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Inflammasome activity regulation
by PUFA metabolites
Sinemyiz Atalay Ekiner*, Agnieszka Gęgotek
and Elżbieta Skrzydlewska*

Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
Oxidative stress and the accompanying chronic inflammation constitute an

important metabolic problem that may lead to pathology, especially when the

body is exposed to physicochemical and biological factors, including UV

radiation, pathogens, drugs, as well as endogenous metabolic disorders. The

cellular response is associated, among others, with changes in lipid metabolism,

mainly due to the oxidation and the action of lipolytic enzymes. Products of

oxidative fragmentation/cyclization of polyunsaturated fatty acids (PUFAs) [4-

HNE, MDA, 8-isoprostanes, neuroprostanes] and eicosanoids generated as a

result of the enzymatic metabolism of PUFAs significantly modify cellular

metabolism, including inflammation and the functioning of the immune system

by interfering with intracellular molecular signaling. The key regulators of

inflammation, the effectiveness of which can be regulated by interacting with

the products of lipid metabolism under oxidative stress, are inflammasome

complexes. An example is both negative or positive regulation of NLRP3

inflammasome activity by 4-HNE depending on the severity of oxidative stress.

4-HNE modifies NLRP3 activity by both direct interaction with NLRP3 and

alteration of NF-kB signaling. Furthermore, prostaglandin E2 is known to be

positively correlated with both NLRP3 and NLRC4 activity, while its potential

interference with AIM2 or NLRP1 activity is unproven. Therefore, the influence of

PUFA metabolites on the activity of well-characterized inflammasome

complexes is reviewed.
KEYWORDS

oxidative stress, inflammation, lipid mediators, PUFA metabolites, eicosanoids,
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1 Introduction

The human organism is constantly exposed to various factors affecting systemic and

cellular metabolism, including exogenous factors, such as UV radiation contained in

sunlight, pathogens, and drugs, as well as endogenous factors, including those resulting

from metabolic disorders at the level of the mitochondrial respiratory chain, endoplasmic

reticulum, peroxisomes, and biological membranes, the components of which are

metabolized into pro-oxidant and pro-inflammatory factors (1). Oxidative stress
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resulting from the above changes promotes the development of

pathological states of the cellular microenvironment associated with

chronic inflammation and further metabolic disorders,

accompanied by changes in the dynamics of cell survival, such as

those observed in the case of myocardial infarction, diabetes, and

the development of cancer (2). Linking the causes and effects of

oxidative stress and inflammation may contribute to the

development of effective therapeutic strategies aimed at

preventing and/or limiting emerging metabolic disorders.

However, this requires a thorough analysis of the dynamic and

complex interactions of factors involved in the development of

oxidative stress and inflammation, as well as broadly understood

metabolic consequences, both local and systemic.

Considering the potential consequences of oxidative stress,

multiprotein inflammasome complexes can be considered critical

regulators of the inflammatory side of oxidative stress that drive the

immune response and inflammation through proteolytic activation

of pro-inflammatory caspases (3). Moreover, dynamic changes in

PUFA metabolism resulting from oxidative stress appear to be a

critical modulator of inflammation and immune function due to the

immunomodulatory role of the mentioned lipid metabolites

(Figure 1). PUFA metabolites can modulate the inflammatory

response in many ways, including both anti-inflammatory and

pro-inflammatory effects (12). The changes taking place are

dynamic because they occur under the influence of numerous

PUFA metabolites and their interactions with various intracellular

receptors (both agonistic and antagonistic changes are observed in

their action). So ultimately, they interfere with various metabolic

pathways, concerning their balance and competitiveness

on the cellular level, as well as the specificity of cells

and their microenvironment (12, 13). Therefore, regulation of

inflammasome activity, as part of the modulatory effects of PUFA
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metabolites, also appears to be crucial for understanding complex

inflammatory signaling.

Therefore, understanding the effects of PUFA metabolites on

the functions of inflammasome complexes is important to uncover

the molecular dynamics behind oxidative stress and chronic

inflammation. The work analyzes the influence of PUFA

metabolites on the already well-characterized activity of

inflammasomes. We hope that this may explain the complex

molecular interactions underlying the strong communication

between oxidative stress and associated chronic inflammation by

PUFA metabolism. However, such an approach may contribute to

the development of new therapeutic approaches aimed at

pathologies associated with oxidative stress using antioxidant

therapies, the limitations and failures of which have been

indicated in various in vivo and clinical studies (14).
2 An emerging cellular response to
oxidative stress: alteration of
PUFA metabolism

Lipids, the main components of biological membranes (15),

play an important structural (ensuring the polarity and

permeability of biological membranes) and signaling roles in the

molecular biology of the cell as well as constitute an energy reserve

(16). These biologically important cellular components include

phospholipids (such as phosphatidylglycerols and sphingomyelin),

free fatty acids, and ceramides as well as mono-, di- and tri-

acylglycerols, and sterols (17). Their chemical moieties are

susceptible to oxidative modifications (17), and this situation

makes them major targets of ROS and RNS in the case of redox
FIGURE 1

Oxidative stress and inflammation, dynamically interacting with each other (4, 5), may participate in the emergence and development of many
diseases, such as cardiovascular diseases (6), neurodegenerative diseases (7), metabolic diseases (8), and cancer (9). Inflammatory cells - neutrophils
and macrophages - release large amounts of ROS at the site of inflammation, such as O2

•−, •NO, ONOO-. They promote the generation of oxidative
stress which is a critical regulator of the inflammatory response by inducing the production of inflammatory cytokines via expression of the pro-
inflammatory genes (5, 10) as a result of modulation of signal transduction pathways such as NF-kB (7, 11). Therefore, in the place where oxidative
stress and the associated chronic inflammation stand, the interference of PUFA metabolites with inflammasomes (directly/indirectly) is an important
factor regulating the redox balance. (O2

•−, superoxide anion; •NO, nitric oxide; ONOO-, peroxynitrite; ROS, reactive oxygen species; RNS, reactive
nitrogen species; NF-kB, nuclear factor - kappa B; PUFA, polyunsaturated fatty acid).
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biology. The structures of fatty acid acyl chains present the widest

range of possible modifications and generated oxidation

products (18).

This situation favors various lipid oxidation reactions

accompanying oxidative stress, and more specifically, the formation

of highly bioactive lipid peroxidation products, which are biomarkers

of oxidative stress reflecting the severity of the intracellular oxidative

state, as well as enzymatically generated metabolites of PUFAs which is

intensified under the influence of oxidative stress. PUFAs are classified

in omega-3 (w-3) and omega-6 (w-6) fatty acids such as arachidonic

(AA), linoleic (LA), linolenic (ALA), eicosapentaenoic (EPA), and

docosahexaenoic acids (DHA), containing more than one carbon-

carbon double bonds, found in the structure of membrane

phospholipids, glycolipids and cholesterol (16, 19, 20). They are very

susceptible to oxidant attacks (16, 20). In lipid peroxidation, majorly

PUFAs are oxidized (21). It is initiated by H2O2, metal transition ions

Fe²+, Cu²+ (by H2O2 decomposition and homolysis of endogenous

hydroperoxides) as well as peroxynitrite (22, 23) and a complex

biochemical process takes place: the formation and propagation of

lipid radicals, up taking oxygen, rearrangement of the double bonds in

unsaturated lipids, and production of a variety of breakdown products,

including alcohols, ketones, alkanes, aldehydes and ethers (24). Due to

hydrogen abstraction from carbon, with oxygen insertion, lipid peroxyl

radicals, and hydroperoxides are generated (16, 20, 25). Particularly,

predominantly found w-6 fatty acid (AA) can be reduced non-

enzymatically to malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-

HNE), and the other lipid peroxidation end-products presenting

stability and toxicity as well as high reactivity (16). Also, regarding to

especially DHA, 8-isoprostanes and neuroprostanes are generated,

through the propagation of oxidation chain reactions, following

oxidative cyclization (26).

AA can be also enzymatically metabolized to several oxygenated

derivatives (27). In general, it starts with the hydrolysis of

membrane phospholipids by phospholipase A2 (PLA2s) into

PUFAs, and next, their metabolism by cyclooxygenases (COXs),

lipoxygenases (LOXs) and cytochromes p450 (CYP450s) follows

(28). And, highly bioactive eicosanoids, including prostaglandins

(PGs) and thromboxanes (TXs), leukotrienes (LTs), and lipoxins

(LXs) and various epoxy, hydroxy and dihydroxy derivatives are

generated (29). In particular, PGs and TXs are generated from the

COX pathway; LTs, LXs and hydroxyeicosatetraenoic acids

(HETEs), which are precursors for lipoxins, protectins, resolvins,

and hydroxyoctadeca-dienoic acids (HODEs), are generated from

the LOX pathways; and various epoxy, hydroxy and dihydroxy

derivatives are produced via the CYP450s pathways (30, 31). Other

than AA, various w-3 and w-6 PUFAs can be also eicosanoid

precursors such as DHA, EPA, and LA (31).

Both of the above-mentioned PUFA metabolites play critical

roles in cell functionality and survival by interfering with

intracellular molecular signalization. These metabolites, being the

results of lipid metabolism enhanced by oxidative stress, are known

to cause cellular and tissue damage by damaging cell membranes

and causing protein and nucleic acid covalent modifications (21), as

seen also in the case of chronic inflammation (32–34). Redox-

sensitive proteins (including ion transporters, receptors, signaling

molecules, transcription factors, cytoskeletal structural proteins,
Frontiers in Immunology 03
and matrix metalloproteases) are reversibly oxidatively modified

under normal physiological conditions (35). However, under

pathological oxidative stress conditions, they are going to modify

irreversibly and result in loss of protein function or protein

aggregation, even disruption of intracellular redox signaling, and

ultimately leading to cell and tissue damage. Thus, together with

oxidative stress-mediated protein and DNA oxidative modifications

(15, 36), PUFA metabolites induce several complex metabolic

changes by altering cell biochemistry, intracellular signalization,

and eventually cell functionality, and in this way, it can lead to

pathophysiological consequences (36). There is a strong correlation

between chronic deterioration in lipid metabolism, oxidative stress,

and inflammation (37).

It is known that unsaturated aldehydes (such as 4-HNE, MDA),

which are products of lipid peroxidation, can easily orchestrate

DNA, and protein structural changes leading to alteration of

membrane integrity and signal transduction, including gene

expression of receptors, kinases, redox-sensitive transcription

factors such as master cytoprotective Nrf2 (nuclear factor 2

associated with erythroid 2), responsible for proper cellular

antioxidant action, and NF-kB, a key factor for inflammatory

cellular response (16, 21, 38–40). DNA-protein crosslinks, formed

by MDA interaction with proteins and nucleic acids, are involved in

the regulation of the innate immune system through the expression

of pro-inflammatory genes and the activation of several downstream

inflammatory signaling pathways (41). However 4-HNE and 4-

HNE-modified proteins are found to be involved in cell signaling

by taking part in inflammatory reactions and participating in the

progression of several chronic human diseases and systemic chronic

inflammation (42, 43).

Furthermore, enzymatically generated PUFAmetabolites, such as

eicosanoids and eicosanoid-related metabolites, including

thromboxanes, prostaglandins, leukotrienes, and resolvins, critically

participate in intracellular signaling, as the regulators of upstream

activation of human systemic inflammation (44) which is

synergistically contributing with oxidative stress (45). To give more

precise examples: PGs can activate cell-surface G protein-coupled

receptors (such as prostaglandin receptors (EPs) 1-4) and participate

in the regulation of several biologically critical pathways such as NF-

kB and MAP/ERK pathways; LXs (such as LXA4, LXB4) including

down-regulation of acute inflammation enhance resolution via

increasing monocyte chemotaxis; also some resolvins (such as

RvE1) and epoxyeicosatrienoic acids take part of anti-inflammatory

cellular actions (46). Moreover, due to its participation in the

regulation of MAPK and PI3K/AKT signaling pathways, the

therapeutic potential of LXA4 is underlined with a potential of

fewer side effects comparing traditional anti-inflammatory

approaches in cardiometabolic diseases (47). Also, it has been

thought that elevated prostaglandin E2 (PGE2) may contribute to

nociceptive behavior mediated by TRPV4 (Transient receptor

potential cation channel subfamily V member 4) which is known

to be associated with inflammatory and neuropathic pain via p38

MAPK pathway (48). As the examples written here indicate, PUFA

metabolites play critical roles in intracellular molecular signalizations,

especially where inflammation (during both initiation, progression,

and solution phases) is at the center (Figure 2).
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3 Inflammasome complexes, the
center of the cellular
inflammatory response

To the broadest extent, inflammation is a protective response to

both exogenous factors, including physical (e.g. UV), chemical (e.g.

hydrogen peroxide), or biological (pathogens) and endogenous

signals such as damaged cells to result in the elimination of the

reason for injury and tissue repair (49). Together with the complex

molecular, immunological, and physiological processes of the

inflammatory response (49), inflammasome protein complexes of

the innate immune system stand as the central molecules activating

inflammatory responses (50). Thus, they are defined as new

potential targets for novel anti-inflammatory drug development

(50). The functionality and efficiency of inflammatory complexes

are crucial not only for the protection of organisms against

pathogens but also for mediating control over sterile insults (51).

Aberrant inflammasome signaling appears in the development and

worsening of different diseases (cardiovascular and metabolic

diseases, cancer, and neurodegenerative disorders) accompanied

by oxidative stress and associated chronic inflammation (51).

Concerning the human immune system, pathogen-associated

molecular patterns (PAMPs) or damage-associated molecular

patterns (DAMPs), are sensed by the pattern recognition receptors

(PRRs) [Toll-Like Receptors (TLRs), Nucleotide-binding

oligomerization domain-Like Receptors (NLRs), RIG-I-Like

Receptors (RLRs), C-type Lectin Receptors (CLRs)]. Following this

stimulation, inflammasomes are formed, and associated downstream

signals are promoted (52, 53). The well-characterized inflammasomes

are classified as NLRP1 (NLR family pyrin domain-containing

protein 1), NLRP3 (NLR family pyrin domain-containing protein
Frontiers in Immunology 04
3), >NLRC4 (NLR family CARD domain-containing protein 4), and

AIM2 (absent in melanoma 2) (Figure 3). The formed multiprotein

complex can be completed with a caspase effector (caspase-1), as well

as adapter protein ASC (apoptosis-associated speck-like protein

containing CARD) (54). In general, upon a signal indicating

infection or cellular damage by other receptor stimuli, NLR

(nucleotide-binding domain, leucine-rich repeat containing) or

PYHIN family (in case of AIM2) oligomerizes and a larger

multiprotein complex is formed by recruiting additional

components (54). Procaspase-1 is included via ASC recruitment

and then undergoes autoproteolytic cleavage, and active mature

caspase-1 is released to induce processing and secretion of mature

IL‐1b and IL‐18 (55). In parallel, pyroptosis, inflammatory cell death,

appears due to the cleaving of gasdermin D (GSDMD) by mature

(active) caspase-1 and the cell membrane is perforated – where

mature IL‐1b and IL‐18 release – by the N-terminal GSDMD

(Figure 3) (55).

NLRP1, the first identified inflammasome, is widely expressed

in various types of cells with a majority in immune and epithelial

cells. It is associated with the development of autoinflammatory

diseases and cancers (56, 57). NLRP1 is described as the main skin

inflammasome, and its importance is also mentioned concerning

inflammatory skin diseases such as psoriasis (58, 59). Moreover,

attention is drawn to the close relationship between NLRP1

dysfunction and carcinogenesis, including the development of

skin cancers, e.g. melanoma (60). The full isoform-1 structure of

NLRP1 consists of N-terminal pyrin domain (PYD), NACHT

domain, a central nucleotide-binding and oligomerization domain

(NOD), NLRC4 helical domain, C-terminal leucine-rich repeats

(LRRs), FIIND domain (function-to-find domain, ZU5-UPA

domain), and C-terminal caspase recruitment domain (CARD)

(54). It has been shown that autolytic proteolysis of NLRP1 is
FIGURE 2

Membrane-enclosed cell components (such as nucleus, peroxisome, mitochondria, endoplasmic reticulum, and lysosome) due to their structures
with high content of protein-protein or protein-lipid complexes dynamically participate in intracellular molecular signalization. Under conditions of
oxidative stress, the generation of PUFA metabolites is increased, which significantly participates in the regulation of the inflammatory cellular
response. (PUFAs, polyunsaturated fatty acids; MDA, malondialdehyde; 4-HNE, malondialdehyde; COXs, cyclooxygenases; LOXs, lipoxygenases;
CYPs, cytochromes P-450s; PGs, prostaglandins: TXs, thromboxanes; LTs, leukotrienes; LXs, lipoxins; HETEs, hydroxyeicosatetraenoic acids).
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promoted by autolytic cleavage at Ser1213 within the FIIND domain,

and in the next step, ASC recruitment to the C-terminal CARD

domain of the processed NLRP1 molecule (61). Autoproteolysis

occurs when the N-terminal fragment is degraded and the UPA-

CARD domain is released (62). Both the FIIND and CARD

domains of NLRP1 are essential for its activity. Moreover, PYD

and LRR domains were associated with a potential for self-

inhibition function (63). Together with all, the potential function
Frontiers in Immunology 05
of the PYD domain of human NLRP1 (missing in murine NLRP1)

remains still an important point for research.

Furthermore, it has been indicated that small-molecule inhibitors

(such as Val-boroPro as known as PT-100 or Talabostat) of dipeptidyl

peptidases 8 and 9 (DPP8/DPP9) can interact with NLRP1 and

activate it (64). Even, DPP9 is suggested as a checkpoint for NLRP1

inflammasome activity by showing quenching activity of DPP9 for

low levels of NLRP1 C-terminal (64). Moreover, ubiquitous
FIGURE 3

A brief scheme presenting structure and activation of NLRP1, NLRP3, NLRC4, and AIM2 inflammasomes via recruitment of ASC (“ ” indicates ASC

binding site through the CARD-CARD or PYD-PYD interaction), and then, procaspase-1 resulting in activation of mature caspase-1. Caspase-1
activation causes the cleavage of pro- IL‐1b, pro-IL‐18, as well as gasdermin-D. N-terminal gasdermin-D promotes the perforation of the cell
membrane and mature IL‐1b and IL‐18 release from the membrane pores, meantime, pyroptosis - inflammatory cell death - appears. (red-dotted

lines and “ “were used for cleaving. PAMPs, pathogen-associated molecular patterns; DAMPs, damage-associated molecular patterns; PRRs, pattern

recognition receptors; PYD, pyrin domain; NACHT, a central nucleotide-binding and oligomerization domain (NOD); LRR, leucine-rich repeats;
FIIND, function-to-find domain containing ZU5 and UPA domains; CARD, caspase recruitment domain; NAIP, NLR family apoptosis inhibitory
protein; HIN, hematopoietic, interferon-inducible, and nuclear localization; dsDNA, double-stranded DNA; ASC, apoptosis-associated speck-like
protein containing CARD; Procaspase-1, immature caspase 1; Pro-IL-18, immature interleukin 18; Pro-IL-1b, immature interleukin 1b; IL‐18,
interleukin 18; IL‐1b, interleukin 1b).
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endogenous TRX-mediated suppression of the NLRP1 activity (via

redox-active cysteines, Cys32 and Cys35, of TRX in NLRP1 binding)

has been indicated (65). However, no binding interaction was found

between thioredoxin-1 (TRX1) and CARD8 (a caspase-1-activating

inflammasome having just FIIND domain, and CARD domain,

different than NLRP1), suggesting oxidized TRX1 may reduce

NLRP1-TRX1 interaction which is an activation signal (66–68). In

addition, the literature showed that protein folding stress can promote

NLRP1 and CARD8 activation induced by DPP8/9-inhibitors

(including Val-boroPro) via accelerating NLRP1 and CARD8 N-

terminal degradation (69).

In contrast, NLRP3 can be activated by diverse molecular and

cellular signals coming from microbial infection and cellular

damage including ionic flux, mitochondrial dysfunction, excessive

ROS generation, and lysosomal damage (70). It plays a critical role

in inflammatory macrophage activation and regulatory T-cell

differentiation (71, 72). Impaired signaling in the NLRP3 pathway

has been shown associated with various autoimmune and metabolic

disorders such as type 2 diabetes, Alzheimer’s disease, and

cardiovascular diseases (73). NLRP3 structure consists of NLRP3

domain (PYD, NACHT, and, LRR), adaptor protein ASC (PYD and

CARD), and an effector full-length caspase-1 (74). NLRP3

inflammasome activation involves two steps, the priming and

activation steps. The priming step (regarding canonical NLRP3

pathway) involves NF-kB-promoted up-regulation of NLRP3, pro-

IL-1b and pro-caspase-1 expression mediated by TLR-adaptor

molecules myeloid differentiation primary response 88 (MyD88)

(75), and NLRP3 deubiquitination (51). Priming also includes

different post-translational modifications (PTMs) of NLRP3, ASC,

and caspase-1 accompanied by metabolic changes from oxidative

phosphorylation to glycolysis (76). Activation stimuli are

accompanied by NLRP3 re-localization to mitochondria together

with mitochondrial ROS, mitochondrial DNA, or cardiolipin

releasing into the cytosol, potassium efflux through ion channels,

and cathepsins release following destabilization of lysosomal

membranes (77). Without any activation stimuli, an inactive

conformation is observed due to the NACHT domain, having

ATPase activity, and binding to the LRRs and/or the PYD (76).

Regard ing the ac t i va t ion , NACHT subdomains are

conformationally re-arranged induced by ATP hydrolysis and

interacted with mitotic serine/threonine kinase NEK7 (78),

mediating the establishment of bridges adjacent to NLRP3

subunits with bipartite interactions at the oligomerization

interface (79). Then, the ASC adaptor protein is recruited into the

inflammasome structure and subsequent caspase-1 recruitment is

completed (76).

In addition to the canonical activation of NLRP3 (TLR4

stimulation by interacting with the outer lipopolysaccharide (LPS)

membrane of gram-negative bacteria, as mentioned above), NLRP3

can be also activated in a non-canonical way (80). Independently of

TLR4 activation, murine pro-caspase-11 and its human orthologs

pro-caspases-4 and -5 can directly bind intracellular LPS, and

promote NLRP3 non-canonical activation as well as IL-1b, IL-18
release, and pyroptosis (75, 77). Regardless of the literature data

showing mouse caspase-11-initiated NLRP3 and ASC-dependent
Frontiers in Immunology 06
activation of caspase-1, there is still a gap in the information

regarding potential inflammasome-associated proteins (other than

guanylate-binding proteins, GBPs) in the LPS sensing of caspase-4

as well as the molecular contribution of caspase-1, caspase-4 and

NLRP3 (81).

Activation of NLR family apoptosis inhibitory protein (NAIP)-

NLRC4 inflammasome is generally centered on mounting an

immune response against gram-negative bacteria, such as

Salmonella Typhimurium, but together with that, recent findings

also show the role of this inflammasome in autoinflammatory

diseases (82) as well as in cancers such as glioma and breast

cancer (83). NLRC4 consists of an N-terminal CARD domain, a

central NACHT domain, and a C-terminal LRR domain (82).

Following a trigger signal such as cytosolic flagellin, NLRC4 can

directly recruit pro-caspase-1 via CARD-CARD interaction as well

as indirectly with ASC adaptor protein-CARD interaction and

trigger downstream caspase-1 processing activation (82). It has

been shown that human NAIP protein, can sense type III secretion

system pathogen components and promote activation of the

NLRC4 via conformational change (84). Also, NLRC4 expression

has been known to be upregulated by pro-inflammatory stimuli

such as TNFa as well as through genotoxic stress-mediated p53

activation (85).

In defense of the host not only against external pathogens (both

viruses and bacteria) but also against the development of

inflammatory and autoimmune diseases (e.g. psoriasis) and

cancer, the activity of the AIM2 inflammasome plays an

important role (86). It consists of 2 domains: the N-terminal PYD

domain and the C-terminal HIN (hematopoietic, interferon-

inducible, and nuclear localization) domain (86). AIM2 can bind

double-stranded DNA (dsDNA) via its HIN domain which will

initiate oligomerization by recruiting ASC containing CARD

domain that will turn procaspase-1 recruitment (87). Also, AIM2

binds to ASC via PYD-PYD interaction (51). This inflammasome

can be activated by both host and pathogen antigens (dsDNA

delivered from bacteria, DNA viruses) (88). Moreover, it was

found that the AIM2 inflammasome is activated by neutrophil

extracellular traps (NETs), SARS-CoV-2, or influenza A, as well as

by mitochondrial damage. Like NLRP3, it can induce both

apoptosis (via activation of caspase-8) and pyroptosis (via

activation of caspase-1) and secretion of IL-1b and IL-18 (87).

Moreover, it was suggested a “DNA dose-dependent switch between

apoptosis and pyroptosis” due to the parallel activation of NLRP3

and AIM2 (87). The importance of regulation of the AIM2

inflammatory response has been indicated in activation, intensity,

and duration levels to optimize inflammation (89).

It is known that fragmentation/cyclization products of PUFAs

(e.g. 4-HNE, MDA, 8-isoprostanes), the generation of which

increases significantly under the influence of oxidative stress,

cause several biological consequences by affecting the

antioxidant system, inflammation, as well as apoptosis through

the formation of protein adducts (90). These adducts’ formation

modifies protein structure and affects their functions, and

ultimately, molecular pathways, in which these proteins

participate (91). For instance, 4-HNE is found to inhibit the
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NF-kB pathway and lead the upstream kinase IKK (IkB kinase) for

inactivation of anti-apoptotic B-cell lymphoma-2 (Bcl-2) and alter

cell survival status (92). The serum level of 8-isoprostanes (8-iso-

PGF2a) is increased as a rapid response during the acute phases of
the inflammatory response, resulting in crosstalk with cytokines to

activate NF-kB and subsequent gene expression of pro-

inflammatory cytokines as well as more COXs, in case of

chronic inflammation (93).

Moreover, eicosanoids play key roles in every stage of

inflammation, as well as in apoptosis (46). Some examples

follow: inflammation resolution by lipoxin A4 (94), the pro-

inflammatory activity of 20-hydroxyeicosatetraenoic (20-HETE)

through NF-kB stimulation (95), inhibition of apoptosis by 15-

HETE which strengthened phospho-Akt and heat shock protein

90 (96), acute inflammation induced by prostaglandin E2 (PGE2)

through mast cell activation via the EP3 receptor (97),

proinflammatory action of prostaglandin F2a (PGF2a) by

increasing the level of pentraxin-3 (98) and, anti-inflammatory

functions of 15-deoxy-Δ-12,14-prostaglandin J2 (15d-PGJ2) (99).

Therefore, altered lipid metabolism caused by oxidative stress,

manifested by the generation of PUFAmetabolites presents a great

potential for a direct/indirect effect in the modulation of

inflammasome activities that are standing at the center of

inflammation (Figure 4). As a matter of fact, it has been

revealed that lipid metabolism significantly participates in the

modulation of inflammation in the context of acute and chronic

diseases (3).
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4 The influence of PUFA metabolites
on the activity of inflammasomes

Lipid metabolism, participating in maintaining cellular

homeostasis, is highlighted for regulation of inflammasome

activation, as lipid remodeling is critically important for several

diseases, including cardiovascular and metabolic diseases as well as

cancer (Figure 4) (100, 101). Therefore, the biological implications

of the effect of PUFA metabolites on inflammatory activities offer a

new perspective for the development of therapeutic approaches.

In this respect, the importance of the regulatory effect of PUFA

metabolites on inflammasome activities has been highlighted in

both in vitro and in vivo studies. Anti-inflammatory effects of 15-

LOX metabolites of a-linolenic acid have been shown in LPS-

induced inflammation in both mouse macrophage cell line RAW

264.7 and peritoneal macrophages isolated from BALB/c male mice,

which was mediated by inactivating NLRP3 inflammasome and

downregulation of caspase-1 (102). In mouse peritonitis models of

gout and murine anthrax infection, 15d-PGJ2 inhibited caspase-1

activation by the NLRP1 and NLRP3 inflammasomes (103). It has

also been demonstrated in both bone-marrow-derived

macrophages and phorbol myristate acetate-differentiated human

monocytic leukemia cells that LXA4 can inhibit NLRP3

inflammasome formation by suppressing oxidative stress at the

upstream of NLRP3 activation (through dropping NADPH oxidase

activation, ROS generation, and mitochondrial dysfunction as well

as modulating Nrf2 activity) (104). Below, we will analyze the
FIGURE 4

The consequence of an excessive increase in the level of ROS/RNS as a result of oxidative stress is the increased generation of PUFA metabolites
that influence the cellular inflammatory response in which the activity of inflammasomes plays a key role. PUFA metabolites that are found to be
prominent in the regulation of inflammation are shown in the figure. (“ ” is used for elevation. PUFA, polyunsaturated fatty acid; 4-HNE, 4-hydroxy-
2-nonenal; MDA, malondialdehyde; NF-kB, nuclear factor - kappa B; Nrf2, Nrf2, nuclear factor 2 associated with erythroid 2; 8-iso-PGF2a, 8-iso
prostaglandin F 2a; COXs, cyclooxygenases; PGE2, prostaglandin E2; PGF2a, prostaglandin F2a; 15d-PGJ2, 15-deoxy-Δ-12,14-prostaglandin J2; 20-
HETE, 20-hydroxyeicosatetraenoic).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1452749
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Atalay Ekiner et al. 10.3389/fimmu.2024.1452749
interference of PUFA metabolites in inflammasome activities

mentioned here, focusing on NLRP1, NLRP3, AIM2, and NLRC4.
4.1 The NLRP1 inflammasome

NLRP1 is the major inflammasome sensor in human skin and

an important component of the cellular proinflammatory response

regarding the innate immune system. As we mentioned above,

although it was the first identified inflammasome, there are still

many questions arising from its structure and associated activation

as well as self-inhibition. At this point, the regulatory effect of the

lipid metabolites on this protein complex may be critical from the

point of its functionality. The FIIND domain of NLRP1 consists of

SF/S motif, conserved histidine residues, amino acids susceptible to

oxidation (105–107) which indicates a great potential and efficiency

of post-translational autocleavage (54). Therefore, assessing the role

of potential oxidative modifications (e.g. via the formation of

protein adducts with 4-HNE – Michael adduction (106, 108)) in

terms of redox-sensitive amino acids may be also important for

NLRP1 activation, especially regarding the FIIND domain

(Figure 5). Even, a recent study in human keratinocytes exposed

to ozone (O3) showed that NLRP1 is a protein that forms adducts

with 4-HNE, which may result in its proteasomal degradation and/

or activation via E3 ubiquitin ligase UBR2 (109).

Moreover, another study focusing on the interaction between

inflammasome complexes and ferroptosis, using an H2O2-mediated

oxidative stress model in HTR-8/SVneo placental trophoblast cells,

showed a decreased level of intracellular MDA accumulation and

cell death, together with the increased glutathione peroxidase 4

(GPX4) expression and increased glutathione (GSH) level, resulting

from NLRP1 silencing (110). The same study also demonstrated a

positive correlation between NLRP1, NLRP3, IL-1b, and caspase-1

expression levels and ferroptosis in the human trophoblast cell line
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(110). However, other work has suggested that the formation of

NLRP1, as well as NLRP3, might be a critical step for ferroptosis

(65). In this situation, as a result of intensive oxidation of

phospholipid PUFAs, lipid hydroperoxides accumulate, which is

accompanied by an increase in the generation of 4-HNE and MDA,

and consequently, the permeability of the cell membrane increases

and it may even lead to rupture of the cell membrane (111).

Therefore, iron accumulation and lipid peroxidation appear to be

two critical elements promoting oxidative damage of the membrane

during ferroptosis (112). Moreover, ferroptosis and pyroptosis may

act synergistically in the cellular immune response (112). Therefore,

the potential formation of 4-HNE adducts of NLRP1 may be also

analyzed in detail regarding the relationship between

inflammasomes and ferroptosis mentioned above. Depending on

the intensity of oxidative stress, reflected in the generation of 4-

HNE, NLRP1 activity may be regulated both directly by NLRP1

structural changes resulting from the formation of adducts with 4-

HNE and by other intracellular changes that result from

modifications in the ROS level and ion balance - regarding

NLRP1 upstream signaling. This may induce synergistic

ferroptosis and pyroptosis reactions, modulating NLRP1 activity.

The role of the 4-HNE-protein adducts in sensitizing cells to

ferroptosis, inducing ferroptosis, as well as cell resistance to

ferroptosis has also been indicated (113). Although 4-HNE is

mainly attributed to protein adduct formation, especially

regarding ferroptosis (113), no direct interaction with NLRP1 has

been demonstrated so far (114). It has been indicated that such

protein modification can lead to protein instability and unfolding,

by accessing protein folds or binding pockets (91), and even, protein

cross-linking and aggregation due to the decreased efficiency of

proteasomal degradation (115).

However, for innate immune response, eicosanoids, with anti-

or pro-inflammatory activity, are critical, as mentioned above.

Literature data regarding eicosanoids associated with NLRP1
FIGURE 5

Regarding redox-sensitive amino acids (SF/S motif, conserved histidine residues) in FIIND domain structure, NLRP1 is a protein presenting a high
potential for the formation of 4-HNE - protein adducts that are mainly connected to ferroptosis. Consequently, MDA is unlikely to affect protein
structure or related gene expression (in the case of NLRP1). (4-HNE, 4-hydroxy-2-nonenal; MDA, malondialdehyde; NLRP1, NLR family pyrin
domain-containing protein 1; 15d-PGJ2, 15-deoxy-Δ-12,14-prostaglandin J2; S, serine; F, phenylalanine).
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activity is very limited. It was shown that anti-inflammatory 15d-

PGJ2, a peroxisome proliferator receptor-g (PPAR-g) agonist, was
able to prevent the autoproteolytic activation of caspase-1 and the

maturation of IL-1b, probably by affecting in de novo protein

biosynthesis, rather than its direct modification of caspase-1, as

suggested by the authors (103). Moreover, it was demonstrated that

15d-PGJ2 can inhibit lethal toxin-mediated NLRP1 activity

(Figure 5) in a murine infection model (103). Here, a part of the

direct effect, the anti-inflammatory and antioxidant role of 15d-

PGJ2 may be assessable in the regulation of NLRP1 activity by

enhancing PPAR-g transcriptional activity, inhibiting the NF-kB,
and JAK-STAT pathways (116).

This is why NLRP1 and its genetic variants are key therapeutic

targets in a wide variety of autoimmune and inflammatory

disorders, mainly in inflammatory skin diseases (62). Both the

changes in protein structures affected by interaction with PUFA

metabolites and its functional consequences, as well as the single

nucleotide polymorphism in the Nlrp1 gene indicated by recent

studies, opens a promising field to develop targeted therapies

against diseases in which NLRP1-associated inflammation is

centered (58).
4.2 The NLRP3 inflammasome

The NLRP3, due to its various stimulation network including

both external and internal causes mentioned above, is a critical

component of the innate immune system (70). In addition, any

other functions in the cytoplasm or nucleus, as well as mechanisms

relating to non-canonical NLRP3 activity, remain of interest (117).

Considering the critical participation of endoplasmic reticulum

(ER) stress and mitochondrial dysfunction in the NLRP3

stimulation, the roles of the reactive aldehydes and enzymatically

generated metabolites of PUFAs appear as much more important

regarding structural changes and alterations in protein-

protein interactions.

First of all, it was found that as a result of the activation of

aldehyde dehydrogenase 2 (ALDH2), which protects mitochondria

through the metabolism of toxic aldehydes such as 4-HNE and

MDA, the activation of the NLRP3 inflammasome is weakened and,

consequently, pyroptosis is inhibited (118). However, the molecular

mechanism resulting from this activity of ALDH2 has not been

clearly explained. It has been suggested that NLRP3-activated

upstream ROS regulation may play an important role in the

regulation of NLRP3 by ALDH2 (118). Furthermore, a study on

RAW264.7 cells showed that Alda-1, an ALDH2 activator, was able

to inhibit both phases of NLRP3 (119). Thus, the reduction in

NLRP3 activity may be explained through the cytoprotective

activity of ALDH2 by reducing ROS generation and inflammation

accompanied by a reduction in 4-HNE level, p65 (RelA), and p38

activation (120).

It is known that the Keap1-Nrf2 interaction is disrupted as a

result of the formation of 4-HNE-Keap1 adducts, which prevents

Nrf2 degradation and increases Nrf2 signaling with an enhanced

antioxidant response, and NF-kB activation is blocked by inhibition

of IKK activity through interaction with 4-HNE (121). Moreover,
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the action of 4-HNE at the physiological level (3 μM) on human and

mouse macrophages showed that, independently from Nrf2 and

NF-kB signaling, 4-HNE through direct interaction with NLRP3

and inhibition of its interaction with NEK7, acts as an endogenous

inhibitor activation of the NLRP3 inflammasome and associated

inflammation (121). Another study demonstrated that 4-HNE (at

30 μM) - induces NLRP3 at mRNA level, NLRP3 activity, and

generation of IL-1b in the human retinal pigment epithelial cell line

(122). Thus, the effect of 4-HNE on the NLRP3 activity may depend

on the severity of oxidative stress, and by taking into account the

differences in the cellular micro-environment that come from cell

specificity. Additionally, it is suggested that another type of lipid

peroxidation products - cyclic 8-isoprostanes - may be also related

to NLRP3 activity and associated IL-8 generation, the high

concentration of which in blood serum was also found to be

correlated with severe liver fibrosis (123). It is also possible to

link the action of 8-isoprostanes, as one of the biomarkers of

oxidative stress (124), with mitochondrial dysfunction (125) and

oxidative modifications of ER proteins resulting from stress on the

endoplasmic reticulum, which is considered to be dependent on

NLRP3 activation (126, 127).

Moreover, the differences in the action of inflammation-inducing

factors and even epigenetic variabilities, considering the link between

oxidative stress, lipid metabolism, and epigenetics, may affect this

situation (128, 129). A study assessing the effects of palmatine (PAL),

a natural isoquinoline alkaloid, showed an increased antioxidant

response (enhanced superoxide dismutase, SOD, and GSH levels) by

reducing MDA production in THP-1 macrophages and by reducing

p65 (RelA) and IkBa (inhibitory kB-a) phosphorylation and

inhibition of NLRP3 (130). However, a study on rats showed a

reduction in IL-6 and tumor necrosis factor-alpha (TNF-a) levels,

both at the protein and mRNA levels, as well as inhibition of p65 and

p38 phosphorylation, while reducing MDA and increasing GSH levels

as a result of cyclophosphamide treatment (131). Moreover, oxidative

stress causing excessive MDA production may promote a p65-

mediated inflammatory response (132). An in vivo study in an oral

mucositis model highlighted flavocoxide-mediated inhibition of

NLRP3 activity and its downstream signals (caspase-1, IL-1b, and
IL-18) by reducing NF-kB expression as well as MDA production

(133). Aldehydes, which are products of lipid peroxidation, can alter

proteins and DNA structure, and transduce activation of NF-kB
signaling pathways in a wide spectrum of molecular changes

involving alterations of kinase and transcription factors activity as

well as DNA and protein damage (134). Although a direct relationship

between NLRP3 components and MDA has not been demonstrated,

by regulating NF-kB activity, MDA may also influence the NLRP3

initiation process. Depending on the severity of oxidative stress,

4-HNE, and MDA have the potential to be game changers

in the NLRP3-mediated inflammatory response, either directly or

indirectly (Figure 6).

However, NLRP3 activation in innate immune cells is

accompanied by the generation of other lipid mediators, such as

pro-inflammatory eicosanoids (135). Studies conducted on fasted

and fed mice (C57BL/6) showed that increased AA generation in

fasting condition resulted in inhibition of the NLRP3-dependent

generation of both IL-1b and IL-18 via blocking phospholipase C
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and further activities of protein kinases PKD and JNK (136).

Furthermore, COXs inhibition was able to reduce eicosanoid

levels but did not affect arachidonic acid (AA) level. Decreased

generation of PGE2 and PGF2a was also demonstrated along with a

decrease in IL-1b levels in bone marrow-derived macrophages from

LPS-initiated mice with nigericin (136). However, a decrease in free

AA and diminished PGE2 secretion due to gamma-tocotrienol

(gT3) - an unsaturated vitamin E - treatment was indicated in the

differentiated bone marrow-derived macrophages obtained from

C57BL/6 mice (135). PGE2-stimulated IL-1b production in

response to Tytius serralatus venom via protein kinase A (PKA)

activation was also shown (137). Furthermore, a study on human

primary monocyte-derived macrophages showed that NLRP3

inflammasome activation was inhibited by PGE2 through

stimulation of PGE2 receptor subtype 4 (EP4) and an increase in

intracellular cAMP (138). It is important to mention that the variety

of the eicosanoid production tendency and its effects on NLRP3

activity (Figure 6) may be dependent on the intensity of the cellular

inflammatory response, correlated with oxidative stress, regarding

concentration dependency as suggested by the authors (136).

It has been pointed out that activation of NF-kB induced by

TLR/CD40 engagement on dendritic cells can induce IL-23 p19

gene expression, it can also promote dendritic cells to induce

COX2 expression and PGE2 generation, which amplifies NF-kB
signaling through the EP2/EP4-cAMP-PKA-CREB pathways

(139). Together with that, macrophage COX‐2 and PGE2 levels

are increased by NF-kB activity (activated by TNF‐a and LPS),

which turn EP2 receptors improving NF‐kB signaling. This

increases the recruitment of macrophages to inflamed site and

promotes chronic inflammation (139). Moreover, a study in rat
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alveolar macrophages showed that TNF-a can also be suppressed

by PGE2 (synthesis via NO production in response to LPS) through

protein kinase A anchoring proteins implicated PKA regulatory

subunit type II (RII) (140). Thus, the modulatory effect of PGE2 on

NF-kB signaling may be a key point for NLRP3 activity, as a

feedback mechanism, depending on cell type and oxidative

stress severity.

Additionally, it is known that cyclopentenone prostaglandins

(cyPGs) including PGA2, PGA1, and PGJ2 and their metabolites

may be involved in regulating the inflammatory response by

interfering with the NF-kB, AP-1, MAPK, and JAK/STAT

signaling pathways (141). Moreover, 15d-PGJ2 may inhibit NF-

kB gene expression by covalently modifying cysteine residues of IkB
kinase and DNA-binding domains of NF-kB subunits (142). The

mechanism includes cyPG-mediated modification of cysteine 179 in

the activation loop of the IKKb subunit and inhibition of its

phosphorylation (141). Moreover, 15d-PGJ2 was also found to

inhibit NLRP3-mediated caspase-1 activation (103). Similar to the

negative regulation of NLRP1 activity, there may be upstream

regulation of NLRP3 activity through the inhibition of NF-kB by

15d-PGJ2. NLRP3 activity is critical for maintaining cellular

homeostasis and physiological metabolism (143). And, the

impairment of its activity is important for a wide spectrum of

diseases including infectious diseases, cancer, atherosclerosis,

diabetes, and obesity (143). Therefore, analyzing the effect of

PUFA metabolites interfering with both the priming and

activation stages of NLRP3 may bring opportunities for

developing new therapeutic approaches. Moreover, it may offer a

new perspective regarding its non-canonical activation, where

currently our knowledge is still limited.
FIGURE 6

4-HNE, depending on the intensity of oxidative stress, may directly or indirectly (via interfering Nrf2-NF-kB crosstalk) induce or reduce NLRP3
activity. Any direct/indirect effect of MDA has been not identified yet. The generation of PGF2a, PGE2, and 8-iso-PGF2a (blood serum level) is
correlated with NLRP3 activity. Moreover, PGE2-mediated induce or reduce in NLRP3 activity has been reported. And, NLRP3-mediated caspase-1
activation is inhibited by 15d-PGJ2. (4-HNE, 4-hydroxy-2-nonenal; MDA, malondialdehyde; NLRP3, NLR family pyrin domain-containing protein 3;
15d-PGJ2, 15-deoxy-Δ-12,14-prostaglandin J2; PGE2, prostaglandin E2; PGF2a, prostaglandin F2a; 8-iso-PGF2a; 8-iso Prostaglandin F 2a; p38, a
member of mitogen-activated protein kinases (MAPKs); p65, RelA, a heterodimer in the NF-kB signaling pathway).
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4.3 The NAIP–NLRC4 inflammasome

NLRC4 is a key inflammasome in an immune response to

gram-negative bacteria (82). Next to this role, NLRC4 also

participates in autoimmune inflammatory responses by

contributing to TLR activation (144). However, literature data on

the influence of PUFA metabolites on the NLRC4 pathway is very

limited. It has been shown that 4-HNE does not affect NLRC4

activity and associated IL-1b release but has an inhibitory effect on

the NLRP3 inflammasome (121). However, so far, there is no direct

literature data on the effect of reactive aldehydes (MDA, 4-HNE) on

the regulation of the NLRC4 pathway (Figure 7).

Regarding eicosanoids, a study in intestinal epithelial cells using

C57BL/6J mice and Salmonella typhimurium infection revealed

NLRC4-mediated production of eicosanoid lipid mediators,

showing a significant increase in the level of proinflammatory

PGE2 (Figure 7), which promotes vascular leakage and fluid

accumulation in the intestinal lumen (145). The same study also

suggested the role of caspase-8, in NLRC4 inflammasome responses

in vivo, as a resistance against bacterial pathogens which can inhibit

caspase-1 (145). Caspase-8 has been previously shown to bind the

ASC-PYD domain and is involved in ASC speck formation upon

Salmonella infection (145). The NLRC4 inflammasome over-

activation has been indicated as a critical element of cell death,

dictating mouse death due to Salmonella infection. It has been

proposed that “cytokine or eicosanoid storm” is not essential for the

FlaTox (selective activator of NLRC4)-induced animal death (146).

Moreover, it has been shown that the generation of eicosanoids

(such as PGD2 and thromboxane B2, TXB2) was almost completely

eliminated in Nlrc4−/− mice, except PGE2 (146). Together with that,

their pro-inflammatory signaling roles associated with autocrine or

paracrine signaling may still play an important role in the
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determination/generation of cellular response against such

infection, such as in the case of apoptosis as a backup pyroptosis

(146). Indeed, PGE2, produced due to bacterial pathogen infection,

was found to enhance/prolong inflammasome activation, running

the generation of pore-induced intracellular traps, and ultimately

preventing bacterial escape from the dying cell (30).

Caspase-1-mediated arachidonic acid release may participate in

PGE2 generation (85). Proteomic studies suggest that the signal that

emerged in response to NLRC4-mediated caspase-1 activation may

play a role in this situation (85). Therefore, the relationship between

PGE2 production and NLRC4 activity is still an open topic for

research. Although NLRC4 activity has been observed to induce

PGE2 production, the question remains whether this production has

a feedback effect on NLRC4, potentially as in the case with NLRP3. In

addition to the specific involvement of NLRC4 in the development of

bacterial infection, research is still ongoing on the involvement of

NLRC4 in the inflammatory response observed in autoimmune

diseases. However, this requires specification of the participation of

PUFAmetabolites both in the inflammatory activity of NLRC4 and in

the cellular response associated with this activity, especially at the

proteomic level in the setting of infections/autoinflammatory diseases.

This includes, among others: the assessment of mitochondrial

dysfunction and the associated apoptotic response (Bcl2, Bax) and

the interaction of oxidative stress with inflammation (Nrf2-NF-kB
interplay), as well as ER stress on NLRC4 activity pathways. Also, the

analysis of changes in activating transcription factor 6a (ATF6),

PRKR-like ER kinase (PERK), and inositol-requiring enzyme 1

(IRE1)/X box-binding protein 1 (XBP1) profiles could reveal the

contribution of differences in lipid metabolism related to

physiological synthesis of fatty acids and their b-oxidation as well as

activation of PPARa (IRE1/XBP1) and regulation of glucose and lipid

metabolism (PERK/eukaryotic initiation factor 2a, eIF2a) (125).
FIGURE 7

Literature on the effect of PUFA metabolites on NLRC4 activity is very limited. 4-HNE has presented no effect on NLRC4 activity and associated IL-1b
release so far. NLRC4-mediated PGE2 production has been shown. On the other hand, there is a research need for the effect of other eicosanoids or
PUFA metabolites on NLRC4 activity. (4-HNE, 4-hydroxy-2-nonenal; MDA, malondialdehyde; NLRC4, NLR family CARD domain-containing protein
4; PGE2, prostaglandin E2).
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In addition to bacterial infection, the involvement of NLRC4 in

the inflammatory response in autoimmune diseases continues to be

explored, including the involvement of mentioned lipid metabolites

in modulating both the inflammatory activity of NLRC4 and the

cellular response associated with this activity. It is suggested that the

relationship between mitochondrial dysfunction and the associated

apoptotic response (Bcl2, Bax) and the interaction of oxidative

stress with inflammation (Nrf2-NF-kB interaction), including the

relationship with ER stress and the formation of protein aggregates,

may expand knowledge on about the NLRC4 pathway. In addition

to ongoing research on NAIP/NLRC4 mutations contributing to

both bacterial infections and sterile inflammation in autoimmune

and inflammatory diseases (84), the interplay between NLRC4 and

PUFA metabolites may open another window for developing new

therapeutic strategies.
4.4 The AIM2 inflammasome

AIM2 presents essential activities in inflammatory response

against pathogens, but also in autoimmunity in both

inflammasome-dependent and -independent roles such as sensing

the micronuclear DNA to trigger inflammasome responses in case

of genotoxic stress and cell cycle dysregulation, as suggested before

(86). So far, its ability to bind dsDNA from the host’s damaged cells

is attracting attention regarding a potential alarmin receptor activity

(147). Even nowadays, regarding to essential roles of AIM2 in the

condition of autoinflammatory conditions and cancer due to the

potential recognition of DNA-RNA hybrids by AIM2 and its

act ivat ion, AIM2 is an important research point for

immunotherapeutic approaches (148).

AIM2, as a DNA sensor, has been found to promote

macrophage activation and differentiation by recognizing

syngeneic lymphocyte-derived apoptotic DNA (apopDNA) in

systemic lupus erythematosus (149). Moreover, AIM2 knockdown

was able to reverse apopDNA-induced macrophage activation

(149). However these data did not demonstrate a direct

involvement of lipid metabolism in AIM2 activity, it is indicated

that lipid metabolism is involved in the activation of both M1 and

M2 macrophages, although the exact mechanism has not been

elucidated (150). Activation of peroxisome proliferator-activated

receptor (PPARg) and proliferator-activated receptor coactivator 1b
is known to mediate the transcription of M2 signature genes after

stimulation with oleic acid and IL4 (150). Furthermore, the major

role of macrophages in sterile inflammation or removal and

neutralization of targets is mediated by PRRs by displaying

oxidation-specific epitopes (151). Therefore, although not directly

established, given the role of lipid metabolism, associated with

PUFA metabolism, in macrophage activity and polarization, it

may be also indirectly linked to AIM2 activity.

Regarding the potential influence of reactive aldehydes on

AIM2 activity, the study in mouse models of acute lung injury

and sepsis revealed that the use of 4-HNE or increasing endogenous

4-HNE levels by inhibiting glutathione peroxidase 4 activity,

independently of Nrf2 and NF-kB signaling, was able to reduce

the activation of the NLRP3 inflammasome together with no effect
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on neither the NLRC4 nor AIM2 (121). This may indicate that the

action of 4-HNE is mainly related to the regulation of the NLRP3

inflammasome response. Moreover, another study using MPO+

leukocytes obtained from vehicle-treated mice for postoperative

intestinal obstruction (POI) showed that late-phase IL-1b release is

dependent on the AIM2 inflammasome, with no obvious signs of

oxidative stress during POI (152). This study showed a time-

dependent increase in SOD activity and the DNA oxidation

product - 8-OH-2-deoxyguanosine. Consequently, these data may

also support the lack of a significant effect of 4-HNE on AIM2

activation (Figure 8).

Interestingly, only one recent study examining the antioxidant/

anti-inflammatory effects of demethylene berberine (DMB), a

berberine derivative, on AIM2 inflammasome activity in the

setting of acute Pseudomonas aeruginosa pneumonia found that

DBM was able to ameliorate the effects induced by P. aeruginosa. In

contrast, inflammasome activity AIM2 simultaneously showed a

dose-dependent decrease in MDA level (153). Literature data on

direct or indirect interference of MDA with the AIM2 pathway are

very limited. Therefore, there is still an unsolved problem requiring

experimental explanation regarding the assessment of the impact of

the formed protein adducts with MDA on the activity of the AIM2

inflammasome (38), as well as the formation of DNA-MDA adducts

and related changes in gene expression along with epigenetic issues

(154, 155).

It has been indicated that highly immunogenic MDA/

acetaldehyde adducts formation with proteins (MAA-protein

adducts formed via the breakdown of acetaldehyde and the

covalent interaction of two aldehydes and proteins/lipoproteins)

appears to promote triglycerides accumulation and progression of

the inflammatory response in endothelial cells by modulating

cellular metabolism (156). The pro-inflammatory action of MAA

adducts (HSA-MAA, human serum albumin modified by MAA and

LDL-MAA, low-density lipoprotein modified by MAA), in

endothelial (CRL 2167) and macrophage (J774) cell lines was

presented by demonstrating an increase in cytokine response (of

IL-6, TNF-a, and IL-1b) (157). Although these examples do not

provide direct information specifically about inflammasome

complexes, their contribution to the formation of inflammatory

responses is clear. Thus, evaluating the effect of MAA adducts on

both AIM2 and other inflammasomes through changes in both

DNA and protein levels may also support understanding the

complex molecular signaling behind the inflammasome activity.

Especially, regarding the DNA sensing ability of AIM2 and

recognition of DNA-RNA hybrids by AIM2 mentioned above, it

is important to evaluate the effect of any potential changes in DNA

structure due to MDA and/or MAA interaction (158) on

AIM2 activity.

Despite the lack of literature data showing a direct relationship

between AIM2 activity and 8-isoprostanes, it was indicated that the

level of 8-iso-PGF2a in serum (159) and AIM2 (160) positively

correlates with the severity of the condition of patients with

community-acquired pneumonia (CAP). Moreover, it has been

also speculated that 8-iso-PGF2a may play a detrimental role in

the pathophysiology of CAP (159). Thus, the potential interference

of 8-iso-PGF2a in AIM2 activation/co-activation may be a target
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for developing therapeutic strategies against CAP pathophysiology.

Thus, the potential interference of 8-iso-PGF2a in AIM2

activation/coactivation may be a target for the development of

therapeutic strategies against CAP pathophysiology, in which

increasing cAMP levels by 8-iso-PGF2a and inhibiting platelet

function has been suggested (161). Moreover, the AIM2

inflammasome antagonism of type I interferon signaling –

crosstalk between AIM2 inflammasome and cyclic GMP-AMP

synthase pathway activating type I IFN expression – has been

suggested during not only pathogen infection but also sterile

inflammation (86). Therefore, AIM2 activity, interacting with the

cyclic GMP-AMP synthase pathway (86), should also be evaluated

in connection with 8-iso-PGF2a in this respect.

Besides, studies on peripheral blood mononuclear cells from

patients with chronic obstructive pulmonary disease (PBMC)

showed that the AIM2 inflammasome-dependent release of IL-1a
was not related to the release of eicosanoids, as it did not show an

increase in PGE2 levels in the case of AIM2 activation (162).

Moreover, Francisella tularensis-mediated suppression in the

AIM2 inflammasome activation has been shown in bone marrow-

derived macrophages obtained from mice by demonstrating a

decrease in AIM2-dependent IL-1b level (163). Together with

that, the overproduction of proinflammatory PGE2 was observed

in a lethal murine Francisella novicida infection model (164). Along

with the ongoing research associated with the determination of the

AIM2-dependent eicosanoid generation induced by Francisella
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infection (165), there is a research need for the estimation of the

potential role of the prostaglandins, such as PGE2 mentioned here,

and other eicosanoids in the regulation of both cell- and infection-

specific AIM2 activity.

It was found that due to the suppressive effect of AIM2 on

colorectal cancer, the AIM2 inflammasome plays a role in

preventing the development of this cancer (AIM2 effect in DNA-

dependent activation of Akt regulating epithelial cell proliferation

via protein kinase) (166). An omics study involving single-cell

analysis showed the overall survival of colorectal cancer patients

with low AIM2 was significantly lower than that in the group with

high AIM2 expression (167). These studies also mentioned a

dysregulated eicosanoid profile, which may modify the process of

colon inflammation and carcinogenesis (168). PGE2, whose

signaling involves chronic inflammation in the tumor

microenvironment, has been found to associate with

tumorigenesis of colon cancer, promoting tumor growth (169).

Therefore, taking into account epigenetic factors reflecting the

individual metabolic differences of patients with colon cancer,

further studies on the direct/indirect involvement of eicosanoids

(including PGE2) in the regulation of AIM2 activity would be

helpful in the development of targeted therapies against colon

cancer. Also, regarding PGE2, a recent study indicates the

relationship between AIM2 upregulation and activation of the

TNFa-NF-kB signaling by showing upregulated AIM2-mediated

IL-1b secretion and activation of STAT1/NF-kB-related pathway in
FIGURE 8

There is no observed effect in the literature regarding the 4-HNE effect on AIM2 activity, so far. In addition, the effect of other PUFA metabolites,
which are seen to affect other inflammasomes (NLRP1 and NLRP3), on AIM2 is a subject open to research. (4-HNE, 4-hydroxy-2-nonenal; MDA,
malondialdehyde; MAA, malondialdehyde-acetaldehyde modified; AIM2, absent in melanoma 2; 8-iso-PGF2a, 8-iso prostaglandin F 2a; PGE2,
prostaglandin E2).
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oral squamous cell carcinoma cells (170). Thus, the possible

association of PGE2 with AIM2 activity may also be possible due

to the effect of PGE2 on NF-kB signaling (139, 140).

It is clear that AIM2, like the other inflammasomes mentioned

above, is a therapeutic target in a wide range of diseases, such as

inflammatory diseases including cardiovascular disease (171),

cancer, and infectious diseases (172). In addition to what we

know so far, highlighting the DNA sensor role of AIM2, further

analysis of the impact of PUFA metabolites on AIM2 activity may

provide different perspectives for therapeutic approaches targeting

AIM2, especially in cancer accompanied by complex metabolic

alterations (173).
5 Metabolic signaling pathways
affected by PUFA metabolites
and their impact on
inflammasome activities

Due to the involvement of cellular metabolism in energy

homeostasis, cell growth, and proliferation, adaptation to

environmental changes, and disease states, it is among the key

biochemical processes analyzed in targeted pharmacotherapeutic

approaches (174). However, PUFA metabolites significantly

influence among others: metabolic signaling pathways regulating

inflammation, including inflammasomes, and the most important

signaling pathways in this regard are discussed below.
5.1 NF-kB and PPAR pathway

The primary signaling pathway affected by PUFA metabolites is

NF-kB signaling, which can be viewed as a key regulator of the

NLRP3 pathway, and the interaction of 4-HNE with this molecular

signaling is believed to be of greatest importance. However, 4-HNE is

known to be a critical regulator of NLRP3 activity, both through

direct molecular interaction (and subsequent inhibition of NEK7)

and interference with NF-kB and Nrf2 crosstalk. However, a

candidate for forming an adduct with 4-HNE is the FIIND domain

of NLRP1, due to its structure with redox-sensitive amino acids.

The key element in the influence of PUFA metabolites on

inflammasome activity seems to be changes in signaling related to

Nrf2, NF-kB, and their interactions. This includes, among others:

direct 4-HNE-mediated structural changes and associated changes

in inhibition of the NF-kB pathway and inactivation of the

antiapoptotic Bcl-2 (92). Moreover, PGE2 (via the EP2/EP4-

cAMP-PKA-CREB axis) (139) and 15d-PGJ2, by enhancing the

transcriptional activity of PPAR-g through inhibiting the NF-kB
and JAK-STAT pathways (116), can alter the activity all

inflammasomes (both NLRP1, NLRP3, NLRC4 and AIM2). In

contrast, the feedback mechanism between PGE2 and NLRP3

levels, through modulation of NF-kB signaling depending on the

intensity of 4-HNE production, may play an important regulatory

effect in modulating chronic inflammation caused by oxidative

stress. In fact, increased 4-HNE generation can also trigger a
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cellular response to oxidative stress with a synergistic response to

ferroptosis and pyroptosis (112) in associat ion with

NLRP1 (potentially).

Furthermore, increased generation of 8-iso-PGF2a (together

with an increase in 4-HNE generation accompanied by Nrf2

dysregulation in case of aging-related oxidative stress) has been

also found to be associated with promoting NF-kB signaling (175).

8-iso-PGF2a can also regulate NLRP3 activity by increasing cAMP

(161). Here, the increase of cAMP may act as a regulatory point on

the 8-iso-PGF2a-mediated NLRP3 activity, associated with NF-kB
signaling (cAMP-PKA-NF-kB axis) (176). Moreover, the cell type-

as well as microcellular environmental-dependent actions of cAMP

(176), are important for targeted anti-oxidant and anti-

inflammatory approaches modulating inflammasome activities

(especially in the case of NLRP3).

Therefore, PUFA metabolites, which are agonists of the PPARs

receptor have an important therapeutic significance, especially in

the treatment of diseases such as inflammation and cancer (177). It

has been suggested that NF-kB binding to DNAmay be inhibited by

PPAR (thiazolidinedione) agonists (177). It was also highlighted

that 15d-PGJ2 could inhibit the expression of metalloproteinase-9

via NF-kB and AP-1 and modulate breast cancer invasion through

the PPARg/HO-1 signaling pathway (178). Therefore, regarding the

inhibition of NLRP1 and NLRP3 via 15d-PGJ2-mediated PPARg
activation (103), the modulation of PPARg-NF-kB signaling should

also be considered as an indirect regulation of NLRP1 and NLRP3

activity by 15d-PGJ2. However, it is not known whether the severity

of oxidative stress (changes in 15d-PGJ2 levels) plays a role in

modifying this effect.
5.2 SREBP pathway

Another molecular pathway modulated by lipid metabolism

products is sterol regulatory element binding protein (SREBP)

signaling, which involves the biosynthesis of triglycerides, fatty

acids, and also cholesterol (179). However, it has been shown that

SREBP1a not only activates lipogenesis in macrophages but also

induces Nlrp1a gene encoding (150, 180). Furthermore, SREBP1a

deficiency (in mice) has been found to be associated with a defective

innate immune response and LPS-mediated inhibition of lipid

biosynthesis (180). Moreover, recent findings suggest that SREBP

cleavage activating protein (Scap)-SREBP1 protease (S1P)/S2P can

promote the phosphorylation and subsequent activation of NF-kB
through the release of IkBa for IkB kinase (Ikk) (181). In contrast,

TNFa-mediated NF-kB activation promotes activation of SREBP2

and SREBP2-dependent gene expression (182). Furthermore,

placental exposure to 4-HNE was found to promote the

expression of the genes related to lipogenesis and lipid uptake,

while 4-HHE (4-hydroxy-2-hexenal) decreased the expression of

the genes related to lipogenesis and lipid uptake (SREBP1 and

SREBP2) (183). However a direct link between SREBP and 4-HNE

is not yet known, it is known that the activity of both NLRP3 and

NLRP1 is mediated - correlatively - by the SREBP pathway, as well

as by 4-HNE. This further highlights the key role of lipids in

regulating inflammasome activity.
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5.3 AMPK pathway

Another key signaling that regulates energy homeostasis during

metabolic stress, in which reprogramming AMPK metabolism has

great potential, as a target for the treatment of inflammatory

diseases, is AMP-activated protein kinase (AMPK) signaling

(184). It inhibits NF-kB signaling and reduces the accompanying

inflammatory damage cells, acting as a negative regulator of

inflammation (185). An enhanced antioxidant response due to

AMPK activation has also been demonstrated (186). Furthermore,

activation of AMPK and overactivation of the NLRP3

inflammasome (186) were demonstrated in blood cells from

fibromyalgia patients, which promoted increased levels of IL-1b,
IL-6, TNF-a, iNOS, and COX2 in AMPK knockout mice (187).

Despite the lack of data on eicosanoids, it should be noted that the

eicosanoid profile in inflammatory conditions may change (related

to the inflammatory response) as a result of changes in COX2

activity. Moreover, 4-HNE can inhibit liver kinase B1 (LKB1),

which phosphorylates the a subunit of AMPK and consequently

AMPK signaling (188). Therefore, 4-HNE-dependent AMPK

signaling can also be considered as another element in the

modulation of NLRP3 activity. However, the eicosanoid profile,

which may be modified by the above-mentioned changes in the

level and/or activity of COX2 and the intracellular redox state, may

also act as an additional modulatory axis of NLRP3 activity.

Furthermore, AMPK/mTOR-mediated NLRP1 activation and

autophagy dysfunction are associated with b-amyloid (Ab) peptides
in APP/PS1 9M mice (189) while NLRP1 down-regulation causes a

significant decrease in phosphorylated AMPK levels (189), and

metformin - via AMPK signaling - causes attenuation of NLRC4

activation in acute lung injury in mice (190). The possibility of

AIM2 activation via end-binding to protein 1, regulated by AMPK,

has also been suggested (191). In contrast, a study in mice shows

that the increased free PUFA levels and dysregulated eicosanoid

profile resulting from a high-fat diet are reversed by AMPK

activation (192). Therefore, PUFA metabolites, whose production

is altered by intracellular redox signaling, may also participate in the

regulation of inflammasome activity in association with AMPK

signaling, which is activated by w-3 (DHA) and w-6 (LA) PUFAs

(193, 194).
5.4 mTOR pathway

Mammalian target of rapamycin (mTOR) - a serine-threonine

protein kinase - signaling involves critical molecular signaling

related to cell stress, growth, proliferation, and metabolic

reprogramming (195). In addition, it has been revealed that w3-
PUFA, DHA, can enhance LKB1 signaling which its expression

increases leading to AMPK phosphorylation and mTOR inhibition

in HeLaS3 cells (196). These data suggest anti-carcinogenic

properties of w3-PUFA associated with the inhibition of mTOR

activity as well as tumorigenic cellular metabolism mediated by

tumor suppressor activity of LKB1 (196). On the other hand,

regarding the connection between oxidative stress and

Alzheimer’s disease progression, mTORC1 activation is found to
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have a strong association with neurodegeneration, ROS-mediated

molecular damage, and Alzheimer’s disease neuropathology (197).

Moreover, increased 4-HNE generation as well as 4-HNE-protein

adducts levels are known in brain regions associated with

histopathological alterations in Alzheimer’s disease (197). It has

been revealed that 4-HNE can induce mTOR pathway

activation (198).

In addition, 15-F2t-isoprostane-mediated inhibition of

BAC1.2F5 macrophage spreading and adhesion through

phosphorylation of Akt which is a component of mTORC2

signaling has been shown (199). Eicosanoid-mediated activation

of mTOR signaling is also critical for the regulation of inflammation

response and associated cell survival dynamics. PGE2 has been

shown to induce Y box-binding protein 1 expression via activation

of EP1-proto-oncogene tyrosine-protein kinase Src-epidermal

growth factor receptor (EGFR)-p44/42 MAPK-mTOR pathway

which increases the invasive ability of hepatocellular carcinoma

cells (200). Furthermore, it has been revealed that 15(S)-HETE can

stimulate angiogenesis through the activation of PI3K-Akt-mTOR-

the mTOR substrate S6 kinase 1 (S6K1) signaling (201). Also, a

significant reduce in endometrial cancer progression has been

demonstrated through the dual inhibition of COX-2 and

mTORC1 signaling (202).

Therefore, the regulation of mTOR signaling due to PUFA

metabolites appears as one of the key mechanisms due to mTOR-

mediated inflammation affecting the tumor microenvironment. In

addition to the direct effects of PUFA metabolites (as seen in the

case of 4-HNE due to adduct formation), they indirectly change

inflammasome activities through mTOR signaling, which may have

a significant effect on the modulation of cancer development or

progression. Over and above, inflammatory response mediated by

mTOR signaling has been highlighted in tumor immune

microenvironment by promoting immune cell recruitment (203).

And, deregulated mTOR signaling in cancer has been revealed to

affect tumor immune microenvironment (203). Thus, potentially,

modulation of the activity of NLRP1 and NLRP3, due to the effect of

PUFA metabolites (majorly, 4-HNE, 8-isoprostanes, and PGE2) on

mTOR signaling, appears as a prominent pharmacotherapeutic

target, especially in the case of cancer therapies. Besides,

mTORC1- and hexokinase 1-dependent glycolysis mediated by

TLR ligation has been shown as an essential component of

NLRP3 inflammasome (204). Inhibition of NLRP1 activity

mediated AMPK/mTOR related-autophagy dysfunction has been

suggested (189). Furthermore, a recent study on acetaminophen-

induced liver injury in aged mice showed that AIM2 was

overexpressed when the expression levels of p62, phosphorylated

beclin 1, and phosphorylated mTOR were significantly reduced,

suggesting an enhancement of the AIM2-mediated autophagy

pathway (205).
5.5 GPR120 pathway

The last signaling pathway in this regard is G protein-coupled

receptor 120 (GPR120) signaling. It has been shown to regulate

inflammation and apoptosis (206). Free fatty acid receptor 4
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(FFAR4, also known as GPR120) has been identified as the primary

receptor of w-3 PUFA (206). FFAR4 agonism has been shown to

repress NF-kB and associated TNF-a, IL-1, IFN-g, IL-6, and IL-12

generation via upregulation of PPARg signaling (206). It has been

known that EPA and DHA can alter inflammatory gene expression

via binding to GPR120 and PPARg, and they can give rise to anti-

inflammatory and inflammation-resolving mediators called

resolvins, and protectins (207). Even, FFAR4 inhibitory effect on

NLRP3 activity, due to PPARg signaling, as well as associated

reduction in metabolic inflammation have been indicated (206).

On the other hand, GPR120-mediated PI3K/Akt–NF-kB signaling

has been indicated as an important angiogenic switch promoting

angiogenesis and tumor growth in human colorectal carcinoma

(208). Moreover, DHA-mediated GPR120 signaling has been not

only shown in the suppression of NF-kB and inhibition of NLRP3

activity but also found in NAIP5/NLRC4 and AIM2 inflammasome

activities (209).

Additionally, a recent study in Sertoli cells showed that 12-

hydroxyeicosapentaenoic acid (12-HEPE) can induce expression

of bone morphogenic protein 4 (BMP4) via GPR120-ERK1/2

activation and protect spermatogonia (210). Another study in a

nonalcoholic steatohepatitis mouse model showed that 4-HNE

can promote calpain activation via GPR120 signaling, and this

results in lysosomal membrane permeabilization and cell death

(211). Thus, PUFA metabolism-dependent GPR120 signaling,

altering NF-kB signaling and inflammasome activities (mostly

NLRP3), appears as a critical regulatory signaling pathway for

inflammatory response.
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6 Conclusion

Due to the high susceptibility of lipid species to oxidative

modifications, lipid metabolism turns out to be an important

variable in chronic inflammation associated with oxidative stress.

PUFA metabolites play a key role in the development and

progression of inflammation, by interfering with the activity of

inflammasomes (Figure 9). Among the reactive aldehydes, 4-HNE

seems to be a critical regulator, especially of NLRP3 activity, which

also has a great potential to modulate NLRP1 activity through direct

interaction with its FIIND domain. However, questions regarding

MDA-mediated changes in inflammasome activity remain open.

Moreover, the potential impact of 8-iso-PGF2a on AIM2 is a matter

of interest associated with the pathophysiology of CAP. Regarding

eicosanoids, prostaglandin 15d-PGJ2 was found to inhibit the

activity of both NLRP1 and NLRP3. However, PGE2 appears to

be positively correlated with both NLRP3 and NLRC4, and the

possibility of a positive or negative effect of PGE2 on NLRP3 activity

seems to be of great metabolic interest. However, these effects may

vary depending on the diversity of triggering factors and cell

specificity, as well as the severity of oxidative stress. Moreover,

the impact of PUFA metabolism on the modulation of critical

metabolic signaling pathways mainly involves NF-kB, PPAR,

SREBP, AMPK, mTOR, and GPR120 signaling, and appears as an

indirect/auxiliary regulation, potentially, in the alteration of

inflammasome activities. This situation is especially obvious in

the regulation of NLRP3 activity regarding to mentioned

signaling pathways.
FIGURE 9

A summary of the influence of PUFA metabolites on activities of well-known inflammasomes. (4-HNE, 4-hydroxy-2-nonenal; MDA,
malondialdehyde; NLRP1, NLR family pyrin domain-containing protein 1; NLRP3, NLR family pyrin domain-containing protein 3; NLRC4, NLR family
CARD domain-containing protein 4; AIM2, absent in melanoma 2; 15d-PGJ2, 15-deoxy-Δ-12,14-prostaglandin J2; PGE2, prostaglandin E2; PGF2a,
prostaglandin F2a; 8-iso-PGF2a; 8-iso Prostaglandin F 2a).
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Since the above analysis concerned the influence of PUFA

metabolites on the activity of inflammasomes, an attempt was made

to limit the considerations to showing only well-characterized

inflammasomes. This narrowed the problem while indicating

expectations for future studies, which should demonstrate an

inflammasome response associated with organ/cell specificity and/or

specificity for a particular pathological condition. This would also

allow us to understand the multidirectional aspects of the biological

actions of PUFAmetabolites related to their chemical structure as well

as the location of the inflammasomes as cell/organ-specific. Moreover,

it can be hoped that further research will contribute to expanding

knowledge about the interactions of PUFA metabolites with

inflammasomes, for instance, in the context of constantly

developing antioxidant therapies. These therapies are still not

satisfactory concerning the oxidative stress-inflammatory axis, and

yet often, but only fragmentarily, perceived in various disease states.
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Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules
(DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci. (2021) 22:4642.
doi: 10.3390/IJMS22094642

16. Ayala A, Muñoz MF, Argüelles S. Lipid Peroxidation: Production, Metabolism,
and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid Med
Cell Longev. (2014) 2014:360438. doi: 10.1155/2014/360438

17. Spickett CM. Formation of Oxidatively Modified Lipids as the Basis for a
Cellular Epilipidome. Front Endocrinol (Lausanne). (2020) 11:602771. doi: 10.3389/
fendo.2020.602771

18. Spickett CM. Chlorinated lipids and fatty acids: an emerging role in pathology.
Pharmacol Ther. (2007) 115:400–9. doi: 10.1016/j.pharmthera.2007.06.002
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Impact of Reactive Species on Amino Acids—Biological Relevance in Proteins and
Induced Pathologies. Int J Mol Sci. (2022) 23:14049. doi: 10.3390/IJMS232214049

108. Sauerland M, Mertes R, Morozzi C, Eggler AL, Gamon LF, Davies MJ. Kinetic
assessment of Michael addition reactions of alpha, beta-unsaturated carbonyl
compounds to amino acid and protein thiols. Free Radic Biol Med. (2021) 169:1–11.
doi: 10.1016/J.FREERADBIOMED.2021.03.040

109. Ferrara F, Cordone V, Pecorelli A, Benedusi M, Pambianchi E, Guiotto A, et al.
Ubiquitination as a key regulatory mechanism for O3-induced cutaneous redox
inflammasome activation. Redox Biol . (2022) 56:102440. doi: 10.1016/
J.REDOX.2022.102440

110. Meihe L, Shan G, Minchao K, Xiaoling W, Peng A, Xili W, et al. The
Ferroptosis-NLRP1 Inflammasome: The Vicious Cycle of an Adverse Pregnancy.
Front Cell Dev Biol. (2021) 9:707959. doi: 10.3389/FCELL.2021.707959

111. Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, et al. Ferroptosis: a cell death
connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death
Discovery. (2021) 7:193. doi: 10.1038/s41420-021-00579-w

112. Gao W, Wang X, Zhou Y, Wang X, Yu Y. Autophagy, ferroptosis, pyroptosis,
and necroptosis in tumor immunotherapy. Signal Transduction Targeted Ther. (2022)
7:196. doi: 10.1038/s41392-022-01046-3

113. Milkovic L, Zarkovic N, Marusic Z, Zarkovic K, Jaganjac M. The 4-
Hydroxynonenal–Protein Adducts and Their Biological Relevance: Are Some
Proteins Preferred Targets? Antioxidants. (2023) 12:856. doi: 10.3390/
ANTIOX12040856

114. Fritz KS, Kellersberger KA, Gomez JD, Petersen DR. 4-HNE adduct stability
characterized by collision-induced dissociation and electron transfer dissociation mass
spectrometry. Chem Res Toxicol. (2012) 25:965–70. doi: 10.1021/tx300100w
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NO nitric oxide

12-HEPE 12-hydroxyeicosapentaenoic acid

15d-PGJ2 15-deoxy-Δ-1214-prostaglandin J2

4-HNE 4-hydroxy-2-nonenal

AA arachidonic acid

Ab b-amyloid

AIM2 absent in melanoma 2

Akt serine/threonine-specific protein kinase

ALA linolenic acid

ALDH2 aldehyde dehydrogenase 2

AP-1 activator protein-1

AMPK AMP-activated protein kinase

apopDNA apoptotic DNA

APP/PS1 amyloid precursor protein/presenilin

ASC apoptosis-associated speck-like protein containing CARD

ATF6 activating transcription factor 6a

Bax B-cell lymphoma protein 2 (Bcl-2)-associated X

Bcl-2 anti-apoptotic B-cell lymphoma-2

BMP4 bone morphogenic protein 4

cAMP cyclic adenosine monophosphate

CAP community-acquired pneumonia

CARD caspase recruitment domain

CARD8 a caspase-1-activating protein having just FIIND domain and
CARD domain

CLRs C-type lectin receptors

COXs cyclooxygenases

CREB cyclic AMP-Response Element Binding Protein

Cu²⁺ copper ion

CYP450s cytochromes p450

cyPGs cyclopentenone prostaglandins

DAMPs damage-associated molecular patterns

DHA docosahexaenoic acid

DMB demethylene berberine

DPP8/DPP9 dipeptidyl peptidases 8 and 9

dsDNA double-stranded DNA

eIF2a eukaryotic initiation factor 2a

EGFR epidermal growth factor receptor

EP4 PGE2 receptor subtype 4

EPA eicosapentaenoic acid

(Continued)
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ER endoplasmic reticulum

ERK extracellular regulated kinase

Fe²⁺ ferrous iron

FFAR4 free fatty acid receptor 4

FIIND function-to-find domain ZU5-UPA domain

GBPs guanylate-binding proteins

GPX4 glutathione peroxidase 4

GPR120 G protein-coupled receptor 120

GSDMD gasdermin D

GSH glutathione

H2O2 hydrogen peroxide

HETEs hydroxyeicosatetraenoic acids

HIN hematopoietic

interferon-
inducible

and nuclear localization

HODEs hydroxyoctadeca-dienoic acids

HSA-MAA human serum albumin modified by
malondialdehyde-acetaldehyde

IKK IkB kinase

IKKb IkB kinase b

IL‐18 interleukin 18

IL‐1b interleukin 1b

IL-8 interleukin 8

iNOS inducible nitric oxide synthase

IRE1 inositol-requiring enzyme 1

IkBa inhibitory kB-a

JAK janus kinase

JNK c-Jun N-terminal kinase

LA linoleic acid

LDL-MAA low-density lipoprotein modified by
malondialdehyde-acetaldehyde

LKB1 liver kinase B1

LOXs lipoxygenases

LPS lipopolysaccharide

LRRs leucine-rich repeats

LTs leukotrienes

LXs lipoxins

MAA malondialdehyde-acetaldehyde modified

MAPK mitogen-activated protein kinase
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MDA malondialdehyde

mTOR mammalian target of rapamycin

MyD88 myeloid differentiation primary response 88

NACHT a central nucleotide-binding and oligomerization
domain (NOD)

NAIP NLR family apoptosis inhibitory protein

NEK7 a member of the NIMA (never-in-mitosis A) related
kinases family

NETs neutrophil extracellular traps

NF-kB nuclear factor - kappa B

NLR nucleotide-binding domain leucine-rich repeat containing

NLRC4 NLR family CARD domain-containing protein 4

NLRP1 NLR family pyrin domain-containing protein 1

NLRP3 NLR family pyrin domain-containing protein 3

NLRs nucleotide-binding oligomerization domain-like receptors

Nrf2 nuclear factor 2 associated with erythroid 2

O2
•− superoxide anion

O3 ozone

ONOO⁻ peroxynitrite

p38 a member of mitogen-activated protein kinases (MAPKs)

p65 RelA a heterodimer in the NF-kB signaling pathway

PAL palmatine

PAMPs pathogen-associated molecular patterns

PBMC patients with chronic obstructive pulmonary disease

PERK PRKR-like ER kinase

PGE2 prostaglandin E2

PGF2a prostaglandin F2a

PGs prostaglandins

PI3K phosphatidylinositol 3-kinase

PKA protein kinase A

PKD protein kinase D

PLA phospholipase A

POI postoperative intestinal obstruction

PPARa peroxisome proliferator-activated receptor alpha

PPAR-g peroxisome proliferator receptor-g

Pro-caspase-1 immature caspase 1

Pro-IL-18 immature interleukin 18

Pro-IL-1b immature interleukin 1b

PRRs pattern recognition receptors

PTMs post-translational modifications

PUFA polyunsaturated fatty acid

(Continued)
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PYD pyrin domain

PYHIN the human pyrin and hematopoietic interferon-inducible
nuclear (HIN) domain

RLRs RIG-I-like receptors

RNS reactive nitrogen species

ROS reactive oxygen species

S6K1 the mTOR substrate S6 kinase 1

SOD superoxide dismutase

SREBPs sterol regulatory element-binding proteins

STAT signal transducers and activators of transcription

TLRs toll-like receptors

TNF-a tumor necrosis factor alpha

TRPV4 transient receptor potential cation channel subfamily V
member 4

TRX1 thioredoxin-1

TXB2 Thromboxane B2

TXs thromboxanes

UBR2 E3 ubiquitin transferase

XBP1 X box-binding protein 1

w-3 omega-3

w-6 omega-6
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