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As the body’s defense mechanism against damage and infection, the

inflammatory response is a pathological process that involves a range of

inflammatory cells and cytokines. A healthy inflammatory response helps the

body repair by eliminating dangerous irritants. However, tissue fibrosis can result

from an overly intense or protracted inflammatory response. The anti-aging gene

Klotho suppresses oxidation, delays aging, and fosters development of various

organs. Numerous investigations conducted in the last few years have discovered

that Klotho expression is changed in a variety of clinical diseases and is strongly

linked to the course and outcome of a disease. Klotho functions as a co-receptor

for FGF and as a humoral factor that mediates intracellular signaling pathways

such as transforming growth factor b (TGF-b), toll-like receptors (TLRs), nuclear

factor-kappaB (NF-kB), renin -angiotensin system (RAS), and mitogen-activated

protein kinase (MAPK). It also interferes with the phenotype and function of

inflammatory cells, such as monocytes, macrophages, T cells, and B cells.

Additionally, it regulates the production of inflammatory factors. This article

aims to examine Klotho’s scientific advances in terms of tissue fibrosis and the

inflammatory response in order to provide novel therapy concepts for fibrotic

and inflammatory disorders.
KEYWORDS
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1 Introduction

An inflammatory reaction is triggered by the stimulation of infection or endogenous

signals associated with the abnormality of structure, function, or metabolism in various

tissues (1). There are known to be two types of inflammatory responses. A healthy

inflammatory response helps the body repair by eliminating dangerous factors. If the

body’s self-regulation ability is disturbed, permanent chronic inflammation and tissue
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damage cause excessive activation (or polarization) of (muscle)

fibroblasts and excessive deposition of extracellular matrix,

causing fibrosis of various tissues and organs and leading to

structural destruction and functional abnormalities of organs,

until organ failure and poor prognosis (2–4). In addition to

disturbances in immune homeostasis caused by autoimmunity

and infection, the aging process is frequently linked with systemic

inflammatory syndromes, also known as inflammatory aging.

Comparative genetic analysis of tissues from young and aged

mice, rats, and humans has revealed that genes related to

inflammation and immune response play a significant role in

driving age-associated changes in gene expression (5). The

modulation of the equilibrium between pro- and anti-

inflammatory signaling by anti-aging genes can potentially

prevent or delay the onset of inflammatory and fibrotic diseases.

Klotho (6), a key regulatory protein in aging-related disorders,

exhibits high expression levels in various organs such as the

kidney (7), brain (8), reproductive organs (9–11), pituitary

gland (12), and parathyroid glands (13). A more profound

understanding of Klotho’s biology has unveiled its multifaceted

functions that extend beyond mere “anti-aging.” Studies have

demonstrated that Klotho serves as a “beneficial” factor in

various organs, including the kidney (14, 15), heart (16, 17),

lungs (18, 19), blood vessels (20, 21), liver (22, 23), brain, and

reproductive organs. It regulates calcium and phosphorus

metabolism, impacts vascular calcification, and contributes to a

range of biological processes such as inflammation, oxidative

stress, and apoptosis (Figure 1). In this comprehensive review,

our objective is to furnish a thorough overview of the structural

and functional characteristics of the anti-aging gene Klotho. We

aim to delve into its impact on the phenotype and function of

inflammatory cells such as macrophages, T cells, B cells, etc., as

well as its intricate interactions with FGF and intracellular

signaling pathways (TGF-b, TLRs, NF-kB, RAS, and MAPK,

etc.) in inflammatory and fibrotic disease. Furthermore, we will

summarize current methods for reinstating Klotho levels and

activity. Lastly, we will examine Klotho assays and conclude

with an analysis of the potential application of Klotho as a

biomarker for the diagnosis and treatment of inflammatory and

fibrotic diseases.
2 Klotho structure

The Klotho gene is located in the 13q12 region (humans and

mice) or 12q12 region (rats) and comprises four introns and five

exons encoding three subtypes—Klotho: a-, b-, and g-Klotho
(Table 1) (24). a-Klotho is highly expressed in the kidney,

choroid plexus, parathyroid glands, and sinus node, as well as in

the nervous, respiratory, digestive, and reproductive systems to

varying degrees (25). It comprises two extracellular domains (KL1

and KL2), a transmembrane segment (TM), and a short non-

signaling cytoplasmic tail (CYT) (Figure 2). a-Klotho is divided

into a-Klotho™ and a-Klothoecto (26). a-Klotho™ forms a

ternary receptor complex with fibroblast growth factor receptor

1c (FGFR1c), FGFR3c, FGFR4, and FGF23 (Figure 2), mediating
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the balance of calcium and phosphorus metabolism and active

vitamin D production in the body (26). Selective shearing (both a
and b shearing modes) of a-Klotho™ in the kidney’s distal

tubules is caused by a disintegrin and metalloproteinase 10

(ADAM10), ADAM17, and the b-site amyloid precursor protein

cleaving enzyme 1 (BACE1), which yields a-Klothoecto (27). With

two tandem glycoside hydrolase-like (GH) structural domains, D1

and D2 (Figure 2), b-Klotho is mostly expressed in the liver and

white adipose tissues (pancreas, brain), where it can form

complexes with FGFR1c and FGFR4 and trigger downstream

signaling pathways (28, 29). g-Klotho has only one extracellular

structural domain similar to b-glucosidase and a short

cytoplasmic tail region, and is mainly expressed in kidney,

brown fat, skin, and eyes (30), and becomes a high-affinity

receptor for FGFR4/FGF19 after binding to FGFR1b, FGFR1c,

and FGFR2c (31). Since the research on g-Klotho is still in the

initial stages and the biological role of g-Klotho is not clear, this

paper mainly reviews the role of the other two subtypes, a-Klotho
versus b-Klotho.
3 Klotho regulates fibrosis and
inflammation through
inflammatory cells

Immune cells are vulnerable to endogenous DNA damage

during the process of aging, and the senescent cells eventually

lose their capacity to eradicate pathogens and damaged cells.

Meanwhile, the accumulation of senescent cells usually

downregulates the expression of proliferation-related proteins and

increases a large number of inflammatory factors; then, the status is

defined as low-grade chronic inflammation. Persistent low-grade

chronic inflammation could lead to fibrosis of injured tissues and

result in the dysfunction of organs. Therefore, modulating

inflammation by regulating senescent immune cells with anti-

aging medications, such as Klotho, might ameliorate fibrotic

diseases (Table 2) (37).
3.1 Monocyte-macrophage

Macrophages originate from hematopoietic stem cells in the

bone marrow and undergo differentiation from circulating

monocytes in the peripheral circulation (38). Upon stimulation by

various factors, such as the microenvironment, macrophages can

polarize into distinct phenotypes (primarily M1 and M2) (39, 40),

eliciting a Th1-type immune response (41) or promoting a Th2-

type immune response (42).

This results in their display of both pro- and anti-inflammatory

activities. Recently, studies have demonstrated that Klotho could

regulate the polarization of macrophages. For example, Klotho could

show anti-inflammatory effects by blocking the Toll-like receptor 4

(TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-

kappaB (NF-kB) pathway—which causes a large increase in the

production of CD206, IL-10, TGF-b, and polarizes RAW264.7 to
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M2a/M2c, eventually ameliorating cardiac aging (43). Following the

restoration of secreted Klotho (sKL) expression, studies found a

decrease in F4/80 and CD68 co-tagged M1, a suppression of

monocyte chemoattractant protein-1 (MCP-1) and intercellular

adhesion molecule 1 (ICAM-1) expression on the aortic valves of

senescence-accelerated mice prone strain 1 (SAMP1) mice, and a

reduction in aortic valve fibrosis along with aging-associated vascular

inflammation (44). Furthermore, by enhancing M2 polarization and

upregulating the expression of anti-inflammatory proteins, Klotho

overexpression in macrophages attenuates fibrosis and cardiac

hypertrophy and decreases the expression of pro-inflammatory
Frontiers in Immunology 03
factors (IL-1b, TNF-a, and IL-6) (45). In the kidneys and brains of

elderly mice, researchers discovered that the peripheral delivery of

Klotho enhanced M2a/M2c, lowered malondialdehyde (MDA) and

iNOS levels, enhanced superoxide dismutase (SOD) enzyme activity,

and markedly reduced oxidative stress and inflammatory

responses (46). Through interactions between stem cells and

macrophages, Klotho can affect macrophage polarization in

addition to directly affecting the macrophages. According to Niu

et al. (47), pretreating human periodontal stem cells (hPDLSCs) with

Klotho had anti-inflammatory effects by promoting macrophage M2

polarization through paracrine secretion and inhibiting macrophage
FIGURE 1

(A) Timeline depicting key breakthroughs in the field of anti-aging protein Klotho. (B) Klotho plays a crucial role in modulating inflammation and
fibrosis across various organ systems.
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M1 polarization. Thus, by affecting the direction of macrophage

polarization and inhibiting the production of inflammatory factors,

Klotho exerts an antagonistic effect on systemic inflammation and

alleviates fibrosis at multiple sites, including the heart,

kidney, and brain.
3.2 T cells

T lymphocytes are the main effector cells in cellular immunity.

They produce cytokines during the immune response, which can

influence other immune cell types and mediate inflammatory

reactions (48, 49). Based on cell surface markers, T cells are

divided into two subpopulations: CD4+ and CD8+. The CD4+/

CD8+ ratio reflects immune activation and chronic inflammation as

drivers of disease (50).

Klotho levels have been shown to serve as an independent

predictor of the CD4+/CD8+ ratio (51). Low Klotho levels enhance

MDA and buildup oxidative stress, which in turn increases CD4+ T

cell counts (51). Large T-cell infiltration was observed in KL(+/-)

mice (52), and it was discovered that Klotho can contribute to

fibrosis and inflammation by influencing T-cell differentiation. Our

earlier research revealed that Klotho may suppress the

inflammatory response and alter the pathological process as

multiple sclerosis develops. This is achieved by suppressing Th1

and Th17 cell differentiation, encouraging the differentiation of a

few Treg cells, and lowering the secretion of the main pro-

inflammatory cytokines, IL-17, IL-6, IL-23, and IFN-g. As an

endogenous circulating hormone that effectively inhibits tumor

growth, Klotho can cause carcinogenesis when it persists or is

present in excess. Patients with T-cell lymphoma have much lower

levels of Klotho in their lymph nodes than in normal lymph nodes;

the overexpression of Klotho can control the growth of T-cell

lymphomas and decrease insulin-like growth factor-1 receptor

(IGF-1R) signaling, which has anticancer properties (53).
3.3 B cells

B lymphocytes are pluripotent stem cells derived from bone

marrow that, in addition to producing antibodies, secrete

inflammatory mediators to drive the inflammatory response

(TNF-a , IL-6, etc.) and inhibit hyperinflammation by
Frontiers in Immunology 04
metabolizing extracellular adenosine triphosphate (ATP) to

adenosine diphosphate (ADP) and secreting IL-10 (54).

In comparison to wild-type mice, KL (-/-) animals exhibited

thymic atrophy, severe B-lymphocytopenia, and considerably lower

B-cell counts in bone marrow and peripheral blood (55). It has been

discovered that Klotho may regulate the synthesis of negative

regulatory factors, the lack of which modifies positive signaling

f o r B l ymphopo i e s i s , mod ifi e s t h e h ema t opo i e t i c

microenvironment’s three-dimensional structure or inhibits

specific cell types crucial for B lymphopoiesis, and suppresses the

bone marrow’s ability to produce B lymphocytes (55). According to

Fan et al. (56), AAV-based delivery of sKL gene (AAV-sKL)

effectively alleviated aging-related vascular inflammation and

arterial remodeling in the aorta of aged mice by reducing SAMP1

and inflammatory cell infiltration, thereby inhibiting the expression

of TGF-b1, collagen-1, sclerenchyma, MMP-2, and MMP-9, and

partially by restoring B-cell populations and serum IgG levels.
3.4 Other cell types

Apart from the inflammatory cells already mentioned, Klotho

can affect fibroblasts, endothelial cells, and other cells. Klotho

protects the periodontium in a high-sugar environment, increases

the capacity of periodontal fibroblasts to scavenge reactive oxygen

species (ROS), and has anti-apoptotic effects on periodontal

fibroblasts . The overexpression of Klotho in diabetic

nephropathy (DN) reduces the damage caused by excessive

glucose in human glomerular endothelial cells (HRGECs) (57).

Moreover, Klotho has anti-apoptotic and anti-aging properties

when it activates superoxide dismutase, which shields endothelial

cells from the damaging effects of oxidative stress. Pericytes

control the release of neutrophils and interact with endothelial

cells to influence the permeability of blood vessels. In addition to

causing pathological alterations, such as pericyte loss and

degeneration, inflammatory stimuli also lead pericytes to express

pertinent components that worsen inflammation. However, more

research is required to fully understand the mechanism

underlying the roles of pericytes and Klotho in fibrosis and the

inflammatory response. When combined, Klotho can alter the

phenotypic and function of inflammatory cells, thereby regulating

fibrosis and the inflammatory response of the body.
TABLE 1 Three different kinds of Klotho.

Types Receptors Areas Structures Distributions References

a-Klotho FGF23-FGFR1c/
FGFR3c/
FGFR4(mKL);
FGF23-FGFR1c(sKL)

12q12(Rat)
13q12(Human
and mice)

Two extracellular domains (KL1 and KL2),
a transmembrane segment (TM), and a
short non-signaling cytoplasmic tail (CYT)

Kidney, parathyroid glands, sinus node,
nervous, respiratory, digestive, and
reproductive systems

(6, 26, 27)

b-Klotho FGF21-FGFR1c;
FGF15/19-FGFR4

4q Two tandem glycoside hydrolase-like (GH)
structural domains, D1 and D2

Liver and white adipose tissue
(pancreas, brain)

(28, 29)

g-Klotho FGF19-FGFR1b/
FGFR1c/FGFR2c/
FGFR4

Unknown One extracellular structural domain similar
to b-glucosidase and a short cytoplasmic
tail region

Kidney, brown fat, skin, and eyes (30, 31)
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4 Klotho utilizes inflammatory
pathways to control fibrosis and the
inflammatory response

4.1 FGF pathway

FGFs are pleiotropic molecules that further trigger a variety of

cellular processes, including inflammation, angiogenesis, cell

proliferation, apoptosis, metastasis, and wound repair by

combining with four tyrosine kinase FGFRs (58). Since Kurosu

et al. (59) found the structure of Klotho as being a cofactor of FGF,

an increasing number of reports have demonstrated the functions of

Klotho in cellular processes by forming complexes with different

FGF/FGFR.

a-Klotho first binds to the hydrophobic pocket in the D3 region

of FGFRs (FGFR1c-3c and FGFR4) through the b1-a1 loop,

forming a receptor binding arm (RBA) (26), while a large cleft at

the junction between KL1 and KL2 embraces FGF23’s long C-tail

(Figure 2). b-Klotho-FGFR1 interacts with FGF21 N-terminus

through the D2-D3 region, and the D1 region exerts a b-Klotho-
Frontiers in Immunology 05
FGFR1 complex as well as a FGF21-FGFR1-b-Klotho complex

formation negative regulatory role (35, 60). Due to the

substitution of a crucial glutamate in the molecule, KL1 and KL2

of the extracellular ligand-binding region of b-Klotho cannot

perform glycoside hydrolase activity. Instead, KL1 and KL2

engage with two highly conserved areas in the C-terminus of

FGF19 and FGF21 (Figure 2). Since the C-terminal structures of

FGF19 and FGF21 are 40% identical and share binding sites in the

b-Klotho structure, there is no synergistic interaction between the

two proteins (61). As an extra co-receptor, HS causes FGFR

dimerization and activation upon the establishment of a stable

FGF-FGFR-Klotho ternary complex (Figure 2). This initiates

significant metabolic activities of the FGFR (26), which are linked

to the processes of growth and development, wound healing,

fibrosis, and inflammatory production.
4.1.1 a-Klotho and FGF23
Changes in FGF23 and Klotho protein levels play a role in

promoting fibrosis through various mechanisms, including

oxidative stress, inflammatory responses, and activation of the
FIGURE 2

Structures and Binding of Klotho to FGFs: (A) The predicted structure of a-Klotho, as determined by AlphaFold (AF-Q9UEF7-F1) (32, 33). (B) The
predicted structure of b-Klotho, as determined by AlphaFold (AF-Q86Z14-F1) (32, 33). (C) The predicted structure of g-Klotho, as determined by
AlphaFold (AF-Q6UWM7-F1) (32, 33). (D) Cryo-EM structure of the Quaternary complex FGF23-FGFR1c-aKlotho-HS, derived from PDB accession
code 7YSH (34). (E) Cryo-EM structure of the Quaternary complex FGF23-FGFR3c-aKlotho-HS, derived from PDB accession code 7YSU (34). (F)
Cryo-EM Structure of the Quaternary complex FGF23-FGFR4-aKlotho-HS, derived from PDB accession code 7YSW (34). (G) X-ray diffraction crystal
structure of b-Klotho bound with FGF21, derived from PDB accession code 5VAQ (35). (H) X-ray diffraction crystallography depicting the complexes
formed between Beta-Klotho and the C-terminal peptide of FGF19, obtained from PDB accession code 6NFJ (36).
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renin-angiotensin system (RAS). These changes can occur directly

or indirectly and lead to structural and functional alterations in

organs. In response to inflammatory stimuli, Rodrıǵuez-Ortiz et al.

(61) observed that chronic kidney disease (CKD) mice exhibited

increased FGF23 expression and lower levels of circulating Klotho

protein. Additionally, in vitro tests have revealed that inflammatory

circumstances decrease Klotho levels while stimulating FGF23

expression via the activation of NF-kB and Wingless/integrated

(Wnt)/b-catenin signalings (61). By suppressingWnt signaling, sKL

can reduce collagen deposition and the generation of reactive

oxygen species, reduce cardiac fibrosis, and prevent the elevated

expression of b-catenin and TGF-b brought on by FGF23

stimulation (62). Moreover, the type 2 ryanodine receptor (RyR2)

hyperphosphorylation and arrhythmias are caused by FGF23-

mediated stimulation of intracellular Ca2+ and Ca-calmodulin-

dependent kinase II (CaMKII) (63). Combining a-Klotho and

FGF23 can further reduce the harmful effects of FGF23 on the

heart by inhibiting CaMKII, reducing arrhythmias, and activating

the MAPK signaling pathway (64, 65).

4.1.2 b-Klotho and FGF15/19
FGF19 is an intestinal factor that is induced by the bile acid-

activated farnesol X receptor (FXR) and subsequently forms the

FGF19-FGFR4-b-Klotho complex in the liver via the portal vein (66,

67). This complex regulates extracellular signal-related kinases 1 and

2 (ERK1/2) and other downstream kinases and lowers the synthesis

of cholesterol 7a-hydroxylase (CYP7A1), the rate-limiting enzyme for
Frontiers in Immunology 06
bile acid synthesis, which in turn lowers bile acid production and

prevents the emptying of the gallbladder. Increased IL-1b through c-

Jun N-terminal kinase (JNK) and NF-kB pathways can suppress the

expression of b-Klotho in the liver, thereby altering bile acid

metabolism and resulting in problems of the intestinal-liver axis. In

addition, infections of the intestines and liver cause an excessive

release of inflammatory substances (67). In mice lacking b-Klotho,
the FGF15-FGFR4-b-Klotho pathway is impeded, thereby resulting

in elevated bile acid synthesis and secretion. This leads to

modifications in the composition of bile acid, bile acid transporter

proteins, and intestinal microbiota (reduced thickwell proportion and

increased aspergillus proportion) (68–70). These alterations cause

inflammation and fibrosis in the liver, subsequently impacting the

kidneys, intestine, etc. (68). Pediatric non-alcoholic fatty liver disease

(NAFLD) patients experience hepatic injury and an increased risk of

ballooning and lobular inflammation as a result of the organism

downregulating b-Klotho through the expression of the rs17618244

G>A b-Klotho variant in human liver carcinoma (HepG2) and

human HCC cell line (Huh7 cells). In turn, this causes intracellular

lipid accumulation and upregulates the expression of pro-

inflammatory genes, including p62, acyl-CoA oxidase 1 (ACOX1),

acyl-CoA synthetase long-chain family member 1 (ACSL1), IL-1b,
and TNF-a. According to additional research, people with b-Klotho
mutations have lower levels of FGF19 than those without the

mutation (69). Consequently, b-Klotho protects hepatocytes against

lipotoxicity and inflammation, and the FGF19-FGFR4-b-Klotho
pathway is important in the pathophysiology of NAFLD (71).
TABLE 2 Klotho regulates inflammatory cells.

Cells Cytokines Effects Places References

Macrophage ↓:CD206, IL-10, TGF-b Inhibits the TLR4/MyD88/NF-kB pathway; Induces
RAW264.7 polarization to M2a/M2c; Exerts anti-
inflammatory effects and protects the heart

Heart (43)

↓:F4/80 and CD68 co-tagged M1;MCP-1 and ICAM-1 M1 decrease; Alleviating aortic valve fibrosis and
vascular inflammation

Aorta,
blood
vessels

(44)

↓:IL-1b, TNF-a, IL-6 Promoting macrophage M2 polarization; Increasing the
expression of anti-inflammatory factors; Alleviates
renal fibrosis and cardiac hypertrophy

Kidney,
heart

(45)

↓:iNOS, MDA
↑:SOD enzyme

Increased M2a/M2c
Significantly suppressed inflammatory response and
oxidative stress levels

Kidney,
brain

(46)

↓:IL-6 and IL-1b
↑:IL-10

Inhibits M1 polarization
Promotes M2 polarization through paracrine secretion;
Exerts anti-inflammatory effects

Bone (47)

T cell ↓:IL-17, IL-6, IL-23, IFN-g Inhibits Th1 and Th17 cell differentiation; Promotion
of (at least some) Treg cell differentiation;
anti-inflammatory

Brain

↓:IGF-1R, AKT, ERK1/2 Regulation of T-cell lymphoma proliferation,
anti-cance

Lymph (53)

B cell ↓:VCAM1, PCAM, serum CRP, TNF-a, IL-1b,
TGF-b1, collagen-1, sclerenchyma, MMP-2, MMP-9

Restoration of B-cell populations and serum IgG levels
to alleviate vascular inflammation and
arterial remodeling

Vessel,
artery

(56)

Endothelial cell ↓:ROS, TNF-a, IL-6 Mitigation of high glucose-induced glomerular
endothelial cell injury

Kidney (57)
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4.1.3 b-Klotho and FGF21
FGF21, a stress-inducible hormone predominantly produced in

the liver and adipose tissue, is well-known for its role as a

pleiotropic regulator of glucolipid metabolism and insulin

sensitivity (72). Recent evidence suggests that plasma FGF21

levels are significantly correlated with fibrosis progression (73),

and targeting the FGF21/FGFR/b-Klotho pathway has the potential
to arrest or reverse inflammation and fibrosis in tissues such as the

heart and skin (74). The reduced expression of FGF21, a cardiac

kinin released under pathological stress, along with its co-receptor

b-Klotho, can lead to FGF21 resistance and exacerbate the

compensatory response to cardiovascular disease (75). In the

diabetic heart, FGF21-mediated activation of cardiac FGFR1-b-
Klotho induces cardiomyocyte secretion of MCP-1/CCL2 and

promotes the expression of Vcan, inhibiting M1 polarization in

infiltrating monocytes while mitigating inflammation in the

diabetic heart (76). As a peptide hormone that enhances

mitochondrial function and energy metabolism, the absence of b-
klotho leads to reduced sensitivity to FGF21. Delivery of b-Klotho
to the heart using ultrasound-targeted microbubble destruction

(UTMD) technology enhances sensitivity to FGF21 by up-

regulating Nrf2 target proteins such as heme oxygenase 1 (HO-1),

NAD(P) H quinone dehydrogenase 1 (NQO1), glutamate-cysteine

ligase modifier subunit (GCLM), effectively alleviating post-

infarction-induced myocardial oxidative stress and mitochondrial

injury, thereby significantly ameliorating cardiac insufficiency’

adverse remodeling (77). In terms of skin inflammation, the

FGF21-FGFR1-b-Klotho receptor complex in the dermis

significantly reduced the expression of pro-inflammatory factors

(IL-1b, IL-6, IL-8, and TNF-a) in human immortalized

keratinocytes (HaCAT) and inhibited inflammation induced by

Cutibacterium acnes (C. acnes) (78). However, the antifibrotic

mechanism of FGF21/FGFR/b-Klotho in other organs such as the

liver, kidney, and lung remains to be discovered.

Klotho significantly enhances the binding of endocrine

fibroblast growth factor (eFGF) to FGFR and synergistically

boosts the activity of the eFGF signaling pathway. However, there

are differences in the roles of Klotho and paracrine FGFs.

Specifically, FGF2 exerts significant pro-proliferative and

differentiation effects and plays a crucial role in promoting

epithelial-mesenchymal transition (EMT) in renal tubular

epithelial cells (79). Guan X et al. (80) discovered that Klotho

inhibits the activity of the FGF2 signaling pathway by competitively

binding to FGFR1. This inhibition leads to a reduction in FGF2-

induced phosphorylation of fibroblast growth factor receptor

substrate 2a (FRS2a) and activation of ERK1/2, as well as

preservation of E-cadherin in renal tubules. Furthermore, Klotho

inhibits the expression of fibronectin (FN) in the interstitium of

obstructed kidneys, thereby suppressing the proliferation of

interstitial fibroblasts and attenuating kidney fibrosis.

In conclusion, there has been a growing body of research

focusing on the interaction between Klotho and eFGFs. However,

further comprehensive exploration is needed regarding the

regulatory mechanism of Klotho with paracrine FGFs.

Investigating the composition and binding mechanisms of FGFs,
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Klotho, and FGFRs can potentially lead to the development of more

effective antagonists and agonists (81, 82). To effectively prevent

and treat fibrotic diseases, numerous clinical studies are required to

understand the crosstalk effects of Klotho in various tissues and

organs, as well as to further validate the safety and efficacy of

targeting the Klotho-FGFs axis therapeutically.
4.2 Inhibition of the TGF-b
signaling pathway

TGF-b plays an important role in various biological processes

such as cell proliferation, apoptosis, differentiation and autophagy,

as well as in pathological processes such as inflammation and

fibrosis (83). The protective effect of Klotho on inflammation and

fibrosis is largely attributed to its ability to block TGF-b.
In the Smad pathway, TGF-b binds to TbRI and TbRII, which

form heterodimers, and then induces the phosphorylation of

downstream Smad2 and Smad3, forming a complex with Smad4

to enter the nucleus and regulate the transcription of specific genes

(84–86). First discovered in 2011, Klotho can directly bind to TbRII
and simultaneously inhibit TGF-b1 binding to interfere with TGF-

b1 signaling (87). This inhibits the phosphorylation of Smad3, the

transactivation of Smad response reporter genes, and the binding of

TGF-b1 to the surface of renal and lung epithelial cells in a dose-

dependent manner (87). It also alleviates the increased expression of

mesenchymal markers and the decreased epithelial marker

expression that results from the TGF-b1-induced effect as well as

exerting an endogenous anti-EMT effect. Further investigation (88)

revealed that TGF-b was suppressed in five distinct cell types

including normal rat kidney interstitial fibroblast cells (NRK-

49F), human proximal tubular cells (HKC-8), mouse primary

renal tubular cells, rat primary cardiomyocytes, and cardiac

fibroblasts by the Klotho-derived peptide 1 (KP1). Then in 2022,

the study found in C2C12 myotubes, c-a-Klotho binds to type I

serine/threonine kinase receptors (ALK5 and ALK4) and type II

serine/threonine kinase receptors (ActIIRA and ActRIIB) (89),

inhibits various TGF-b signaling activities (myo-growth factor,

GDF11, and activin) and also restores the protein levels of

differentiation markers (fast MyHC, creatine kinase, and

myogenin) and fusion markers (myomaker and myomerer) in

C2C12 myotubes (89).

Crucial mechanisms in the regulation of inflammatory responses

during an infection encompass epigenetic modifications, which can

also be targeted for the modulation of Klotho. Following an

inflammatory insult, there is a substantial increase in TGF-b levels,

and TGF-b1 exerts influence onmiR-34a to enhance its expression in

a p53-dependent fashion and target the 3’UTR of Klotho, thereby

impacting its transcription (90). KP1 demonstrated the capability to

reinstate the expression of long noncoding RNA (lncRNA)-TUG1

and Klotho in fibrotic kidneys, suppress the expression offibronectin,

collagen I, and a-SMA, as well as diminish the levels of p21, p16, and

g-H2AX in fibrotic kidneys through inhibition of the TGF-b/Smad3/

miR-223-3p pathway (91). Concurrently, TGF-b induces aberrantly

elevated expression of DNA methyltransferase1/3a (DNMT1/3a) via
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suppression of miR-152 and miR-30, resulting in hypermethylation

of the Klotho promoter (92, 93). The utilization of herbal

components such as epigallocatechin-3-gallate (EGCG) (92),

docosahexaenoic acid (DHA) (93), or DNA methylase inhibitors

can effectively impede the abnormally heightened expression of the

DNA methylation transferases DNMT1 and DNMT3a, thereby

alleviating Klotho promoter hypermethylation and subsequent

down-regulation of Klotho. In the realm of histone modification,

TGF-b/Smad2/3 signaling induces an aberrant upregulation of

HDAC3, leading to the formation of a transcription inhibition

complex with nuclear receptor co-inhibitor (NcoR) and NF-kB.
This complex not only regulates the acetylation level at H3K4,

H3K9, and H4K5 sites but also binds to the Klotho promoter

(GAATTCCC: NF-kB binding site), resulting in deacetylation of

PPARg as well as corresponding Klotho promoter histones.

Consequently, this leads to a reduction in Klotho expression (94).

HDAC8 may directly or indirectly stimulate the up-regulation of

TGF-b/Smad3 expression and suppress the expression of BMP-7 and

Klotho in injured kidneys (95). Conversely, broad-spectrum HDAC

and specific HDAC inhibitors (95–97) have been shown to rejuvenate

the anti-renal fibrosis effect of Klotho by facilitating PPARg
acetylation to effectively regulate Klotho, ultimately leading to a

significant restoration of Klotho protein levels and successful

alleviation of renal and bone injuries associated with renal fibrosis.

It has been observed that only inhibition of class I HDAC (HDAC3/

8) in the kidney is able to restore Klotho levels, while further

investigation is needed to elucidate the detailed mechanism

through which HDAC8 interacts with Klotho, as well as whether

class II, III, and IV HDACs yield similar effects.

Moreover, the TGF-b secreted by inflammatory cells binds to

TbR and plays a role in inflammation or fibrosis by transmitting to

Ras (98, 99), MAPK (100), phosphatidylinositol 3-kinase (PI3K)

(99, 100), serine/threonine protein kinase (AKT) (101), NF-kB
(102), etc. Inhibition of the Klotho-dependent TGF-b1/p38MAPK

pathway can reduce the levels of a-SMA and FN, increase the

expression of E-cadherin, and inhibit the proliferation and fibrosis

of abnormal renal cells in diabetic nephropathy (103). More

potently than ITD-1, a small molecule inhibitor of TGF-b
signaling, KP1 effectively inhibited multiple downstream signals

of TGF-b (ERK1/2, JNK, and p38) (88). It also attenuated fibrotic

lesions after ischemic or obstructive injury and restored

endogenous Klotho expression both in vivo and in vitro.

Therefore, by targeting the TGF-b/Smad non-SMAD signaling

pathways, Klotho is capable of functioning as a systemic TGF-b
inhibitor that influences fibrosis and inflammation (Figure 3).
4.3 Inhibition of the TLRs/NF-kB
signaling pathway

A family of Toll-like receptors (TLRs), which are an important

group of pattern recognition receptors, play a crucial role in the

detection of microbial pathogens by human immune cells and in

mediating the immune response (104–107). They have the ability to

activate the NF-kB pathway, release NF-kB into the nucleus (108,

109), and induce the expression of inflammatory factors such as
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TNF-a, IL-1b, IL-6, etc., as well as apoptotic factors including Bcl-
xL, Bcl2, TRAF1/2, etc. These factors ultimately impact

inflammation and fibrosis (110, 111).

Further, TLR4 is the most extensively researched and the first

member of the TLR family to be found. After lipopolysaccharide

(LPS) binds to TLR4, the signaling pathway is activated, causing

MD-2 on the cell surface to form a dimerization complex with

TLR4, turning on a series of downstream reactions (112). Klotho

targets mature TLR4 and accelerates its degradation through the

lysosomal autophagy pathway (111). This further inhibits the

phosphorylation of NF-kB p65, lowers the production of ROS,

reduces the expression of necrotic apoptotic gene markers, and

mitigates AngII-induced necrotic cardiotoxicity. These effects are

cardioprotective while also reducing the expression of pro-

inflammatory factors (TNF-a and IL-1b) (113). According to The

et al. (114), pretreatment with recombinant Klotho reduced the

production of MCP-1, IL-6, and ICAM-1 in human aortic valve

interstitial cell (AVIC). According to reports, overexpressing Klotho

in H2O2-treated nucleus pulposus (NP) cells significantly decreased

the expression of pro-inflammatory cytokines including IL-1b,
NOS2, and IL-18 and effectively inhibited TLR4-NF-kB signaling.

These results suggest that Klotho attenuates intervertebral disc

injury and effectively inhibits H2O2-induced acute inflammatory

responses (115). Extensive research has demonstrated that

cytokines, ROS, and DAMPs trigger inflammatory vesicle

signaling, elevate IL-1b and IL-18 levels, and result in unbalanced

miRNA levels. Additionally, abnormal epigenetic alterations impact

the expression of TLRs, NF-kB, and Klotho. In the LPS-induced

inflammatory state, miR-199a-5p directly targets the 3′ UTR of

Klotho and downregulates its expression. Albumin-stimulated renal

tubular epithelial cells induce macrophage M1-type polarization by

releasing extracellular vesicles (EVs) containing miR-199a-5p,

which targets the Klotho/TLR4 pathway and accelerates diabetic

nephropathy progression (116). Another study found that

exogenous supplementation of Klotho or inhibition of miR-199a-

5p inhibited the activity of the TLR4/NF-kB p65/neutrophil

gelatinase-associated lipocalin (NGAL) signaling pathway and

reduced the expression of NGAL, fibrosis factors including FN,

connective tissue growth factor (CTGF), and inflammatory factors

including MCP-1and CXCL5 in response to high glucose

stimulation, effectively attenuated the injury of mesangial cells

(MCs), and slowed down the progression of diabetic kidney

disease (DKD) to end-stage renal disease (117). Therefore,

Klotho’s inhibitory effect on the TLRs/NF-kB signaling pathway

helps protect tissues from inflammation-induced damage and slows

the fibrotic phase of the disease.

In conclusion, Klotho’s inhibitory action on the TLRs/NF-kB
signaling pathway helps shield tissues from damage caused by

inflammation and slows down the disease’s fibrotic phase

(Figure 4). After NF-kB is activated and translocated into the

nucleus, the protein complex containing NF-kB, NCoR, and

HDAC1 is recruited to the Klotho promoter at the GAATTCCC

(NF-kB binding site) sequence, which inhibits Klotho transcription

(118). In situations when there is severe, acute, or chronic

inflammation, NF-kB activation may be predominant and Klotho

expression is suppressed. Moreover, the TLR4 protein has nine
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glycosylation sites, and the specific role of Klotho on one or more of

these sites remains to be further investigated. In addition to

targeting the TLR4 protein and destabilizing it, can Klotho also

competitively bind to the TLR4 auxiliary protein MD-2 in the

hydrophobic lumen, as known TLR4 inhibitors such as naloxone

(119) and naltrexone (120), or the natural product compound

curcumin (121), preventing agonists such as LPS from entering

the hydrophobic cavity to induce TLR4/MD-2 dimerization, and

thus inhibiting the activation of TLR4 and downstream pathways is

unknown. Studies addressing whether Klotho can act on TLR4/

MD-2 could help develop more effective TLR4 inhibitors to alleviate

inflammation and fibrosis. Whether the effects of Klotho on other

TLRs are similar to those of TLR4 and whether Klotho can bind to

TLRs in the absence of inflammatory injury to participate in other

biological processes also need to be further investigated. Therefore,

more thorough research is required to determine how to suppress

the TLRs/NF-kB pathway through Klotho in order to reduce

inflammation and fibrosis.
4.4 RAS inhibition of the RAS
signaling pathway

Current studies have identified at least five RAS metabolic

pathways, which are categorized into classical and nonclassical
Frontiers in Immunology 09
axes. The classical axis (ACE-Ang-II-AT1R) primarily consists of

angiotensin-converting enzyme (ACE), angiotensin worker (Ang-

II), and angiotensin II type 1 receptor (AT1R) (122, 123). These

axes interact to maintain normal physiological functions. However,

various pathological factors can disrupt the balance between these

two major axes, leading to hyperactivation of the classical axis. This

imbalance can then lead to disruptions in blood pressure regulation

and result in oxidative stress, inflammation, and fibrotic

damage (124).

First, the RAS pathway is directly inhibited by Klotho

(Figure 5). Klotho reduces renal fibrosis in several chronic kidney

disease models, including the 5/6 nephrectomy, unilateral ureteral

obstruction (UUO), and adriamycin nephropathy models. It does

this by suppressing the expression of several RAS proteins including

renin, ACE, AT1R, and angiotensinogen, blocking the levels of

TGF-b1 and a-SMA and reducing the number of major interstitial

matrix components in the kidney, such as type I collagen and FN

(125). b-inhibitory proteins are translocated to the AT1R in

response to Ang II activation of the AT1R, which in turn initiates

receptor internalization. For the first time, a study by Takenaka

et al. (126) demonstrated that Klotho binding to AT1R causes

conformational changes in these regions, thereby increasing

receptor internalization to decrease the presence of AT1R on

human proximal tubules; supplementation of Klotho proteins also

lowers blood pressure, kidney Ang II levels, angiotensinogen (AGT)
FIGURE 3

Klotho regulates inflammation and fibrosis through TGF-b: (A) In the Smad pathway, Klotho not only inhibits TGF-b activity by binding to TbRI and
TbRII, but also interferes with TGF-b expression through regulating methylation, post-translational protein acetylation, and the epigenetic pathways
mediated by miRNAs and lncRNAs thereby modulates the inflammation and fibrosis. (B) Klotho inhibits TGF-b-induced non-Smad signaling pathways
(Ras, MAPK, PI3K, Akt, NF-kB, etc.) and affects the expression of E-cadherin, a-SMA, and FN, regulates inflammation and fibrosis.
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expression, hypoxia induicible factor-1 alpha (HIF-1a) abundance,
and levels of medullary fiber connectivity proteins; all these effects

attenuate renal medullary fibrosis and improve stress natriuresis. In

Ang II-infused mice, Klotho drastically inhibited Ang II-induced

cardiomyocyte hypertrophy as well as the proliferation and

activation of cardiomyocytes. In the heart, Klotho was found to

decrease the ratio of heart weight to tibia length (HW/TL),

cardiomyocyte cross-sectional area, fibrotic area, and the

expression of pro-hypertrophic genes including atrial natriuretic

peptide (ANP) and beta-myosin heavy chain (b-MHC), fibrotic

marker genes including a-SMA and collagen-I (127). Second, b-
catenin binds to the promoter regions of all RAS component genes

and operates on RAS upstream regulators while also modifying the

RAS signaling pathway. Furthermore, the promoter regions of all
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RAS component genes contain binding sites for b-catenin, which
acts on upstream regulators of RAS and also modulates the RAS

signaling pathway. Klotho can indirectly block RAS genes

(AGT, renin, ACE, and AT1), inhibiting inflammation and

fibrosis (125) (Figure 5).

SARS-CoV-2 is a virus that infects cells through ACE2 as the

receptor. Its surface spike protein binds to ACE2 and invades cells,

leading to the destruction of ACE2, but has no effect on total ACE

production, resulting in ACE/ACE2 imbalance in the body (128).

Decreased ACE2 expression impairs the hydrolytic ability of Ang II,

resulting in increased Ang II levels and damage to multiple organs

through binding to AT1R (129). At the same time, SARS-CoV-2

infected cells release a series of proinflammatory cytokines, leading

to a cytokine storm that causes functional failure of multiple organs
FIGURE 4

Klotho regulates inflammation and fibrosis through TLRs/NF-kB: Crystal structure of mouse TLR4/MD-2/LPS complex, drawn from PDB accession
code 3VQ2 (112). 1) In H9c2 cardiac cells, Klotho inhibits the TLR4/NF-kB pathway, reducing the production of ROS, the expression of necrotic
apoptotic gene markers, and the production of MCP-1, IL-6, and ICAM-1, which exerts a protective effect on the heart. 2) In NP cells, overexpressing
Klotho inhibits TLR4-NF-kB signaling and decreases the expression of pro-inflammatory cytokines including IL-1b, NOS2, and IL-18, attenuating
intervertebral disc injury. 3) In MCs, inhibition of miR-199a-5p or exogenous addition of Klotho inhibits the TLR4/NF-kB p65 signaling pathway,
reduces various inflammation and fibrosis related factors.
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(130). Duarte et al. (128) found that treatment with telmisartan, a

selective AngII receptor (AT1-type) antagonist, could significantly

reduce the rate of viral replication and the mortality of patients due

to COVID-19. However, whether telmisartan works against other

types of viruses, such as SARS-CoV and human coronavirus NL63

(HCoV-NL63), remains to be investigated. Ang II controls the

expression of the Klotho gene; chronic renal Ang II treatment in

rats results in the downregulation of the Klotho mRNA expression.

It is now known that telmisartan is a partial agonist of PPAR-g, and
the Klotho gene is one of the target genes of PPAR-g action. The
application of telmisartan can upregulate the expression of Klotho

(131). Further research is required to ascertain if telmisartan or

other RAS inhibitors restore SARS-CoV-2-mediated RAS

imbalance by upregulating Klotho expression, further (Figure 5).
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4.5 Inhibition of the MAPK
signaling pathway

Further, the class of serine-threonine protein kinases known as

MAPK pathway controls a variety of biological processes, such as

gene expression, cell division, proliferation, and apoptosis. ERK,

p38 mitogen activated protein kinase (p38MAPK), and JNK are the

mammalian MAPK isoforms that have been investigated the most

(132). It has been demonstrated that Klotho controls fibrosis and

inflammation via these three mechanisms (Figure 6).

4.5.1 Inhibition of the ERK1/2 signaling pathway
Klotho overexpression inhibits ERK activation, downregulates

transcriptional activity and HIF1a protein levels, decreases the
FIGURE 5

Klotho regulates inflammation and fibrosis through RAS. 1) Klotho directly downregulates the expression of various RAS proteins (angiotensinogen,
renin, ACE, AT1R), decreased the levels of Ang II and AGT, decreased the main interstital matrix components (a-SMA, collagen I, FN), reduced the
expression of HIF-1a, and alleviated fibrosis. 2) Klotho indirectly blocks RAS proteins by inactivating the Wnt/b-catenin pathway, and modulates
inflammation and fibrosis. 3) Some viruses, such as SARS-CoV-2, can bind to ACE2 receptors, and causes ACE2/ACE imbalance, and the AT1R
antagonist, Telmisartan, reduces viral replication and ameliorates inflammation and fibrosis.
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expression of glycolytic genes including glucose transporter type 1

(Glut1), hexokinase 2 (HK2), lactate dehydrogenase A (LDHA),

enhances mitochondrial respiration, and improves fibrosis (133). In

DKD, Klotho was able to downregulate the expression of Egr-1 and

pro-fibrotic genes (a-SMA and FN) and upregulate the expression of

E-cadherin. This was achieved by blocking ERK1/2 signaling in HG-

treated and TGF-b1-treated HK2 cells (134). In the meantime,

overexpression of Klotho can prevent tubular damage caused by

hyperglycemia by enhancing autophagy in renal tubular cells, raising

the LC3II/LC3I ratio, and inhibiting the AMP-activated protein kinase

(AMPK)/ERK pathway (135). According to Li JM et al. (136),
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overexpressing a-Klotho in cardiac fibroblasts improved diabetic

cardiomyopathy fibrosis, attenuated cardiac mesenchymal and

perivascular collagen deposition, partially reversed ERK1/2 activation,

and ameliorated the state of insulin resistance. It also reduced the

serum levels of FBG, FISN, TC, and TG. Furthermore, Klotho

supplementation reduces the expression of IL-6 and ROS in

fibroblasts from patients with pelvic floor prolapse (POP); by

reducing ERK1/2 phosphorylation, Klotho can also downregulate the

expression of MMP-1 andMMP-3, thereby increasing the resistance of

fibroblasts to oxidative stress and suppressing inflammatory responses

(137). These findings imply that Klotho modulates the ERK1/2
FIGURE 6

Klotho regulates inflammation and fibrosis through MAPK. 1) The overexpression of Klotho inhibited the ERK pathway, suppressed the expression of
glycolytic genes (GLUT1, HK2, LDHA), down-regulated HIF1a level and transcriptional activity; down-regulates the expression of Egr-1 and a-SMA,
FN, IL-6, MMP-1 and MMP-3, and up-regulates the expression of E-cadherin; increases the LC3II/LC3I ratio, and increased autophagy; restores the
expression of CD29 and p-Akt; improves insulin resistance status; decreased serum levels of FBG, FISN, TC, and TG; inhibited inflammatory oxidative
stress injury; and improved fibrosis. 2) Klotho blocks JNK/MAPK and p38/MAPK phosphorylation, decreases cleaved caspase-3 levels and Bax/Bcl-2
ratio, and increases antioxidant enzyme levels and ROS production. 3) Klotho inhibits the P38 pathway, reduces endoplasmic reticulum stress and
apoptotic signaling, and downregulates the expression of ANP and BNP; reduces ROS production; decreases the expression of pro-inflammatory
factors (IL-1b, IL-6), lowers MDA and increases GSH content; and reduces the expression of a-SMA, E-cadherin, and FN, inhibiting inflammatory
responses and improving fibrosis.
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signaling pathway, which reduces inflammation and fibrosis via

regulating insulin resistance, glycolysis, inflammatory oxidative stress

injury, and autophagy.

4.5.2 Inhibition of the JNK signaling pathway
The JNK signaling pathway can be activated by various stimuli,

such as inflammatory factors and oxidative stress, translocation

from cytoplasm to nucleus activates c-Jun (138) to form

homologous or heterodimer with activated transcription factor

(ATF) protein to regulate target protein transcription (139).

Activated JNK also increases the release of pro-apoptotic factors

in mitochondria, leading to apoptosis.

Increased glycolysis resulted from JNK being overactivated in

spermatogonial stem cells (SSCs) knocked down for Klotho.

According to Park SJ et al. (140), Klotho mutant mice showed

marked memory deficits when compared to wild-type mice; in the

hippocampal regions, the mutation exacerbated neuroinflammation

by downregulating the expression of cell death/pro-apoptotic

factors including p-JNK, Bcl-2-associated X protein (BAX),

cleaved cyst caspase-3 and increasing the expression of cell

survival/anti-apoptotic factors including phosphorylated AKT (p-

AKT)/phosphorylated-glycogen synthase kinase 3 beta (p-GSK3-b),
p-ERK, and B-cell lymphoma-2 (Bcl-2). Additionally, it was

reported that exogenous Klotho protein or overexpression of

Klotho blocked phosphorylation of JNK/MAPK and p38/MAPK

in mouse kidney tubular epithelium cell line (TCMK-1) cells,

reduced the amount of cleaved caspase-3 and the ratio of Bax/

Bcl-2, increased the production of ROS and antioxidant enzymes,

controlled the mitochondrial function of renal tubular epithelial

cells, and attenuated renal injury (141).

4.5.3 Inhibition of the P38 signaling pathway
p38a (MAPK14), p38b (MAPK11), p38g (MAPK12), and p38d

(MAPK13) are the four members of the p38MAPK family. When

oxidative stress is activated, reactive ROS are produced. These ROS

activate p38 MAPK, attract inflammatory cells, and release pro-

inflammatory proteins, which exacerbate fibrosis and cause an

inflammatory response. By controlling the apoptosis signal-

regulating kinase 1 (ASK1)/p38 MAPK signaling pathway, Klotho

has been shown to reduce oxidative stress and shield dopaminergic

neurons from oxidative damage (77, 142). In cerebrally infarcted

rats, Klotho has also been shown to improve neurological function,

reduce ischemic injury, and reduce the area of cerebral infarction by

inhibiting the p38 MAPK pathway by downregulating the

expression of aquaporin 4 (AQP4) (143). The involvement of

p38-d in neurodegenerative and inflammatory illnesses has been

identified recently; however, it is not yet known if Klotho regulates

by inhibiting p38-d. Klotho suppression of the p38 pathway

decreases ROS produced by cardiomyocytes, improving cardiac

disease and reducing myocardial fibrosis; it also decreases

endoplasmic reticulum stress and apoptotic signaling, and

downregulates the production of ANP and B-type natriuretic

peptide (BNP) (144). Zhang et al. (145) found that by blocking

ROS/P38 MAPK signaling, Klotho could inhibit the expression of

pro-inflammatory factors (IL-1b, IL-6), reduce ROS, lower MDA,
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and increase glutathione (GSH) content. Klotho treatment also

reduced mitochondria-dependent apoptosis of lung epithelial cells

and attenuated lung tissue injury. These findings imply that

Klotho’s antioxidant and anti-apoptotic properties prevent

p38MAPK signaling, lower ROS production, and reduce

inflammation and fibrosis in the nerves and organs such as the

kidneys, heart, and lungs.
5 Strategies for enhancing
Klotho levels

Various approaches have been explored to increase Klotho

levels, including the use of drugs, recombinant proteins (or

peptides), and gene therapies in preclinical models of the disease

(Figure 7). These intriguing discoveries are summarized in

this section.
5.1 Drugs that enhancing Klotho

Drugs that have been found to increase Klotho levels include

agonists and inhibitors. For example, PPAR-g upregulates Klotho

through its atypical response in the 5′ flanking region of the Klotho

gene (146). Additionally, androgens upregulate Klotho by increasing

nuclear androgen receptor (AR) expression, which then upregulates

Klotho through androgen response elements (AREs) (147). Klotho

expression is likewise increased by estrogens. Both in vivo and in vitro,

estrogen has been shown to alter Kl expression in rat hippocampus

neurons. Since the hippocampus is a key component in the regulation

of the stress system, lowering the amounts of Klotho protein in the rat

hippocampal tissue led to a reduction in stress recovery, with this effect

being more noticeable in female rats (148). In addition to animals,

estrogens in plants also induce Klotho transcriptional activation, e.g.,

genistein )a phytoestrogenic isoflavone enriched in dietary soy

products(protects Klotho levels and mitigates renal fibrosis in UUO

mice by reversing HDAC3 deacetylation of the Klotho promoter while

inhibiting aberrant expression of DNMT1/3a (149). While insulin

promotes Klotho production possibly by inducing protein hydrolytic

activity of ADLs and ADAM10/17 (27). The use of prohormonal drugs

may indirectly enhance Klotho expression. Upon activation of vitamin

D, the vitamin D receptor (VDR) forms a heterodimer with the retinol

X receptor (RXR) and translocates to the nucleus. In the nucleus, it

binds to the vitamin D response element (VDRE) within the promoter

region of the Klotho gene and induces its expression (150). Another

class of drugs that enhances Klotho expression is the use of vitamin D

receptor agonists.

Inhibitors of DNA methyltransferase demonstrate the capacity to

upregulate Klotho by counteracting the hypermethylation-induced

downregulation of the Klotho promoter (92, 93); HDCA broad-

spectrum and specific inhibitors effectively intervene to restore

Klotho levels through protein acetylation (94, 103, 151).

Furthermore, inhibitors targeting various inflammatory pathways,

such as mTOR signaling inhibitors, have been shown to upregulate

Klotho expression by inhibiting the Toll signaling pathway (152–154),
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while RAS inhibitors have been found to elevate Klotho levels by

mitigating the inhibitory effect of Ang-II on Klotho expression (130,

155, 156).

Statins have been discovered to augment the expression of

Klotho mRNA through the inhibition of Rho/Rho-kinase and

activation of the FOXO pathway (157–160). The regulation of

Klotho expression by miRNAs is multifaceted. MiR-34a (90),

miR-199a-5p (117), and miR-223-3p (91) all bind to the 3’-UTR

of Klotho mRNA, resulting in its downregulation, whereas miR-

130a exerts the opposite effect (161). Hence, a variety of miRNAs

can be utilized to modulate the level of Klotho; moreover, certain

Chinese herbal compounds and monomers have demonstrated

efficacy in elevating Klotho expression and mitigating

inflammation and fibrosis (90, 111, 162–164).
5.2 Enhancement of Klotho through
recombinant proteins and gene therapy

In addition to pharmaceutical induction, the supplementation

of recombinant Klotho proteins (or peptides) directly addresses

protein deficiencies within the body. Studies have shown that the

introduction of recombinant Klotho (rKL) protein at a cellular level

can mitigate inflammation in various organs such as the kidneys

(165, 166), heart (167), bone (168), eyes (169), and more.

Furthermore, KP1 has displayed promising potential by

alleviating SARS-CoV-2 N protein-induced HK-2 cell senescence

and apoptosis, reducing markers of epithelial-mesenchymal

transition, and attenuating renal tubular injury (170). However,

due to its relatively large size and distribution of positive and

negative charges on its surface, direct administration of naked

Klotho protein may face challenges in penetrating cell membranes
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efficiently. This limitation could impact its clinical application.

Henceforth, commencing with gene therapy utilizing lentivirus

and adenovirus as vector delivery systems for the promotion of

the Klotho gene, siRNA, shRNA, RNAi, and CRISPR-Cas9

constructs present more viable options for Klotho treatment.

Nevertheless, in light of potential toxicity risks, insertional

mutagenesis, and off-target effects associated with viral vectors,

there is a pressing need to explore natural endogenous non-viral

vectors for the transport of Klotho that offer increased

biocompatibility, reduced immunogenicity, greater capacity,

enhanced stability and efficiency in transportation while also

being cost-effective. Extracellular vesicles (EVs) serve as intrinsic

carriers for intercellular transfer of biological information and

possess the distinct advantage of traversing the blood-brain

barrier. This has emerged as a novel cell-free therapeutic strategy.

The utilization of urine-derived EVs (uEVs) for transporting

recombinant Klotho proteins (171) and exosomal transportation

of sKL by MSCs (172) have both demonstrated significant

restoration in endogenous Klotho expression and heightened

accumulation within target tissues. The unique transport

mechanism offered by Klotho-EVs holds promise in improving

hormonal drug therapy for fibrotic diseases that may otherwise

result in adverse clinical outcomes. Minicircle (MC), a category of

non-viral DNA vectors carrying cassette sequences encoding Klotho

genes successfully achieved self-production of Klotho protein in

HEK293T cells. The therapeutic efficacy of Klotho-MC was

validated in ischemia-reperfusion (I/R) injury and UUO (173).

Further exploration into emerging carriers such as contractile

injection systems (CISs) utilizing commensal bacteria (174), non-

viral nanocarriers including lipid nanoparticles (LNPs) (175),

polymer nanoparticles (176), alongside other innovative carriers

for future research on transporting Klotho will lend support to its
FIGURE 7

Drugs, recombinant proteins (or peptides) and gene therapy targeting Klotho.
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integration into diagnostic and therapeutic approaches pertaining

to inflammatory and fibrotic diseases.
6 Discussions and future prospects

Since the anti-aging protein Klotho was first reported in 1997,

much progress has been made regarding the role of Klotho protein in

pathological and physiological conditions. Klotho in humans can be

divided into a-Klotho, b-Klotho, and g-Klotho according to its

structure. At present, most studies are focused on the first two

subtypes, and the role and mechanism of g-Klotho are poorly

understood. a-Klotho and b-Klotho exist as co-receptors of FGFRs

or secretory forms and are involved in the pathophysiology of a variety

of human diseases, including genetic diseases, dysplastic diseases,

metabolic disorders, degenerative diseases, and injury and

regeneration. In its pathological state, Klotho regulates inflammation

and fibrosis by controlling immune cells and cytokines in a variety of

tissues and organs via distinct signaling pathways. In this review, we

reviewed the structure, role, and regulatory mechanism of Klotho in

inflammation and fibrosis.

The roles of Klotho are related to various factors, and its function

is strictly controlled, with different transduction specificity, which

mainly depends on the molecular structure and existence mode of

Klotho. Membrane klotho, also known as FGFR co-receptor, forms a

complex with FGFR and transmits various signals to the cell while

binding to FGF. Interestingly, the FGF bound by different subtypes of

Klotho is different from the FGER subtype, which may be related to

its molecular structure and key amino acids at the binding site.

Interestingly, different subtypes of klotho bind to different subtypes of

FGER or FGF, which may be related to their molecular structure and

key amino acids at the binding site. This difference can lead to

completely different signaling pathways. The secreted form of Klotho

acts similarly to hormones and can affect surrounding cells and

tissues. A few recent studies have demonstrated that TGFR can bind

to Klotho, and the importance of the TGF-b/TGFR pathway in

inflammatory response and fibrosis is well elucidated. In addition,

Klotho can regulate various important signaling pathways, such as

TLR/NF-kB, RAS, and MAPK, and ameliorate tissue fibrosis. In the

immune system, Klotho can regulate the polarization of macrophages

by regulating TLR and TGF-b signaling pathways, and alleviate the

onset of inflammation. Moreover, Klotho can also affect the

development of lymphocytes. Even though there are still many

mechanisms of Klotho to be explored, especially the expression

pattern and precise role of Klotho in the inflammatory response

and fibrosis during the process of different diseases/injuries. However,

except for FGFR and TGFR, little is known about the specific receptor

for Klotho. The current impediment to further exploration lies in the

elucidation of how Klotho interacts with target cells in a pathological

state, as well as the assessment of Klotho’s binding affinity to various

molecules. Additionally, the utilization of ELISA for Immuno-

Biological Laboratories (IBL) in clinical databases such as Nutrition

Examination Surveys (NHANES), has led to a substantial number of

studies opting for time-resolved fluorescence immunoassay (TRF) for

their assays. Discrepancies in epitopes recognizing soluble Klotho

across different assays have resulted in significant variations in
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measured sKL levels. Moreover, measurements of Klotho levels in

blood, cerebrospinal fluid, and urine exhibit variability among

different diseases. Moving forward, it is imperative to establish a

standardized method for quantifying Klotho and devise a grading

scale corresponding to each disease type to ascertain the patient’s

disease status. Furthermore, there is an urgent need for a

comprehensive comparison regarding the indications, efficacy,

safety, and individual variability associated with diverse drug

therapies aimed at enhancing Klotho levels. Additionally, efforts

should be directed towards exploring more robust methods for

delivering Klotho in vivo to facilitate its transition from preclinical

research to clinical applications. Finally, currently available

experimental data on Klotho are from small observational studies,

and data on Klotho are missing or missing from some clinical

databases. Future clinical validation will require more

comprehensive prospective large-sample multicenter studies, and

patients should be routinely followed up to obtain biological

samples and clinical data. Such studies will likely support future

advancements in the treatment of fibrotic diseases and the

development of appealing and novel therapeutic approaches.
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