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Integrated analysis and
experiments uncover the
function of disulfidptosis in
predicting immunotherapy
effectiveness and delineating
immune landscapes in uterine
corpus endometrial carcinoma
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Introduction: Recently, a novel type of metabolic-regulated cell demise titled

disulfidptosis has been discovered. Studies have demonstrated its importance in

immune responses against cancer and its impact on the proliferation of cancer

cells. Nonetheless, the precise mechanism and roles of disulfidptosis are not fully

understood, particularly regarding the prognosis for individuals with uterine

corpus endometrial carcinoma (UCEC).

Methods: In this research, a distinctive disulfidptosis pattern was developed in

UCEC, and by utilizing Non-negative Matrix Factorization (NMF) on 23

disulfidptosis related genes within the TCGA database, 3 distinct subgroups

were distinguished. To collect data, we acquired gene expression profiles,

somatic mutation information, copy number variation data, and corresponding

clinical data from the TCGA and GEO database, specifically from UCEC patients.

Cell line experiments and immunohistochemical (IHC) staining were conducted

to validate the role of the LRPPRC in proliferation, migration and invasion.

Results: The genetic features and immune microenvironment of these

subgroups were examined. It is worth mentioning that these subgroups offer

important insights into comprehending the tumor microenvironment (TME) and

the response of patients to immunotherapy and chemotherapy. Moreover, a

disulfidptosis model was developed and validated, demonstrating a high level of

accuracy in predicting the prognosis and outcomes of immunotherapy in UCEC

patients. Additionally, a novel biomarker, LRPPRC, was identified, which can
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server as a promising predictor for forecasting prognosis in UCEC patients, with

validation through tissue microarray staining and cell line experiments.

Discussion: This study has designed a classification system and a disulfidptosis

model for UCEC, in addition to identifying a new biomarker, LRPPRC, for UCEC.

These advancements serve as reliable and positive indicators for predicting

outcomes and the efficacy of immunotherapy for each UCEC patient.
KEYWORDS

disulfidptosis, uterine corpus endometrial carcinoma, tumor microenvironment,
LRPPRC, immunotherapy
Introduction

Uterine Corpus Endometrial Carcinoma, recognized globally as

one of the most frequent gynecological malignancies, represents

3.8% of all cancer cases in women and 27.5% of gynecological

cancers (1). Early-stage UCEC is notable for often lacking obvious

clinical symptoms, leading to its frequent diagnosis at advanced

stages marked by aggressive disease progression and resulting in

unfavorable outcomes (2). Despite advancements in therapy, the 5-

year survival rate for those treated remains between 70% and 80%

(3). Therefore, the challenge at this stage lies in identifying novel

diagnostic methodologies and prognostic evaluation strategies that

can aid in personalized therapeutic interventions.

Up to now, the ongoing progress in immuno-oncology and the

development of immunotherapeutic treatments, such as immune

checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T

cell therapy, provide hopeful strategies to fight against cancer by

triggering the body’s own immune response (4). Various

modulators maintain the effectiveness of immunotherapy within a

complex network. The tumor microenvironment represents a key

factor impacting the success of immunotherapy, with the quantity

and types of immune cells infiltrating the tumor and the makeup of

these immune cells playing a crucial role in promoting antitumor

immune responses (5, 6). Likewise, the levels of different cytokines,

the presence of immune checkpoints, and the antigen presentation

facilitated by MHC molecules are integral to the immune response

elicited by immunotherapy (4). Nonetheless, the TME can vary

considerably across different types of cancers and between

individuals, possibly due to the diverse genetic makeup of tumors

(7). Furthermore, the metabolic changes occurring within the TME

influence antitumor immune responses, underscoring the

importance of metabolic programs in shaping the TME (8).

Regulatory cell death (RCD) plays a crucial role in preventing

tumorigenesis and progression as well as impacting the tumor

microenvironment and immunotherapy (9). Disulfidptosis, the most

recently discovered form of RCD, is distinct from other types as it is

induced by glucose deprivation leading to the accumulation of small

disulfide molecules (10). Mechanistically, cells with high levels of
02
SLC7A11 expression require significant NADPH from the glucose-

pentose phosphate pathway (GPP) to convert cystine to cysteine.

Insufficient glucose supply results in a lack of REDOX power, causing

an abnormal buildup of cystine or disulfide molecules and ultimately

cell death, defining disulfidptosis as a metabolism-regulated form of

cell death. Previous research has highlighted the prognostic

significance of disulfidptosis in advanced cancers (11, 12). However,

the impact of disulfidptosis on TME and immunotherapy outcomes in

uterine corpus endometrial carcinoma is not well understood to date.

In this study, we constructed an innovative classification system

utilizing genes related to disulfidptosis. We categorized all UCEC

patients into three distinct clusters based on varying TME and

genomic characteristics. Interestingly, these subclusters showed

varying responses to both immunotherapy and chemotherapy.

Moreover, we created and validated a disulfidptosis model

designed to forecast the prognosis and immunotherapy outcomes

for UCEC patients. Notably, our immunohistochemical staining

using tissue microarrays, along with cell line experiments, revealed a

correlation between the expression of LRPPRC and poor survival, as

well as the invasion and proliferation of UCEC cells. This finding

indicates that LRPPRC could serve as a novel potential target for

immunotherapy in the future. In summary, our extensive analysis

offers valuable insights into the role of disulfidptosis in the

prognosis and immunotherapy of ovarian cancer.
Materials and methods

Data acquisition and evaluation

Initially, we acquired UCEC transcriptome datasets from the

TCGA data portal, containing clinical variables like age, gender,

stage, survival rates, and progression-free survival. We also obtained

UCEC genomics data from the TCGA database, including somatic

mutation and copy number variation details. Samples lacking

survival data were excluded from the analysis. To explore the

UCEC microenvironment, we retrieved five single-cell UCEC

samples from the GEO database (accession: GSE173682) (13). For
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classification and modeling, we identified 23 disulfidptosis-related

genes from the literature (10). Chemotherapy response data was

retrieved using the R package TCGAbiolinks (v2.16.4).

Additionally, we collected leukocyte and tumor-infiltrating

lymphocyte fraction numbers calculated from H&E images of 13

TCGA tumor types by Saltz et al. (14).
Prediction of immunotherapy response
of UCEC

To determine the effectiveness of PD-1/CTLA4 immunotherapy,

we began by calculating scores for tumor immune dysfunction and

exclusion (TIDE) using the modified expression data from UCEC

patients. We then analyzed the resulting expression profiles matrix

via the TIDE database website to assess patient responses. Following

this, we applied the submap algorithm available on the GenePattern

website to compare the response probabilities across various groups.
Gene set variation analysis and functional
enrichment analysis

To investigate the variations in hallmark and immune-related

signatures in UCEC patients, an analysis of pathway enrichment was

conducted with the ‘fgsea’ R package. The gene sets were obtained from

the MSigDB database (http://software.broadinstitute.org/gsea/msigdb/

index.jsp). Additionally, an evaluation of the functional variances

between patients in the high-DFDS group and those in the low-DFDS

group was performed through Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analyses using the ‘gseGO’ and ‘gseKEGG’ R packages, respectively.
Deciphering the immune landscapes

To ascertain the proportion of immune cells in each UCEC

samples, the xCELL algorithm was utilized. The immune cell

infiltration score in patients with UCEC was sourced from the

TIMER2.0 database (15). For the evaluation of classical immune

signatures and immune function scores, we opted for the single-

sample Gene Set Enrichment Analysis (ssGSEA) algorithm

available in the R package “GSVA.” This approach allowed us to

measure the enrichment levels of gene sets related to immune

functions for each sample quantitatively.

Subsequently, we utilized the R package ESTIMATE (v1.0.13)

was employed to calculate the following parameters for all each

sample within the TCGA-UCEC dataset: Stromal Score, Immune

Score, and Tumor Purity.
Development of a disulfidptosis model
through machine learning analysis

To achieve the goal of checking for plagiarism, the given text has

been revised as follows: To lower the complexity of the univariate
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Cox regression findings, Lasso regression was utilized. Redundancy

was removed via 500 rounds of Lasso regression. Genes that

appeared 500 times in these rounds were chosen for model

development with the R software package glmnet. The next step

involved constructing a model using multivariate Cox regression.

Incorporating genes into the model involved stratifying them. The

AUC for all possible gene combinations was calculated, and the

model with the highest AUC was chosen as the final one. In the end,

11 genes related to disulfidptosis were identified as inputs for the

final model. The DFDS score for each sample was then computed

using the following formula:

DFDSi = aj�o
n

j=1
expji + b

In the equation, “exp” stands for the level of expression of the

corresponding gene. The symbol “a” indicates the regression

coefficient (coef) of the gene in the Lasso regression results, and “b”
represents the adjustment coefficient. The DFDS (disulfidptosis score)

is calculated by multiplying the expression level of every significantly

associated gene in a specific sample by its corresponding regression

coefficient, and then adding them together. The variable “i” denotes

the sample, while “j” signifies the gene.
Validation the performance of model

Patients were classified according to the ideal boundary set by

the ‘survminer’ R program. Following this, we created the Kaplan-

Meier plot and ROC graph utilizing the overall survival information

and calculated the significance level. Any significance level below

0.05 was viewed as evidence of a substantial contrast between the

elevated and reduced DFDS categories. The model forecasts

originated from the DFDS, with AUC figures above 0.7 indicating

a praiseworthy model performance.
Evaluation of pathway activity
using PROGENy

To assess the function of various pathways in patients with

UCEC, we employed the PROGENy method (16), which is capable

of inferringmultiple pathway activities based on gene expression. This

method entails using key genes that respond to pathways, extracted

from a wide range of publicly accessible perturbation experiments.
Cell culture and transfections

HEC-1-A cells were obtained fromWuhan Pricella Biotechnology

Co., Ltd. They were cultured in HEC-1-Amedium (CM-0099, Procell,

Wuhan, China) and passaged every 2 days. All cells were maintained

at 37°C with 5%CO2. Cells were plated at a density of 2×10^5 per well

in 6-well plates and transfected with either 10 µl of overexpression

plasmid (LRPPRC, GenePharma, China) or 10 µl of siRNA (LRPPRC,

GenePharma, China). Lipofectamine 3000 was used to facilitate the

transfection according to the manufacturer’s instructions.
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Proliferative assay

Cells were plated in a 96-well plate at a density of 3000 cells per

well. After incubation for 0, 1, 2, 3, and 4 days, cell proliferation was

assessed using the MCE Cell Counting Kit-8 (HY-K0301, CCK-8;

MedChemExpress) following the manufacturer’s instructions.

Absorbance was measured using a BioTek Synergy H1 hybrid

microplate reader at wavelengths of 450 nm and 630 nm. Relative

proliferation was calculated as (OD450 - OD630) Sample/(OD450 -

OD630) Control.
Colony formation assay

Cells were plated in 6-well plates at a density of 500 cells per

well and cultured in HEC-1-A medium for 14 days, with the

medium being changed every three days. After this period, cells

were fixed with 4% paraformaldehyde (A500684, Sangon Biotech)

and stained with crystal violet (A100528, Sangon Biotech) for 2

hours. Optical imaging was performed using an Olympus IX53

inverted fluorescence microscope equipped with an Olympus DP73

color camera (Olympus, Tokyo, Japan). Densitometry of each visual

field was analyzed using ImageJ.
Transwell assay

1×104 cells were suspended in 200 mL of DMEM medium

without FBS and seeded on the top chamber of transwell inserts

(3422, Corning). The lower chambers contained HEC-1-A medium

with 10% FBS. After incubation for 48 hours, the chamber was

rinsed one times with PBS, then stained with crystal violet for 2

hours and rinsed again with PBS three times to obtain a transparent

background. Plates were imaged using the IX53 inverted

fluorescence microscope and the DP73 color camera.
Wound healing assay

Different groups of HEC-1-A cells are seeded in 6-well plates at

a density of 4×105 per well prior to processing. The next day, scrape

the cells with a 200 ml needle tip and incubate for 72 h with serum-

free medium. Micrographs were taken before and after treatment,

and the relative distance was calculated by subtracting the wound

width after treatment from the width of the wound before treatment

and quantified with ImageJ software.
Quantitative real-time polymerase
chain reaction

RNA was extracted using Trizol (TransGen Biotech, China)

following the manufacturer’s instructions. The purified RNA was

reverse transcribed into cDNA using the RevertAid First Strand

cDNA Synthesis Kit (Fermentas, USA) according to the

manufacturer’s guidelines. Polymerase chain reactions were
Frontiers in Immunology 04
conducted with 2× Taq Master Mix (Vazyme, China). The

mRNA primers were as follows:

LRPPRC Forward: 5′-GGACGGCAAGAATGTGACCT-3′
Reverse: 5′-GGTCGTGCTCCAATTATAGCCT-3′
GAPDH Forward: 5-GTCACCAGGGCTGCTTTTAACTC-3′
Reverse: 5′-CAGCATCGCCCCACTTGATTTTG-3′
The relative expression level of the mRNA was expressed as 2-

(△△CT) and normalized to GAPDH.
Protein extraction and Western blot

Cells were collected and lysed with RIPA lysis buffer (Solarbio,

R0020, Beijing, China) containing phenylmethanesulfonyl fluoride

(Solarbio, P0100, Beijing, China) on ice for 30 minutes. After

centrifugation at 12,000 rpm for 15 minutes, the supernatant was

collected, and protein concentration was measured using a BCA Kit

(Solarbio, PC0020, Beijing, China) according to the manufacturer’s

instructions. Proteins were separated via sodium dodecyl-sulfate

polyacrylamide gel electrophoresis (SDS-PAGE) (BOSTER,

AR0047, Wuhan, China) and transferred to a polyvinylidene

difluoride (PVDF) membrane (ISEQ00010, Millipore, Burlington,

MA, USA). Membranes were incubated with primary antibodies

(1:1000 dilution) overnight at 4°C, followed by incubation with

secondary antibodies (1:2000 dilution) for 2 hours at 37°C.

Enhanced chemiluminescence signals (ECL) (UElandy, S6009M,

Suzhou, China) were detected using Image Lab software. An

antibody against tubulin (BM1452, BOSTER) was used as an

internal control. Primary antibodies specific to LRPPRC (A03264,

BOSTER) were purchased from ABclonal. Secondary antibodies,

HRP-linked goat anti-rabbit IgG (H+L; 511203) were obtained

from ZENBIO, and goat anti-mouse IgG (H+L; BA1050) were

obtained from BOSTER.
Immunohistochemical staining

Endometrial cancer tissues collected during surgery were

rinsed with saline and blood removed, then fixed in 4%

paraformaldehyde solution for 24 h. The tissue blocks were

placed in an embedding cassette and rinsed with running water

for 30 min to wash away the fixative. Tissue was dehydrated using

a tissue dehydrator (Leica HistoCore PEARL), xylene was used to

remove the dehydrating agent and then the tissue was encased in

hot paraffin wax and cooled on an ice bench for 4-6 h. The tissue

block was then fixed on a slicer to be sectioned. Sections were

floated in warm water, carried by slides and then placed in an oven

at a constant temperature of 60°C for 6 hours, dried and set aside.

Sections were deparaffinized by xylene 2 times, soaked

sequentially in a graded ethanol solution, and then immersed in

PBS and rinsed 2 times. The sections were then submerged in

sodium citrate antigen repair solution to maintain the water bath

temperature between 85°C and 95°C for 15 min, while naturally

cooled to room temperature, rinsed in PBS for 2 times, sealed with

endogenous peroxidase in 3% hydrogen peroxide methanol

solution, rinsed in PBS for 2 times, and the membranes were
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broken by immersion in 0.1% Triton X100 solution for 8 min

followed by 2 times of immersion in PBS. The membrane was

broken by immersion in 0.1% Triton X100 solution for 8 min,

followed by immersion in PBS for 2 times, and then goat serum

was added dropwise after drying the PBS around the sample with

absorbent paper for 40 min. After wiping off the excess PBS

around the sample, the secondary antibody was added

immediately and incubated at room temperature for 2 h. Then

PBS was immersed for 5 times, and the excess PBS around the

sample was wiped off for DAB color development, and then

immersed in water to terminate the reaction. After hematoxylin

staining and hydrochloric acid-ethanol differentiation,

respectively, the samples were rinsed with water, dehydrated

with gradient ethanol, and treated with xylene, then the samples

were sealed with droplets of neutral dendrimer and observed with

a light microscope.
Statistical analysis

We utilized wilcoxon test to compare different attributes

between high and low DFDS groups. Unsupervised clustering

was performed on the gene expression matrix associated with

disulfidptosis using the R package “NMF”. The somatic mutation

landscape was assessed and displayed by employing the R package

maftools (v1.0-2). Examination of diversity in clinical

characteristics and response to immunotherapy among various

groups was conducted using the Chisq test. Kaplan-Meier

survival analysis was carried out to explore differences in

survival between different subgroups, high- or low DFDS

groups, with the significance of observed differences determined

by the log-rank test. The strength of intercellular interaction

between immune cells and malignant tumor cells was computed

using cellphoneDB (17). Statistical significance was defined at a

significance level of P or adjP< 0.05.
Results

Disulfidptosis-associated genotyping of
uterine corpus endometrial carcinoma

Using NMF clustering analysis with the expression matrix of

genes related to disulfidptosis, UCEC patients were categorized into

three subgroups (Figure 1A). These UCEC groupings displayed

noticeable disparities in OS (P=0.031) and DSS (P=0.002)

(Figure 1B). Notably, cluster 2 exhibited a positive survival

outcome, whereas cluster 3 displayed the poorest survival rates

(Figures 1B, C). Moreover, an evaluation of the patients’ clinical

features in various clusters revealed that 58% of individuals in

cluster 3 were above 65 years old, contrasting with 76% in cluster 1

who were younger than 65 years (Figure 1D). Additionally, a higher

percentage of patients in cluster 3 were diagnosed with G3 or Stage

III/IV, signifying an advanced disease severity associated with a

quicker decline in survival (Figure 1E). Furthermore, an analysis of
Frontiers in Immunology 05
chemotherapy response rates illustrated that patients in cluster 3

were less responsive to treatment, exhibiting higher PD/SD rates

compared to cluster 1 and 2 (Figure 1F). Examination of

immunoinfiltration and malignancy markers indicated that

cluster 2 had elevated immune scores, leukocyte fractions, and

lymphocyte infiltration levels, while cluster 3 had increased tumor

purity, proliferation rates, and aneuploidy scores (Figures 1G, H).

To summarize, cluster 2 individuals exhibit a greater presence of

immune-infiltrating cells, whereas cluster 3 individuals display

heightened levels of malignancy and increased proliferation capabilities.
Tumor microenvironment and
immunotherapy response in three clusters

Immunotherapy is the leading therapeutic approach for

advanced cancers with distinct patient clusters showing unique

immunoinfi ltration scores. We investigated the tumor

microenvironment in 3 different clusters. Tertiary lymphoid

structures (TLS) act as hubs for immune cells within the TME,

leading us to examine the expression profiles of various

chemokines crucial for TLS development. Our analysis revealed

that most of these chemokines were highly expressed in clusters 1

and 2. Specifically, chemokines such as CCR7, CCL3, CXCR3, and

CCL5 were predominantly expressed in cluster 2, whereas

CXCL14, and CCR3 showed the highest levels in cluster 1

(Figure 2A). Moreover, acknowledging that most interleukins

and their corresponding receptors are associated with immune-

stimulating transcripts, our research delved into the examination

of the levels of these components across the groupings. The

findings revealed that interleukins and their receptors showed a

greater prevalence in clusters 1 and 2 when contrasted with cluster

3, which correlates with the elevated presence of chemokines

and increased infiltration of immune cells in the tumor

microenvironment of these clusters (Figure 2A). To summarize,

the levels of chemokines related to tumor-infiltrating lymphocytes

were notably higher in clusters 1 and 2 compared to cluster 3,

indicating their role in modulating immune cell infiltration in the

tumor microenvironment.

Consistently, we observed that cytolytic activity, Human

Leukocyte Antigen (HLA), T cell co-stimulation, and various

classical immune associated markers were predominant in

clusters 1 and 2 (Figure 2B). The percentage of key immune

cells, including B cells, CD4+ T cells, and CD8+ T cells, was

notably higher in cluster 1 and 2 (Figure 2C). Moreover, an

analysis of immune function scores in each sample revealed

reduced levels of immune-related functions (e.g., Inflammation

promoting, MHCII, Type I IFN Response) in cluster 3, indicating

a suppression of these functions (Figure 2D). Considering the

crucial role of immune checkpoint expression as a foundation for

therapy with immune checkpoint inhibitors (ICIs), we conducted

an in-depth analysis of immune checkpoint expression across five

clusters. Particularly, most immune checkpoints (such as PDCD1/

PD-1, CTLA4, HAVCR2/TIM-3, LAG3) showed increased

expression levels in clusters 1 and 2 compared to cluster 3.
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Specifically, CTLA4 was predominantly expressed in cluster 1,

while PDCD1 was most highly expressed in clusters 2 and 4,

indicating that these clusters might be more responsive to

immunotherapy (refer to Figure 2E). Based on these

observations, we hypothesize that cluster 1 and cluster 2 could

respond differently to various immunotherapy strategies.

Therefore, we proceeded to evaluate the ICI response across

different clusters. Our findings revealed that cluster 1

demonstrated a superior response to CTLA4 antibodies,

whereas cluster 2 exhibited an enhanced response to PD-1

antibodies, in contrast to cluster 3, which showed relative

resistance (Figure 2F).

Taken together, our results indicated that the 3 clusters

mentioned above exhibit distinct characteristics within the tumor

microenvironment. Overall, cluster 1 and 2 TMEs show support for

anti-tumor immune responses and increased expression levels of

immune checkpoint proteins, making them more conducive to

benefiting from immune checkpoint inhibitors.
Frontiers in Immunology 06
Genomics variation pattern and function
enrichment of different clusters

To comprehend the underlying causes for the unique prognosis

and immune environments among these clusters, we conducted an

analysis of cancer-related pathway activity utilizing the PROGENy R

package. Our findings revealed that the enriched pathways exhibited

significant variation across all three clusters. Specifically, clusters 1 and

3 displayed heightened activity in EGFR, MAPK, and WNT pathways,

aligning with their poorer prognosis (Figure 3A). Furthermore, an

examination of hallmark-related pathways through GSEA analysis

revealed consistent disparities in enriched pathways among all three

clusters. Notably, clusters 1 and 3 exhibited greater enrichment in

oncogenic signaling pathways or targets, such as TNFA signaling,

PI3K/AKT/MTOR signaling, and TGFb signaling; pro-tumor signaling

pathways, such as Epithelial-mesenchymal transition signaling;

proliferation pathways, including G2M signaling, E2F signaling,

MTORC1 signaling, and MYC signaling, offering a plausible
FIGURE 1

Disulfidptosis-associated genotyping of uterine corpus endometrial carcinoma. (A) Connectivity matrix for UCEC patients in the TCGA cohort with
NMF clustering when K = 3. (B) Kaplan-Meier survival estimates for overall survival among different patient groups in UCEC. (C) Kaplan-Meier survival
estimates for disease-specific survival among different patient groups in UCEC. (D) Age distribution across the three groups. (E) Distribution of tumor
grade and stage across the three groups. (F) Distribution of chemotherapy benefits across the three groups. (G) Box plots showing comparisons of
immune score, leukocyte fraction, and lymphocyte infiltration score among the three groups. (H) Box plots showing comparisons of tumor purity,
proliferation, and aneuploidy score among the three groups. **p < 0.01, ***p < 0.001, ns, not significant.
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rationale for clusters 1 and 3 displaying a lower survival rate and a pro-

tumor microenvironment (Figure 3B). Additionally, considering that

disulfidptosis is induced by a substantial consumption of intracellular

NADPH and an abnormal accumulation of cystine and other disulfide

compounds, we further investigate the activities of metabolically related

pathways across the three clusters. Our findings reveal that the activity

of the pentose phosphate pathway (PPP) in clusters 1 and 3 is

significantly higher than that in cluster 2 (Supplementary Figure

S1A). This suggests that tumor cells in patients belonging to cluster 2

are more susceptible to disulfide death, which further elucidates why

cluster 2 patients exhibit a more effective self-clearance mechanism for

tumor cells, resulting in a higher survival rate.

Somatic alterations such as mutations and variations in gene copy

numbers (CNV) as key players in both promoting antitumor immune

response and shaping tumor progression, our study focused on the top

15 genes with the most frequent mutations within these three distinct

clusters. Notably, PTEN displayed the highest mutation frequency

across all three clusters (Figure 3C). Specifically, cluster 1 exhibited a

notably elevated frequency of CTNNB1 mutations compared to cluster

2 and cluster 3 clusters, with cluster 1 also displaying a significantly

higher TP53 mutation frequency (Figure 3D). TP53, a well-known

tumor suppressor gene, when mutated, is associated with increased

tumor cell proliferation and invasion, aligning with the poorer survival

outcomes observed in cluster 3 patients. Conversely, cluster 2 did not

exhibit a significantly higher mutation rate in these genes, potentially

explaining the better survival outcomes seen in this group.
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Furthermore, our analysis of CNV in genes related to disulfidptosis

within the three clusters revealed noteworthy findings (Figure 3E).

Specifically, we observed significant copy number deletions in ACTN4,

CAPZB, and GYS1 among UCEC patients, while ACTB demonstrated

copy number amplification (Figure 3F).
Identification of diverse neoplastic
modules and dissection of tumor
microenvironment based on single
cell transcriptome

To investigate how disulfidptosis affects the tumor

microenvironment, single-cell mRNA profiles from five UCEC

tissues in the GSE173682 dataset were analyzed. After

implementing quality control procedures, cells were categorized

into eight unique cell types utilizing conventional biomarkers and

the singleR R package (see Figure 4A). The identified cell types

include T & NK cells (CD3D, IL7R, and PTPRC), Epithelial cells

(EPCAM and KRT8), Myeloid cells (CD68, FCER1G, and IL1B),

Fibroblasts (COL1A1, DCN, and TAGLN), Endothelial cells

(A2M, PECAM1, and VWF), Smooth muscle cells (MEG3 and

EMP3), B/Plasma cells (JCHAIN and MS4A1), and Mast cells

(KIT and TPSAB1) (Figure 4B). We then utilized the inferCNV R

package to distinguish neoplastic from epithelial cells based on

the reference cell types (Supplementary Figure S2A).
FIGURE 2

Tumor microenvironment and immunotherapy response in different clusters. (A) Heatmap displaying chemokine and interleukin expression across three
groups. (B) Box plots comparing ssGSEA scores of classical immune signatures among the three groups. (C) Box plots comparing normalized immune
cell proportions among the three groups. (D) Box plots comparing ssGSEA scores of immune function signatures among the three groups. (E) Box plots
comparing normalized expression of checkpoint signatures among the three groups. (F) Predicted response rates of different clusters to immune
checkpoint inhibitors (CTLA4 and PD1, R: Response, noR: no Response). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001. blank: not significant.
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Furthermore, to explore the impact of disulfidptosis on malignant

UCEC cells, malignant cells were classified and divided into 7

distinct clusters (Figure 4C). Additionally, NMF was applied to

define expression programs specific to each tumor by identifying

co-expressed genes. These gene modules indicated by these

expression programs were found to be highly activated in

specific subsets of tumor cells, as demonstrated by the NMF

results for a particular tumor sample, GSM5276937 (Figure 4D).

Altogether, 32 distinct intra-tumor expression programs were

discovered in the UCEC tissues, leading to the categorization of

five modules (MDs) that were common across multiple tumors

based on enriched pathways (Supplementary Table S1). MD1 was

distinguished by an enhancement of the myogenesis pathway.

MP2 included pathways related to proliferation such as myc target

v1 and mtorc1 signaling. Moreover, MD3 was associated with

estrogen response late, MD4 with inflammatory responses, and

MD5 with epithelial mesenchymal transition characteristics

(Supplementary Figure S2B). Interestingly, it was observed that

neoplastic cells in cluster C6 exhibited enrichment for MD4 and

high levels of IL10 expression (Figures 4E, F). Additionally,

cluster C6 showed high levels of SLC7A11 expression, an
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important transporter linked to cell disulfide death, implicating

that malignant UCEC cells displaying increased SLC7A11

expression had heightened potential for inflammation

(Figure 4G). Furthermore, analyses of cell-to-cell interactions

utilizing the cellphoneDB algorithm indicated that the number

of intercellular interactions between highly disulfidptosis

malignant UCEC cells and immune-associated cells were

notably reduced compared to other malignant cells (Figure 4H).

This insight suggests that malignant cells with elevated SLC7A11

expression could indirectly stimulate inflammatory responses and

stimulate the expression of inflammatory factor IL10 while

decreasing interactions with immune cells.
Establishment of a disulfidptosis model
for predicting the prognosis and
immunotherapy response of UCEC patients

The above results have validated a connection between

disulfidptosis and the outlook, benefits of immunotherapy, and

response to chemotherapy in UCEC patients. This suggests that
FIGURE 3

Genomics variation pattern and function enrichment of different clusters. (A) Heatmap showing pathway activity calculated by PROGENy among the
three groups. (B) Heatmap displaying GSVA scores of HALLMARK pathways among the three groups. (C) Waterfall chart depicting the somatic
mutation frequency and specific mutations of the top 15 mutated genes in the three UCEC clusters. (D) Mutation count of the 15 genes in each
subtype. Circle size represents the number of mutations; greater distance from the subtype indicates fewer mutations. (E) Circle plot illustrating copy
number variation of disulfidptosis-related genes. (F) Lollipop chart showing the gain or loss of disulfidptosis-related genes in UCEC. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.001, blank: not significant.
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genes related to disulfidptosis could be utilized in the assessment

of prognosis and response to treatment. To achieve this, we

conducted a screening of 23 genes related to disulfidptosis to

establish a model for the assessment of disulfidptosis score

(DFDS) using a LASSO regression model (Figure 5A).

Subsequently, we computed the DFDS for each patient and
Frontiers in Immunology 09
categorized them into high- and low- DFDS groups based on an

optimal threshold determined using the ‘survminer’ R package.

Evidently, Kaplan-Meier analysis indicated that patients with

high-DFDS exhibited a lower survival rate in comparison to

those with low-DFDS, which was also validated in GSE9891

(Figure 5B and Supplementary Figure S3A). Furthermore, the
FIGURE 4

Identification of diverse neoplastic modules and dissection of tumor microenvironment based on single cell transcriptome. (A) UMAP plot illustrating the
main cell types derived from UCEC tissues. (B) Violin plot displaying the expression of cell markers across each cell type. (C) UMAP plot showing the
seven primary malignant cell types from UCEC tissues. (D) Heatmap of expression programs in a representative patient using NMF. (E) Dot plot indicating
relative scores of meta-programs in each UCEC malignant cell cluster. (F) Dot plot showing the expression of IL10 in each UCEC malignant cell cluster.
(G) Violin plot illustrating the expression of disulfidptosis-related genes in each malignant cell cluster. (H) Circle plot depicting the number of cell
communication pairs between malignant and immune cell clusters.
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ROC curve illustrated that the DFDS model displayed

commendable sensitivity and specificity in predicting the risk of

survival [AUC = 0.764 (1 year), 0.732 (3 years), 0.727 (5 years)

(Figure 5C)], a finding supported by the mortality rates in both

groups (Figure 5D). Additionally, a correlation was identified

between DFDS and the clinical characteristics of UCEC patients,

specifically demonstrating that higher DFDS levels were linked

with more advanced stages of the disease (Figure 5E). Subsequent

analysis using a Cox regression model to evaluate the performance

of the DFDS model in conjunction with other clinical features

(such as age, pathological type, and pathological stage) revealed

that our DFDS model exhibited superior performance in

comparison to age, grade, and stage, functioning as an

independent prognostic factor for predicting the outcomes of

UCEC patients (Figures 5F, G).

Collectively, our findings indicate that this DFDS model shows

great promise as a reliable biomarker for evaluating clinical results

in patients with UCEC.
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High DFDS suppressed the immune
function pathways and insensitive to
immunotherapy and chemotherapy

To investigate the microenvironment of high-DFDS and low-

DFDS groups and to assess its accuracy in predicting

immunotherapy response, we first performed a GSEA based on

the differentially expressed genes between these cohorts. In the

high-DFDS group, pathways associated with treatment resistance

and tumor proliferation, including DNA repair and cell cycle

pathways, were notably upregulated (Figure 6A). In contrast,

pathways pertaining to immune functions, such as Cytokine-

cytokine receptor interaction, T cell receptor signaling, Primary

immunodeficiency, and Antigen processing and presentation, were

significantly upregulated in the low-DFDS group, which

corresponds with better survival outcomes for low-DFDS patients

(Figure 6B). Additionally, we evaluated the expression levels of

chemokines, their receptors, interleukins, and their respective
FIGURE 5

Establishment of a disulfidptosis model for predicting the prognosis and immunotherapy response of UCEC patients. (A) AUC values of Lasso and
Cox models using different numbers of disulfidptosis-related genes. (B) Kaplan-Meier survival estimates for patients with high and low DFDS.
(C) ROC curves for DFDS predicting 1-year, 3-year, and 5-year prognosis. (D) Distribution of DFDS and survival status in UCEC patients.
(E) Proportions of different grades and stages in high and low DFDS groups. (F, G) Univariate and multivariate Cox analyses evaluating the
independent prognostic value of DFDS in UCEC patients.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1454730
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2024.1454730
receptors, as well as immune cell infiltration levels, malignancy

scores, and immune checkpoint expressions in both high- and low-

DFDS groups to determine the model’s efficacy in predicting

immunotherapy responses. We found that most chemokines,
Frontiers in Immunology 11
interleukins, and their receptors were considerably higher in the

low-DFDS group compared to the high-DFDS group (Figure 6C).

Moreover, leukocyte and lymphocyte infiltration scores were

elevated in the low-DFDS group, suggesting that immune
FIGURE 6

Tumor microenvironment and pathway enrichment in different DFDS groups. (A) Barplot illustrating GO enriched pathways for the high DFDS group.
(B) Barplot displaying KEGG enriched pathways for the low DFDS group. (C) Heatmap showing the expression levels of chemokines and interleukins in
high and low DFDS groups. (D) Box plots comparing leukocyte fraction and lymphocyte infiltration scores between high and low DFDS groups. (E) Box
plots comparing homologous recombination defects, aneuploidy scores, intratumor heterogeneity, and proliferation scores between high and low DFDS
groups. (F) Box plots comparing the expression of immune checkpoints between high and low DFDS groups. (G) Predicted response rates of different
DFDS groups to immune checkpoint inhibitors. (H) Proportions of immunotherapy response in high and low DFDS groups. (I) Proportions of
chemotherapy benefits in high and low DFDS groups. Response includes CR/PR, and Non-response includes PD/SD (CR, complete response;
PD, progressive disease; PR, partial response; SD, stable disease). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001, blank: not significant.
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function was suppressed in the high-DFDS group (Figure 6D).

Furthermore, elevated levels of homologous recombination defects,

intratumoral heterogeneity, aneuploidy scores, and proliferation

scores were observed in the high-DFDS group, which correlates

with poorer survival outcomes for patients in this cohort

(Figure 6E). Importantly, the expression of most immune

checkpoints, such as PDCD1, CTLA4, and HAVCR2, was higher

in the low-DFDS group, indicating that patients in the low-risk

group may benefit more from immunotherapy (Figure 6F).

The results above demonstrated that the potential prediction of

immunotherapy effects by the DFDS model. Following this, assessing

the sensitivity of high-DFDS and low-DFDS patients to PD-1 and

CTLA4 immunotherapy was conducted. The findings showed that

individuals in the low-DFDS group had a higher response rate to PD-

1 immunotherapy, with a greater number of responders compared to

those in the high-DFDS group (Figures 6G, H). Additionally, the

response to chemotherapy in advanced cancer patients treated with a

combination of chemotherapy and immunotherapy was analyzed

between the high-DFDS and low-DFDS categories. It was observed

that patients in the low-DFDS group exhibited an enhanced

sensitivity to chemotherapy (Figure 6I).

Overall, our findings indicated that this DFDS model serves as a

promising and robust biomarker for evaluating clinical outcomes

and responses to immunotherapy responses in UCEC patients

with UCEC.
LRPPRC server as a novel biomarker and
promotes the proliferation and invasion
abilities of UCEC

To strengthen the validity of the DFDS model as a practical

clinical tool, our research expanded to investigate the genes linked to

disulfidptosis in this model. Using univariate Cox regression analysis,

we determined that only five of these genes exhibited significant

associations with UCEC prognosis (Figure 7A and Supplementary

Figure S3B). Of note, the gene LRPPRC, known as Leucine Rich

Pentatricopeptide Repeat Containing, was specifically linked to the

advancement of tumor grade and stage (Figure 7B and

Supplementary Figures S3C, D). Previous study has established that

LRPPRC is often upregulated in urothelial carcinoma of the bladder,

where it regulates redox balance via the circANKHD1/FOXM1

pathway to drive tumorigenesis (18). Similarly, research has

suggested that LRPPRC could boost the spread and growth of

malignant cells, with its role in UCEC remaining largely

unexplored. We found that the expression of LRPPRC was

significantly higher in UCEC malignant tumor cells compared to

other cells (Supplementary Figure S4A). Moreover, LRPPRC

exhibited the highest expression in cluster 5 tumor cells, which

displayed pronounced epithelial-mesenchymal transition (EMT)

characteristics (Figure 4D and Supplementary Figure S4B),

suggesting that LRPPRC may play a role in promoting tumor

migration and invasion. Notably, our results confirmed the

heightened LRPPRC expression in UCEC tissue compared to

adjacent normal tissue, as shown by immunohistochemical staining

(Figure 7C). In addition, univariate and multivariate Cox regression
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analyses indicated that LRPPRC expression serves as an independent

prognostic indicator (Figure 7D). Furthermore, a univariate Cox

regression analysis of the pan-cancer cohorts revealed that

LRPPRC expression was negatively correlated with prognosis

across multiple cancer types, including adrenocortical carcinoma

(ACC), kidney renal clear cell carcinoma (KIRC), and liver

hepatocellular carcinoma (LIHC) (Supplementary Figure S4C).

These findings enhance the reliability and consistency of our DFDS

model in studies of UCEC.

To ascertain the role of LRPPRC in the tumor microenvironment

and progression of uterine corpus endometrial carcinoma, we initially

examined LRPPRC’s involvement in the TME of UCEC patients by

leveraging GO pathways. The analysis revealed that LRPPRC

expression inversely correlated with adaptive immune responses

and immune cell-mediated immunity, specifically involving B cells,

leukocytes, lymphocytes, and T cells, as well as immune cell-mediated

cytotoxicity (including T cells and leukocytes), T cell activation, and

dendritic cell (DC) differentiation (Figure 8A). Furthermore,

LRPPRC expression was found to heighten the activity of

oncogenic and proliferation signaling pathways, indicating its

immunosuppressive function in the TME of UCEC (Figure 8B).

Following this, we reduced the expression of LRPPRC in HEC-

1A cells (Figure 8C). As anticipated, the reduced expression of

LRPPRC markedly inhibited proliferation (Figure 8D), as well as

the migration and invasion capacities (Figures 8E–G), aligning with

the previously mentioned results.
Discussion

Immunotherapy with immune checkpoint inhibitors has

emerged as the standard second-line treatment for advanced

cancers, with approval for first-line indications on the rise.

Disulfidptosis, an abnormal accumulation of disulfide compounds

leading to programmed cell death, is triggered by limited glucose

availability and insufficient redox capacity (10). Past research

indicates a strong connection between disulfidptosis, the tumor

microenvironment, and the immune response in advanced cancers

(19, 20). Nevertheless, there is currently no direct evidence

establishing the relationship between disulfidptosis and the

response to immune checkpoint inhibitors in UCEC.

Hence, a comprehensive analysis of multi-omic factors will be

conducted to study the differences in functionality among various

subclusters of disulfidptosis and its impact on the immune landscape

and potential immunotherapeutic benefits. This research will greatly

enhance our understanding of disulfidptosis in the field of onco-

immunology by identifying populations with the highest potential for

efficacy and developing effective therapeutic strategies. In this study,

UCEC patients were categorized into three clusters based on genes

related to disulfidptosis. Significant variations in survival rates were

observed among these clusters, with cluster 2 displaying the most

favorable survival results, while cluster 3 exhibited the poorest

outcomes. The immune cells found in the tumor microenvironment

play a crucial role in tumor growth, with distinct subgroups of immune

cells linked to different kinds of tumors. Moreover, even within the

same pathological type, the immune cell subpopulations may vary
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among patients (21, 22). Our study findings indicated that cluster 2

displayed heightened levels of immune cell penetration, including B

cells, CD4T cells, CD8T cells, Tfh cells, and DCs, combined with

enhanced immune functions such as cytolytic activity, T cell co-

stimulation, and inflammation stimulation. Conversely, cluster 3

displayed lower levels of immune cell infiltration and suppressed

immune function. CD8+T cells are known to be crucial for initiating

anti-tumor immune responses (23). TILs play a crucial role in tumor

rejection by identifying tumor antigens and eliminating transformed
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cells. Meanwhile, Tfh cells contribute to the development of tertiary

lymphoid structures near tumors, thereby enhancing anti-tumor

immunity (24). On the other hand, Treg cells facilitate the evasion of

tumor cells from immune surveillance by inhibiting the cytotoxic

activity of killer T cells, ultimately facilitating tumor progression (25,

26). These variations in immune infiltration correspond to disparities

in survival rates. The use of immune checkpoint inhibitors is a

promising strategy for managing advanced cancer patients (27).

Elevated expression levels of immune checkpoints are associated with
FIGURE 7

LRPPRC expression is associated with the prognosis of patients with UCEC. (A) Kaplan-Meier survival estimates for patients with high and low
LRPPRC expression. (B) Proportions of different grades and stages in high and low LRPPRC groups. (C) Representative IHC staining of LRPPRC in
paracancerous and tumor UCEC samples. (D) Univariate and multivariate Cox analyses evaluating the independent prognostic value of LRPPRC in
UCEC patients.
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improved responses to such inhibitors. Our analysis revealed an

upregulation of key immune checkpoints in clusters 1 and 2, while a

downregulation in cluster 3. Notably, patients in clusters 1 and 2

exhibited enhanced responses to ICIs, with cluster 1 demonstrating a

poorer survival rate compared to cluster 2, likely due to the tumor

microenvironment favoring pro-tumor immunity involving TNFA,

PI3K/AKT/MTOR, and TGFb signaling pathways (28, 29).
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Furthermore, we observed distinct somatic variations among the

different clusters, with cluster 3 demonstrating a higher frequency of

TP53 mutations. Clinical evidence indicates that advanced cancer

patients with TP53 mutations have a worse prognosis and are more

resistant to chemotherapy (30, 31). Additionally, through single-cell

transcriptome analysis, we investigated the impact of disulfidptosis on

malignant cells, revealing that disulfidptosis-positive tumor cells
FIGURE 8

Knockdown of LRPPRC restrained the proliferation and invasion abilities of UCEC. (A) GO analysis displaying the normalized enrichment scores (NES)
of adaptive immune response and immune cell-related pathways in UCEC patients with high LRPPRC expression. Negative NES indicates a negative
correlation between the pathway and LRPPRC expression. (B) GSEA analysis showing enrichment of HALLMARK signaling pathways or processes in
UCEC patients with high LRPPRC expression. (C) Western blot validation of LRPPRC knockdown in HEC-1A cells. (D) Proliferation of LRPPRC
knockdown versus control cells. (E–G) Clone formation, migration, and invasion abilities of indicated UCEC cells.
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display increased inflammation potential and reduced communication

with immune cells.

Furthermore, a disulfide scoring model was developed to forecast

the prognosis of UCEC. The results of the model exhibited a

commendable AUC among UCEC patients. In the analysis by

Kaplan-Meier, those with elevated DFDS exhibited notably

diminished survival rates and higher tumor grades in comparison

to those with lower DFDS. Additionally, the constructed DFDS was

identified as an independent prognostic factor. Our model displayed

superior predictive capabilities for survival in contrast to

conventional clinical and pathological factors. In conclusion,

LRPPRC, a scarcely studied protein in cancer research, was found

to have a connection to worse survival rates among UCEC patients. It

is worth mentioning that increasing LRPPRC levels notably boosted

the growth and invasion abilities of UCEC cells, indicating its

potential as a valuable target for treating UCEC.

To conclude, our study delineated the landscape of

disulfidptosis-related transcriptomics, genetic changes, and

immune infiltration. Notably, we developed a novel classification

system along with a precision model designed to assess both the

prognosis and advantages of immunotherapy. This serves as a

valuable resource to improve decision-making processes and

monitoring protocols for individual UCEC patients. Moreover, we

identified a new biomarker, LRPPRC, which can predict the

prognosis of UCEC patients. Although we have shown the

exceptional predictive accuracy of disulfidptosis in evaluating

UCEC prognosis and immunotherapy benefits, it is crucial to

recognize certain limitations in our research. The prognostic and

immunotherapeutic predictions of the DFDS model and

classification are based on algorithmic projections, and further

validation using actual UCEC immunotherapy cohorts is necessary.
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SUPPLEMENTARY FIGURE 1

Pathway enrichment of different subgroups. (A) Heatmap showing the GSVA

score of metabolic pathways.

SUPPLEMENTARY FIGURE 2

Identification of malignant cells from UCEC epithelial cells. (A) Heatmap

showing copy number variation of reference cells and malignant epithelial
cells. (B) Heatmap depicting shared expression meta-programs across

all patients.
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SUPPLEMENTARY FIGURE 3

Validation of DFDS model and LRPPRC negative correlated with the survival of
UCEC. (A) Kaplan-Meier survival estimates for patients with high and low DFDS

in GSE9891. (B)Univariate and analyze evaluating the prognostic value of genes

used in DFDS. (C) Box plots comparing expression of 5 genes among different
grades. (D) Box plots comparing expression of 5 genes among different stages.
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SUPPLEMENTARY FIGURE 4

Single cell and pan-cancer cohorts validated the function of LRPPRC. (A) Dot
plot showing the expression of LRPPRC in each UCEC cell types. (B) Dot plot
showing the expression of LRPPRC in each UCEC malignant cell types. (C)
Univariate and Cox analyses evaluating the prognostic value of LRPPRC in
pan-cancer cohorts.
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