of the area under the cumulative
distribution function (CDF) curve for consensus clustering; (G) Scatter plot showing the results of clustering using PCA dimensionality reduction
algorithm, where green represents C1, orange represents C2, and purple represents C3; (H–K) Survival curves for different numbers of clusters (k=2,
k=3, k=4, k=5), where different colored curves represent different clusters.
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3.4 Association between RS and multiple
features in OC

3.4.1 Association between risk score and immune
microenvironment in OC

The RS was confirmed to be an independent prognostic factor for

age (>55), stage and venous invasion in OC patients (Figure 8A;

Supplementary Table 5: Clinical_stat). The RS is a clinical factor that

contributes to survival time and survival status in combination with the

clinical indicator age (Figure 8B). The risk score was significantly

different between both the age subgroups and the molecular subtypes

(Figures 8C, D), indicating that the age and molecular subtypes of the

ovarian cancer samples were significantly associated with the RS. To

investigate the differences in the tumor immune microenvironment

between the high- and low-risk groups in the RS, in light of the

estimation results of the proportion of infiltrating immune cells, we
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discovered that 5 of the 28 immune cells, including activated CD4+

T cells, activated CD8+ T cells, effector memory CD8+ T cells,

immature B cells, and type 2 T helper cells, were significantly greater

in the low-RS group than in the high-RS group according to the ssGSEA

algorithm (Figures 9A–E). We subsequently explored the expression of

23 immunosuppressive checkpoints (Supplementary Table 6:

check_model_data) in the high- and low-risk groups, 16 of which

were significantly more highly expressed in the low-risk group than in

the high-risk group (Figure 9F). In addition, the associations between

the expression of 6 genes from the RS and that of 23

immunosuppression checkpoint genes (Supplementary Table 6:

corrdata & corrp) revealed that the expression of CXCL11 was

significantly positively correlated with that of multiple immune

checkpoint genes; however, the expression of the RS was generally

negatively correlated with that of other genes (Figure 9G). Finally, the

stromal score (Figure 9H) from the ESTIMATE algorithmwas higher in
FIGURE 5

Differences in proportion of immune-infiltrating cells among TCGA molecular subtypes. (A) Box plot showing the differences in ESTIMATE scores
between molecular subtypes of ovarian cancer, where green represents C1, orange represents C2, and purple represents C3; (B) Box plot illustrating
the differences in the proportions of immune infiltrating cells between molecular subtypes calculated using the TIMER algorithm; (C) Box plot
displaying the differences in the proportions of 28 types of immune infiltrating cells between molecular subtypes. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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FIGURE 7

(A) construction of the prognostic risk model. (A) Forest plot of the results of single-factor Cox analysis of differentially expressed genes between
subtypes; (B) Trajectory of changes in the independent variables of LASSO regression, where the x-axis represents the logarithm of the independent
variable Lambda and the y-axis represents the coefficient of the independent variable; (C) Confidence interval for each Lambda in LASSO regression;
(D) LASSO regression coefficients for 8 key prognostic factors; (E–J) KM curves for model genes, where red represents high expression group and
green represents low expression group.
FIGURE 6

Differences in immune enrichment among subtypes. (A–F) Box plots showing the differences in enrichment of immune factor gene sets between
subtypes, including immune checkpoints, chemokine gene ontology, chemokine receptor gene ontology, cytokine gene ontology, cytokine receptor
gene ontology, and T cell inflammatory genes; (G–J) Box plots illustrating the differences in immune functions between subtypes, including T cell
activation, immune response to tumor cells, effector T cells, and innate immunity.
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the high-RS group than in the low-RS group, and the immune score

(Figure 9I) results were the opposite.

Analysis of the differences in the expression of antitumor

immune and antitumor response genes in the RS groups revealed

that the expression of antitumor response-related genes was

significantly lower in the high-risk group than in the low-risk

group. We then selected 197 DEGs between the two groups

(Supplementary Table 7) to explore their functions via Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) enrichment analyses, which revealed that the

DEGs were enriched mainly in antigen processing and

presentation, Epstein–Barr virus (EBV) infection, allograft

rejection, autoimmune thyroid disease and other Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways, as well

as in gene ontology (GO) functional gene sets related to antigen

processing, processing and presentation, response to viruses, and

major histocompatibility complex (MHC) protein complexes.

3.4.2 Correlation of the RS model with
the HALLMARK

Based on the HALLMARK enrichment score results of

the OC samples and the RS information, we aimed to explore
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the pathway enrichment differences between the high- and low-

risk groups (Supplementary Table 8), and 28 of the pathways

presented significant differences in enrichment scores between

the high- and low-risk groups (Supplementary Figure 6A).

Moreover, the expression of CXCL11 and GALNT10 was

significantly positively correlated with multiple pathway

enrichment scores; however, the expression of RS was

significantly negatively correlated with the interferon a and g
response (Supplementary Figure 6B). RS was found to be

significantly negatively correlated with multiple immune

function gene sets, where we selected four functional gene sets

with strong correlations, including Co inhibition, interferon g
response, immune response to tumor cells and antigen processing

and presentation (Supplementary Figures 6C–F).

3.4.3 Association between RS and tumor
genome mutations

Waterfall plots of the top 20 genes with mutation frequencies

were generated separately for the high- and low-risk groups

combined with other clinical information, demonstrating the

distribution of gene mutations between the two groups and

samples with different clinical characteristics, with TP53, TTN,
FIGURE 8

The RiskScore as an independent prognostic factor. (A) Forest plot of the results of single- and multi-factor Cox analysis for clinical factors; (B)
Nomogram of the predictive model, where the square plus line segment represents the contribution of each clinical factor to the outcome event, Total
Points represents the total score obtained by adding up the scores for all variables, and the three lines at the bottom represent the 8/5/3-year survival
probabilities corresponding to each value point; (C, D) Box plots showing the differences in risk scores distribution between different Age and molecular
subtype groups, with different colors representing different groups, and the p-value indicating the significance of the difference. ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1452294
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xiaorong et al. 10.3389/fimmu.2024.1452294
and CSMD3 having the highest mutation frequencies in OC

(Figures 10A, B). Due to differences in gene mutation

frequenc ies between the high- and low-r i sk groups

(Supplementary Table 9: mafCompare_High_VS_Low), we

divided the samples into MT and WT groups to analyze the

difference in RS between them. We found that the risk scores of

the TICRR, CACNA1S and C7 gene groups were significantly

different from those of the wild-type group, and the mutation

frequency of these genes was greater (Figures 10C–E). Using the

same methodology, we also scrutinized the correlation between

tumor mutational burden (TMB) (Supplementary Table 9:

Riskscore_tmb_res) or RS and prognosis, revealing a more

favorable prognosis associated with high TMB (Figure 10F).
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3.5 RS model estimation for predicting
patient clinical efficacy

To investigate whether genes from the Riskscore model can

serve as markers for immunotherapy response, we explored the

ability of tumor risk scores to predict patient benefit from

immunotherapy. Initially, within the immunotherapy dataset, risk

scores were computed for each sample and then categorized into

high- and low-risk groups (Supplementary Table 10:

IMvigor210_res). The low-risk group had a better prognosis

(Figure 11A), with more pronounced benefits following

immunotherapy (Figures 11B, C). TIDE (Supplementary

Table 10: TIDE_res) was subsequently used to predict the
FIGURE 9

The correlation between RiskScore and immune checkpoints. (A–E) Box plots showing the differences in proportions of immune-infiltrating cells
between high and low-risk groups calculated using the ssGSEA algorithm, where red represents the high-risk group and green represents the low-
risk group; (F) Box plot illustrating the expression differences of 23 immune checkpoint inhibitors between high and low-risk groups, where red
represents the high-risk group and green represents the low-risk group; (G) Heatmap of the correlation coefficients between the expression of
model genes, risk scores, and the expression of immune checkpoint inhibitors, where the color of the dots represents the strength of the
correlation, and “*” denotes significance; (H, I) Box plots displaying the differences in stromal score and immune score between high and low-risk
groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 10

Differences of gene mutant enrichment in Riskscore model. (A) Waterfall plot of the top 20 genes’ SNV mutation frequencies in the high-risk group;
(B) Waterfall plot of the top 20 genes’ SNV mutation frequencies in the low-risk group; (C–E) Box plots illustrating the difference in Riskscore
between mutated and wild-type groups for genes with significantly different mutation frequencies between high and low-risk groups, where red
represents the mutated group and blue represents the wild-type group; (F) Survival curve comparison between high and low TMB groups, where red
represents the high TMB group and blue represents the low TMB group.
FIGURE 11

Predictive modeling of immunotherapy efficacy via risk stratification. (A) Kaplan-Meier curves for high-risk versus low-risk groups within the
IMvigor210 cohort; (B) Violin plots illustrating differences in risk scores between responder and non-responder groups within the IMvigor210 cohort,
with responders depicted in red and non-responders in blue; (C) Bar graphs showing the cumulative distribution differences between responder and
non-responder groups among high-risk and low-risk categories within the IMvigor210 cohort; (D) Violin plots of risk scores for responder versus
non-responder groups as predicted by TIDE; (E) Bar graphs depicting the cumulative distribution of responder versus non-responder groups among
model-based stratifications as forecasted by TIDE; (F–I) Violin plots representing the differences in IPS scores between high-risk and low-risk
groups, with high-risk groups colored in red and low-risk groups in green.
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immune response status of samples in the TCGA_OC dataset to

evaluate the model’s ability to predict the immune response. The

risk score of the responsive group was significantly lower than that

of the nonresponsive group (Figures 11D, E). Additionally, the

proportion of responders in the low-RS group was significantly

greater than that in the high-RS group. The analysis from TIDE

indicated a significant correlation between risk scores, RS grouping,

and immune response, suggesting a strong predictive ability of the

model for the immune response. Furthermore, we employed the

immunophenoscore (IPS) (Supplementary Table 10: IPS_res) to

explore clinical efficacy from the perspective of tumor

immunogenicity and found that all four IPS scores in the low-RS

group were significantly higher than those in the high-RS group, further
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revealing that patients in the low-RS group are more likely to benefit

from immunotherapy (Figures 11F–I). Furthermore, we analyzed the

relationships between the risk score model and the IC50 values of

targeted and chemotherapeutic drugs via the GDS and TCGA databases

(Supplementary Table 11: drug_res&sign_stat; Supplementary Table 11:

corr_IC50_ModelGene_corr). Our findings confirmed a significant

negative correlation between the expression of GALNT10, GAS1, and

AKAP12 and the risk score and IC50 values of the drugs (Figure 12A).

Additionally, we observed a strong positive correlation between the

expression of the genes CXCL11 and PRSS16 and the IC50 values of the

drugs. The different treatment responses to various targeted drugs’ IC50

values were also evident between the high- and low-RS groups

(Figures 12B–I).
FIGURE 12

Risk model predicts chemotherapy drug resistance. (A) Heatmap illustrating the correlation between IC50 values of drugs showing significant
differences in sensitivity between high-risk and low-risk groups, model gene expression, and RiskScore. The intensity of the color indicates the level
of correlation, with * denoting significance; (B–E) Box plots depicting differences in IC50 values for drugs to which high-risk groups are more
sensitive, with high-risk groups in red and low-risk groups in green; (F–I) Box plots showing differences in IC50 values for drugs to which low-risk
groups are more sensitive. *p < 0.05, **p < 0.001, ***p < 0.001.
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3.6 Validation of the expression levels of
hub genes in samples

In addition to PRSS16, we explored the protein expression of the

other hub genes in the HPA database (https://www.proteinatlas.org/).

Among them, GAS1 was significantly overexpressed in OC tissues,

whereas AKAP12 and GALNT10 were markedly upregulated in

normal tissues. PI3 exhibited low expression in both normal and

OC tissues. The remaining proteins were moderately expressed in

normal and OC tissues (Figure 13A). To further corroborate the

results obtained from the HPA database, we conducted validation in

OC cell lines and specimens at the protein and mRNA levels

through Western blotting and qPCR assays (Figures 13B–I), and

we discovered that the outcomes aligned with those derived from

the HPA database. Due to the coefficient scores, we identified GAS1

as a crucial oncogene from the RS model. Knocking down GAS1 in

A2780 and SKOV3 cells resulted in a notable decrease in the

proliferative and invasive capacities of OC cells (Figures 14A–D).

Most notably, diminished EDU fluorescence and weakened

reparative abilities were observed following GAS1 knockdown

(Figures 14E, F).
Frontiers in Immunology 16
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OC is the most aggressive reproductive system cancer in females

worldwide, with a low survival of less than 35% by five years after

diagnosis, despite various improved treatment strategies, such as

cytoreductive surgery, modified chemotherapy and hormonal

therapy (19). Thus, the discovery and development of

individualized diagnostic and therapeutic strategies are urgently

needed. Fortunately, as medicine has evolved from empirical to

evidence-based, personalized, precision medicine has become

increasingly achievable. Against the backdrop of the emerging era

of bioinformatics, many genetic signatures and corresponding risk

models have been mined from internationally available genomic

databases and increasingly accepted by the scientific community (20).

Due to the tumor complexity/heterogeneity of neoplasms and

their surrounding tumor microenvironment (TME) (5, 21), most

OC patients experience recurrence after first-line treatment. Several

cells involved in both innate and adaptive immunity, including

tumor-associated macrophages (TAMs), tumor-associated

neutrophils (TANs), myeloid-derived suppressor cells (MDSCs),

gd T cells, and natural killer (NK) cells, directly or indirectly shape
FIGURE 13

Validation of the expression levels of hub genes in samples. (A) IHC results of proteins in RS model from HPA database. (B) IHC results of proteins
from RS model in our clinical samples. (C) Western-blot assay results of proteins from RS model in cell lines. (D-I) qPCR results of markers from RS
model in cell lines. **p < 0.001.
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the OC TME (22, 23), which displays unique features leading to

immune suppression and tolerance and the impairment of immune

system components, including TAMs (24), TANs (25), gd T cells,

and NK cells (26). The immune context of OC acts as a crucial

orchestrator of OC progression, playing an indispensable role in

predicting patient prognosis.
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Cuproptosis, an unconventional cell death mechanism, is

involved in numerous pathological conditions, including cancers,

albeit mainly through undefined underlying mechanisms. The

process of cuproptosis has an unambiguous relationship with

mitochondrial respiration (27). Excess copper within cells can be

transported to the mitochondria by ionophores and directly bind to
FIGURE 14

GAS1 regulates OC cell progression. (A, B) Colony formation assay results of A2780 and SKOV3 cells transfected with GAS1 siRNA. C, D) EdU assay
results for A2780 and SKOV3 cells transfected with GAS1 siRNA. (E) Transwell assay results of A2780 and SKOV3 cells transfected with GAS1 siRNA..
(F) Wound healing assay for A2780 and SKOV3 cells transfected with GAS1 siRNA. **p < 0.001, ****p < 0.0001.
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lipoylated components of the tricarboxylic acid (TCA) cycle,

triggering an accumulation of lipoylated proteins and loss of

iron–sulfur cluster proteins, leading to proteotoxic stress and,

eventually, cell death (9). However, little work has been

performed on optimizing the prognostic model in OC utilizing

cuproptosis combined with immune infiltration.

Taken together, in this study, the differential expression of

CRGs and TME-related genes was analyzed at the single-cell

level, and the correlations between these two types of genes were

described, with the active cooperative death of malignant cells

further identified. We subsequently identified three molecular

subtypes on the basis of differential gene expression between

active and inactive cuproptosis cells and demonstrated differential

enrichment via multiple analyses. In particular, a prognostic risk

model integrating 6 genes was constructed, which was validated

with four datasets from major public databases. In addition, the

patients were divided into high- and low-risk groups based on the

risk model, and the associations between the risk score and multiple

features were depicted. Finally, the ability of the risk model to

predict the efficacy of immunotherapy and chemotherapy drug

resistance was delineated.

Six genes, including PRSS16, CXCL11, PI3, GALNT10, GAS1,

and AKAP12, constitute a prognostic risk model, and the RS was

calculated. The AUC value of the risk score in the diagnostic ROC

analysis using four datasets covering the TCGA and GEO datasets

further verified the experimental phenomenon. Among the core

genes, PRSS16, encoding a thymus-specific serine protease (TSSP),

which is involved in CD4+ T-cell maturation in the thymus, has

tumor suppressor activity (28). CXCL11, known as interferon-

inducible T-cell alpha chemoattractant (I-TAC), has been

reported to be the ligand of specific atypical chemokine receptors,

including CXCR7 (29) and GPR182 (30). PI3, encoding elafin,

which is a serine protease inhibitor critical for host defense, is

reportedly associated with an unfavorable OS and a better

immunotherapy response in OC (31). Moreover, GALNT10, an

enzyme that mediates protein and lipid modifications, was found to

be an independent predictor of prognosis in OC patients with

immunosuppression (32). AKAP12, a scaffolding protein, anchors

PKA to compartmentalize cycle AMP signaling and was found to be

a promoter in tumors (33). Intriguingly, GAS1, which has been

reported to play a role in growth suppression, blocks entry into the S

phase, prevents the cycling of normal and transformed cells, and

functions as a putative tumor suppressor, whereas it had the

opposite effect in our study (34). This interplay highlights the

complex gene profile heterogeneity of OC, which promotes

changes in the tumor microenvironment.

Notably, we investigated the relationship between the risk score

and tumor immunology and the differences in tumor immunology

among patients with different risk scores. We found that the risk

score acts as an independent prognostic factor and is associated with

the condition of the tumor microenvironment and the efficacy of

immunotherapy. With respect to immunotherapy, a lower risk score

was more likely to be beneficial, as it indicated a higher ESTIMATE

immune score, fewer mutations in tumor suppressor genes and a
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greater immune response. In addition, the half-maximal inhibitory

concentration (IC50) curves of 138 chemotherapy drugs in the

GDSC database were examined to determine their predicted

chemotherapeutic effectiveness. Among them, the IC50 values of

cyclopamine, ABT-888, and AKT inhibitor were determined. VIII,

and ATRA were relatively more common in the high-risk score

group, whereas axitinib, BMS.509744, Elesclomol and GNF.2 were

relatively more common in the high-risk score groups. Both results

were statistically significant after log-rank testing. Accordingly, our

prognostic risk model not only predicts the OS rate but is also

conducive to more precise therapy choices.

Despite these limitations, including the lack of real-world

clinical cohorts and IC50 data from benches, the present study

highlights the outstanding ability of the risk model to predict the

prognosis of OC and its association with tumor immunology. These

findings may contribute to the development of immunotherapy-

and chemotherapy-based interventions in the future.

Three studies have confirmed the role of cuproptosis-related

genes in OC from the perspectives of molecular subtyping and the

risk score. Compared with Li’s results (35), our research focusedmore

on the relationship between the risk score and evaluation indicators

such as chemoresistance, genomic mutations, and the efficacy of

immunotherapies. We focused primarily on cuproptosis without

incorporating ferroptosis, aiming for a more direct exploration of

the roles of CRGs in OC. Our study also focused on the role of key

genes within the risk score, delving into their oncogenic functions.

Unlike Wang’s study (36), our research closely examines the

relationships between the risk score and the tumor immune

microenvironment as well as immunotherapeutic responses.

Additionally, via single-cell analysis, we identified genes that were

differentially expressed between the active copper-depleted malignant

cell population and the inactive cell population to characterize the

molecular subtypes in the TCGA ovarian cancer cohort. Finally,

compared with Zhang’s research (8), our strength lies in uncovering

the oncogenic functions of key genes within the risk score and

validating these findings in samples. Furthermore, our molecular

subtyping method is more specific and precise.

In conclusion, our study provides a novel risk score model

including 6 hub genes associated with cuproptosis and immune

infiltration to predict OC prognosis as well as clinical efficacy.
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