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Novel prognostic signature for
hepatocellular carcinoma using a
comprehensive machine learning
framework to predict prognosis
and guide treatment
Shengzhou Zheng1,2†, Zhixiong Su2†, Yufang He2†, Lijie You2†,
Guifeng Zhang2, Jingbo Chen2*, Lihu Lu3* and Zhenhua Liu2*

1Department of Emergency, Fujian Medical University Union Hospital, Fuzhou, China, 2Department of
Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital,
Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China, 3Department of Radiation
Oncology, Fujian Medical University Union Hospital, Fuzhou, China
Background: Hepatocellular carcinoma (HCC) is highly aggressive, with delayed

diagnosis, poor prognosis, and a lack of comprehensive and accurate prognostic

models to assist clinicians. This study aimed to construct an HCC prognosis-

related gene signature (HPRGS) and explore its clinical application value.

Methods: TCGA-LIHC cohort was used for training, and the LIRI-JP cohort and

HCC cDNA microarray were used for validation. Machine learning algorithms

constructed a prognostic gene label for HCC. Kaplan–Meier (K-M), ROC curve,

multiple analyses, algorithms, and online databases were used to analyze

differences between high- and low-risk populations. A nomogram was

constructed to facilitate clinical application.

Results: We identified 119 differential genes based on transcriptome sequencing

data from five independent HCC cohorts, and 53 of these genes were associated

with overall survival (OS). Using 101 machine learning algorithms, the 10 most

prognostic genes were selected. We constructed an HCC HPRGS with four genes

(SOCS2, LCAT, ECT2, and TMEM106C). Good predictive performance of the

HPRGS was confirmed by ROC, C-index, and K-M curves. Mutation analysis

showed significant differences between the low- and high-risk patients.

The low-risk group had a higher response to transcatheter arterial

chemoembolization (TACE) and immunotherapy. Treatment response of high-

and low-risk groups to small-molecule drugs was predicted. Linifanib was a
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potential drug for high-risk populations. Multivariate analysis confirmed that

HPRGS were independent prognostic factors in TCGA-LIHC. A nomogram

provided a clinical practice reference.

Conclusion: We constructed an HPRGS for HCC, which can accurately predict

OS and guide the treatment decisions for patients with HCC.
KEYWORDS

hepatocellular carcinoma, prognosis signature, treatment, machine learning
framework, TCGA
1 Introduction

Hepatocellular carcinoma (HCC) is a major challenge in global

health, ranking sixth among common malignancies and third in

terms of tumor mortality. HCC is the most common pathological

type of liver cancer, accounting for approximately 80% of primary

liver malignancies (1). Previous studies have shown that only 36% of

liver cancer cases in China are diagnosed early and meet the criteria

for radical treatment. Among the remaining cases, 9% and 55% of

patients are in the intermediate and advanced stages, respectively (2).

Radical treatment is recommended for patients with early-stage

HCC, including surgical treatment (resection and liver

transplantation) and local-regional surgery (radiofrequency

ablation) (3). Patients with intermediate-stage HCC are

recommended to undergo transarterial local-regional therapy (4).

For patients with advanced HCC, comprehensive systemic treatment

based on chemotherapy, targeted therapy, and immunotherapy is the

main treatment strategy (4). In recent years, because of the rapid

development of targeted therapy and immunotherapy, significant

changes have occurred in the treatment and prognosis of advanced

HCC. The results of two clinical trials, SHARP and ORIENTAL, both

showed that sorafenib can prolong the survival of patients with

advanced HCC. Therefore, sorafenib has been approved as a first-

line treatment for patients with advanced HCC since 2007 (5, 6). The

REFLECT study showed that lenvatinib is not inferior to sorafenib,

and the median overall survival (OS) of lenvatinib and sorafenib is

similar, but the objective response rate (ORR) and progression-free

survival of lenvatinib are higher (7). The IMbrave150 study showed

that the combination of atezolizumab and bevacizumab is more

effective in improving OS, and was approved for first-line

treatment of patients with advanced HCC in China in 2021 (8).

There are currently several ongoing studies on immunotherapy-based

combination therapy. However, because of the high heterogeneity of

liver cancer and other factors, the annual recurrence rate of HCC is as

high as 15%–20%. Currently, the accuracy of biomarkers, such as

alpha-fetoprotein (AFP), programmed cell death 1 ligand 1 (PD-L1),
02
and tumor mutation burden, is still insufficient to guide the precision

diagnosis and treatment of HCC. Therefore, it is of great significance

to explore more accurate and effective biomarkers for optimizing the

clinical diagnosis and treatment of patients with HCC and

improving prognosis.

The pathogenesis and progression of malignant tumors cover a

wide range of complex multistage processes. In the past few decades,

thanks to breakthroughs in the fields of genomics, transcriptomics,

proteomics, and metabolomics, significant progress has been made

in precision medicine strategies for cancer diagnosis and treatment

(9, 10). The occurrence and development of liver cancer have been

confirmed to be driven by molecular variations at the genetic and

epigenetic levels (11). In the field of HCC, the application of next-

generation sequencing technology provides important evidence for

revealing molecular changes (12–14). Given the differences in

molecular biological characteristics, even patients at the same

stage of the disease may have similar tumor morphology and

clinical manifestations but still respond differently to the same

treatment strategy. Therefore, the increasing use of genome

analysis technology to deeply explore tumor biology and assist in

the development of individualized treatment plans for patients with

HCC could improve their prognosis (15). Prediction models based

on cancer gene expression are one of the important research

directions of gene transcriptomics in cancer research. In several

cancers, such prediction models have been successfully applied to

molecular subtypes, prognosis, and treatment prediction in clinical

practice (16). However, previous studies have developed many

prediction models related to HCC and demonstrated relatively

good performance in some cohorts. However, considering that

these prediction models are constructed based on messenger

ribonucleic acid (mRNA), microRNA (miRNA), or long

noncoding ribonucleic acid (lncRNA) in specific pathways (such

as immunogenic cell death, necroptosis, ferroptosis, and

cuproptosis), the utilization of data is insufficient (17–19). In

addition, because of the uniqueness and inappropriateness of the

selected modeling methods, prognostic models based on multiple
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genes have significant shortcomings, which limit their widespread

clinical application (20).

Therefore, in this study, we aimed to establish a comprehensive

and accurate prognostic signature for HCC by integrating multiple

machine learning methods and applying multiple independent

cohort datasets to construct and validate an HCC prognosis-

related gene signature (HPRGS). The characteristics and clinical

application value of this signature will be analyzed to provide a

reference for the clinical diagnosis and treatment of HCC.
2 Materials and methods

2.1 Data acquisition

We downloaded 7 cohorts (GSE13845, GSE25097, GSE84402,

GSE174570, GSE54236, GSE14520 and GSE104580) from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/), and the data were

subjected to log2 transformation for subsequent analysis (21). The

TCGA-LIHC and LIRI-JP cohorts were obtained from the Cancer

Genome Atlas (TCGA; https://portal.gdc.cancer.gov/) and the

ICGC database (https://dcc.icgc.org/releases), respectively.

Additionally, somatic mutation data for the TCGA-LIHC cohort

was obtained from the TCGA database. Only patients with

complete clinical follow-up information and survival data were

included in the TCGA-LIHC and LIRI-JP cohorts. After screening,

365 patients with hepatocellular carcinoma were retained in the

TCGA-LIHC cohort, and 231 patients were retained in the LIRI-JP

cohort. To improve comparability between cohorts, the RNA-

sequencing (RNA-seq) was converted to transcripts per million

(TPM) forma. Then, the batch correction was performed on the

TCGA-LIHC cohort and the LIRI-JP cohort using the “Combat “

method from the “sva” R package.

In addition, the HCC cDNA microarray was purchased from

Shanghai Outdo Biotech Co.,Ltd (Shanghai, China) with 87 samples

(including 21 normal liver samples and 66 HCC samples, Ethics

No.SHYJS-CP-1707015). The clinical characteristics of these

cohorts were integrated in Table 1.
2.2 Quantitative reverse transcription PCR

Relative quantitation was determined by quantitative reverse

transcription polymerase chain reaction (qRT-PCR; SuperScript IV

Reverse Transcriptase 18090010; Thermo Fisher, United States).

The amplification reactions were performed as described previously

(22). LCAT-specific primers were: forward primer, 5 ’-

GTGACTTCCAACGCTTCTT-3 ’ and reverse primer, 5 ’-

TCATAGAGCACACCCACAG-3’. SOCS2-specific primers were:

forward primer, 5’-CCTTGCCTTCTTAGGTTCTT-3’ and reverse

primer, 5’-CTTGGTTCCTTCCCACTT-3’. ECT2-specific primers

were: forward primer, 5’-TGTAGTCACGGACTTTCAGGA-3’ and

reverse primer, 5 ’-GTACAATACAACGGGCGACAT-3 ’ .

TMEM106C-specific primers were: forward primer, 5 ’-

TTCACCGGGAGAGATAGCATC-3’ and reverse primer, 5’-

AAGGACTGAATGCGGAAACAG-3’.
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2.3 Differential gene analysis

The “Limma” package (23) in R software was used to screen for

differentially expressed genes (DEGs) between normal tissue and

HCC tissue in the TCGA-LIHC, GSE13845, GSE25097, GSE84402,

and GSE174570 cohorts. Multiple testing with a FDR<0.05 and

|log2Foldchange|≥ 1 were used as screening criteria.
2.4 The establishment of HPRGS

This study followed the following steps to construct HPRGS:

Firstly, the “survival” package in R software was used to perform

univariate Cox regression analysis to screen for DEGs with potential

prognostic value in the gene expression profiles of patients in the

TCGA-LIHC cohort.

The TCGA-LIHC cohort was used as the training cohort, and

the LIRI-JP cohort was used as the validation cohort. In the training

cohort, 101 combinations of 10 algorithms were used for variable

selection based on a ten-fold cross-validation framework. The 10

machine learning algorithms included Least Absolute Shrinkage

and Selection Operator Regression Algorithm (Lasso, “glmnet” R

package), Ridge Regression Algorithm (Ridge, “glmnet” R package),

Stepwise Cox Proportional Hazards Regression Algorithm

(stepwise Cox, “stepwise” R package), CoxBoost Algorithm

(CoxBoost, “CoxBoost” R package), Random Survival Forest

Algorithm (RSF, “RandomForestSRC” R package), Elastic Net

Regression Algorithm (Enet, “glmnet” R package), Partial Least

Squares Regression To Cox Models Algorithm (plsRcox, “plsRcox”

R package), Supervised Principal Components for regression
TABLE 1 The clinical characteristics of TCGA-LIHC, LIRI-JP and HCC
cDNA microarry cohorts.

Characteristics TCGA-
LIHC

LIRI-JP HCC
cDNA microarry

n 365 231 66

Age, n (%)

>60 192 (52.6%) 182 (78.8%) 23 (34.8%)

<=60 173 (47.4%) 49 (21.2%) 43 (65.2%)

Gender, n (%)

MALE 246 (67.4%) 170 (73.6%) 57 (86.4%)

FEMALE 119 (32.6%) 61 (26.4%) 9 (13.6%)

Grade, n (%)

G1-2 230 (63.0%) - 64 (97.0%)

G3-4 130 (35.6%) - 2 (3.0%)

unknow 5 (1.4%) - -

Stage, n (%)

Stage I-II 254 (69.6%) 141 (61.0%) 56 (84.8%)

Stage III-IV 87 (23.8%) 90 (39.0%) 10 (15.2%)

unknow 24(6.6%) - -
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Algorithm (SuperPC, “superpc” R package), Gradient Boosting

Machine Algorithm (GBM, “gbm” R package), and Survival

support vector machines Algorithm (survival-SVM, “survivalsvm”

R package). For each model, we calculated the C-index on the

training and validation sets. Then, we ranked the predictive

performance of the models based on the average C-index. Finally,

we selected a robust combination of algorithms.

Finally, we performed multivariate Cox regression analysis to

further screen genes to construct HPRGS and established the risk

score for quantification using the gene expression values and

coefficients. The scoring formula is as follows:

Risk score =on
i=1Coef(i)� x(i)

Based on the scoring formula, we determined the risk score for

each HCC patient in the TCGA-LIHC, LIRI-JP and HCC cDNA

microarray cohorts and classified them into high-risk and low-risk

groups based on the median risk score (24).
2.5 The evaluation of HPRGS

The “survival” package in R software was used to conduct survival

analysis to investigate whether there was a significant difference in OS

between low- and high-risk groups. The results were visualized using

the “survminer” package in R software. Additionally, the “timeROC”

package in R software was used to perform receiver operating

characteristic (ROC) curve analysis to assess the sensitivity and

specificity of risk scores in predicting OS in HCC patients.
2.6 Gene function analysis

The “org.Hs.eg.db, clusterProfiler, GOplot” packages in R software

were used to perform gene ontology (GO) functional annotation and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis

for prognostic-related differentially expressed genes based on the gene

set files “c5.go.v7.4.symbols.gmt” and “c2.cp.kegg.v7.4.symbols.gmt”

from the Molecular signatures database (MSigDB). The enrichment

of prognostic-related DEGs in GO and KEGG was calculated, and

signaling pathways with multiple testing P<0.05 were obtained,

displaying the biological processes (BP), cellular components (CC),

molecular functions (MF), and pathways involved in the differentially

expressed genes. Subsequently, gene set enrichment analysis (GSEA)

was conducted to explore the biological differences between the high-

and low-risk groups. Additionally, single-sample gene set enrichment

analysis (ssGSEA) based on the “c1.hallmark.v7.4.symbols.gmt” gene

set file from MSigDB was performed using the “GSVA” package in R

software to calculate scores for 50 hallmark pathways. Then, the

“limma” package in R software was used to analyze the significantly

different pathways between the high-risk and low-risk groups, and the

“Hmisc” package was used to calculate the correlation between the 50

hallmark pathways and risk scores (25). Furthermore, the “survival”

package in R software was used to analyze the relationship between

each pathway and OS.
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2.7 Genomic variation analysis

Mutant-allele tumor heterogeneity (MATH) is a method that

quantitatively measures intra-tumor heterogeneity (ITH) based on

the distribution of mutant alleles. MATH scores are obtained

through whole-exome sequencing of tumor and matched normal

samples, providing a measurable and quantitative assessment of

ITH, and the higher MATH scores were associated with more

severe ITH (26). The prognostic significance of MATH has been

explored in head and neck cancer, colorectal cancer, and breast

cancer (27). In this study, the MATH algorithm was used to

evaluate ITH in HCC patients. Additionally, to investigate

somatic mutations associated with HCC, mutation waterfall plots

were generated for HCC patients in the high- and low-risk groups

using the “maftools” package in R software.
2.8 Analysis of immune microenvironment

To examine the association between risk scores and immune

cell infiltration in the HCC tumor microenvironment, this study

first used the ESTIMATE algorithm to calculate the abundance of

stromal cells and immune cells, as well as tumor purity. Then, the

CIBERSORT deconvolution algorithm was used to quantify the

infiltration of 22 immune cell types (28). The anticancer immune

cycle is an important component of tumor immunotherapy,

consisting of seven key steps: cancer antigen release (step 1),

cancer antigen presentation (step 2), priming and activation (step

3), immune cell trafficking to the tumor (step 4), immune cell

infiltration into the tumor (step 5), T-cell recognition of cancer cells

(step 6), and killing of cancer cells (step 7). These seven steps

together constitute the anticancer immune cycle. The activity scores

of the seven anticancer immune steps for TCGA-LIHC samples

were obtained from the Tracking Tumor Immunophenotype (TIP)

platform (http://biocc.hrbmu.edu.cn/TIP/index.jsp) (29).
2.9 Drug sensitivity analysis

The “oncoPredict” package of R software was used to predict

the chemotherapy sensitivity of HCC patients with different HPRGS

based on the Genomics of Drug Sensitivity in Cancer (GDSC)

database (30). The “oncoPredict” package of R software fits the

tissue gene expression profiles of patients with the expression

profiles of cancer cell lines to calculate the half maximal

inhibitory concentration (IC50). Drugs with significant differences

in IC50 between the high- and the low-risk group were screened.
2.10 Prediction of
immunotherapy response

The Tumor Immune Dysfunction and Exclusion (TIDE, http://

tide.dfci.harvard.edu/) is used to assess the possibility of tumor

immune evasion in the gene expression profiles of tumor samples
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(31). The Immunophenoscore (IPS) algorithm, which uses machine

learning methods to calculate the IPS score based on unbiased gene

expression of representative cell types (32). The IPS scores of

TCGA-LIHC patient samples were obtained from the Cancer

Immunome Atlas (TCIA, https://tcia.at/home) database. Based on

the IPS score, immune checkpoint inhibitors (ICI) treatment was

divided into the following four categories (1): CTLA4+/PD1+

treatment, (2) CTLA4+/PD1- treatment, (3) CTLA4-/PD1+

treatment, (4) CTLA4-/PD1- treatment.
2.11 Exploration of potential
therapeutic drugs

We explored potential therapeutic drugs for patients with high-

risk HCC based on previous protocols (33). First, we obtained drug

sensitivity data of cancer cell lines (CCLs) from Cancer Therapeutics

Response Portal (CTRP, https://portals.broadinstitute.org/ctrp)

website and Profiling relative Inhibition Simultaneously In

Mixtures (PRISM, https://depmap.org/portal/prism/) drug reuse

resources, and obtained CCLs expression data from Cancer Cell

Line Encyclopedia (CCLE) database. CTRP contains sensitivity data

of 481 compounds to 835 CCLs, and PRISM contains sensitivity

data of 1448 compounds to 482 CCLs. Both cohorts provide dose-

response AUC values as a measure of drug sensitivity, with lower

AUC values indicating increased sensitivity to treatment. In

addition, as a first-line chemotherapeutic drug for HCC, we

further selected gemcitabine to verify the scientificity and rigor of

this method. We used the “Hmisc” package of R software to

perform correlation analysis to further screen compounds with

negative correlation coefficients between AUC values and HPRGS

(setting the threshold R<-0.3). Then, we performed differential

analysis of the selected drugs between high- and low- risk groups,

and selected compounds with significantly lower AUC values in the

high risk group. Connectivity Map (CMap, https://clue.io/) is a

publicly available web tool for exploring candidate compounds that

may target HPRGS-related pathways based on gene expression

profiles (34, 35). Based on differential expression analysis and

correlation analysis, we used CMap to identify potential

compounds in HCC to further validate the results obtained from

CTRP and PRISM databases.
2.12 Construction and evaluation
of nomogram

Firstly, univariate and multivariate Cox regression analysis were

used to evaluate the correlation with OS between different

clinicopathological factors and HPRGS in TCGA-LIHC cohort. In

both univariate and multivariate Cox analysis, factors with P<0.05

were determined to have an independent correlation with OS in

patients with HCC. The “RMS” package of R software was used to

construct the nomogram. The nomogram was constructed by

combining HPRGS with other independent prognostic factors. To

evaluate the predictive effect of the nomogram on patient prognosis,

this study used the “RMS” package of R software to predict the
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prognostic calibration curves for 1-, 2-, and 3-year survival rates in

the TCGA-LIHC cohort. Then, the timeROC R package was used

for 1-, 2-, and 3-year ROC curve analysis to evaluate the sensitivity

and specificity of the nomogram in predicting OS in HCC patients.
2.13 Statistical analysis

All statistical analyses in this study were performed using R

studio (versions: R 4.1.0 and R 4.3.0). Continuous variables were

analyzed using the Wilcoxon rank-sum test. Categorical variables

were statistically compared using the chi-square test. Unless

otherwise specified, statistical significance was set at P <0.05.
3 Results

3.1 Identification of prognostic genes and
functional annotations related to HCC

The flow chart of this study is shown in Figure 1. To identify the

differential genes in HCC, differential expression analysis was

performed on normal and HCC tissues in TCGA-LIHC,

GSE13845, GSE25097, GSE84402, and GSE174570 cohorts. The

specific results were 5,703 differential genes screened from TCGA-

LIHC cohort (Figure 2A), 5,346 from the GSE25097 cohort

(Figure 2B), 1,230 from the GSE13845 cohort (Figure 2C), 1,403

from the GSE84402 cohort (Figure 2D), and 399 from the

GSE174570 cohort (Figure 2E) (Supplementary Table 1). Further

intersection analysis of the differential genes resulted in 119

common differentially expressed genes (DEGs) (Figure 2F).

Through univariate Cox analysis of these 119 DEGs, 53 genes

with prognostic significance were selected for subsequent analysis

(all P<0.05, Figure 2G).

To explore the function of prognosis-related differential genes,

we performed GO and KEGG enrichment analysis on the 53 genes

with prognostic significance. GO enrichment analysis showed that

these genes were highly enriched in DNA replication regulation,

apoptotic nuclear changes, cell component disassembly involved in

apoptotic execution, macrophage activation regulation, positive

regulation of phagocytosis, steroid catabolism, immune effect

process regulation, and immune response activation. KEGG

enrichment analysis showed that these genes were highly enriched

in the P53 signaling pathway, cellular senescence, histidine

metabolism, and cell cycle pathways (Figure 2H).
3.2 Construction of HCC HPRGS

TCGA-LIHC cohort was used as the training cohort, and the

LIRI-JP cohort was used as the validation cohort. During the

training process, 101 prediction models were combined using a

10-fold cross-validation framework, and the C-index was calculated

for all training and validation cohorts (Figure 3A). Among the

models constructed using 101 machine learning algorithms, the

average C-index evaluation showed that although the first four
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prediction models performed well in the training cohort, their

performance in the validation cohort was significantly different,

indicating possible overfitting. Therefore, these models that overfit

the training cohort were excluded from further selection.

Subsequently, the CoxBoost+GBM model was selected because it

exhibited good predictive ability in both the validation cohort and

the training cohort (C-index > 0.7). The model included 10 genes

(LCAT, CCDC34, SOCS2, EZH2, ANXA10, TPX2, ZIC2, ECT2,

TMEM106C, and VSIG4), and further model construction was

performed using multivariable Cox analysis to identify four key

genes (SOCS2, LCAT, ECT2, and TMEM106C). Subsequently, the
Frontiers in Immunology 06
expression levels of these four genes were weighted using regression

coefficients from the Cox model to calculate the risk score for each

patient (Figure 3B). We defined this signature as HPRGS, with the

formula: HPRGS = 0.245484853986847*TMEM106C gene

expression + 0.233006449350621*ECT2 gene expression -

0.4709503811778*SOCS2 gene expression - 0.16143767938904

9*LCAT gene expression. Based on the median value of HPRGS,

all patients in the training cohort and validation cohort were

divided into high- and low-risk groups. In both the validation

cohort and the training cohort, the number of deaths increased

gradually with increasing HPRGS scores (Figures 3C, D). Further
FIGURE 1

The entire analytical process of the study.
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survival analysis showed that in the training cohort, the OS of

patients in the high-risk group was significantly lower than that in

the low-risk group (P<0.001, HR=3.04, Figure 3E), and consistent

results were observed in the validation cohort (P<0.001,

HR=4.06, Figure 3F).
Frontiers in Immunology 07
3.3 Evaluation of HCC HPRGS

To evaluate the prognostic effectiveness of HPRGS, ROC curve

analysis was conducted. In TCGA-LIHC training cohort, the AUCs of

HPRGS reached 0.786, 0.757, and 0.736 at 1-, 2-, and 3-years,
frontiersin.or
FIGURE 2

The identification and functional annotation of prognostic genes in HCC. The volcano plots showed the differentially expressed genes in TCGA-LIHC
cohort (A), GSE25097 cohort (B), GSE13845 cohort (C), GSE84402 cohort (D), and GSE174570 cohort (E). (F) The venn plot illustrated the
overlapping differentially expressed genes in multiple cohorts, including TCGA-LIHC, GSE25097, GSE13845, GSE84402, and GSE174570. (G) The
forest plot depicted the common differentially expressed genes associated with the prognosis of HCC. (H) The results of the enrichment analysis for
GO and KEGG were presented.
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respectively, and in the LIRI-JP validation cohort, they reached 0.700,

0.723, and 0.713, respectively (Figures 4A, E). Then, the clinical

information (including age, sex, grade, and stage) for each patient in

the training cohort was compared with their corresponding HPRGS

through ROC curve analysis. The results showed that the prognostic

effectiveness of HPRGS at 1-, 2-, and 3-years was better than other

clinical characteristics (Figures 4B–D), and consistent results were
Frontiers in Immunology 08
obtained in the validation cohort (Figures 4F–H). Furthermore, they

were compared with nine publishedHCC prognostic models, including

the anoikis-related genes signature (ARG) (36), lactic acid metabolism-

related gene signature (LMRG) (37), cuproptosis-related gene signature

(CRG) (19), epithelial-mesenchymal transition-related gene signature

(EMTRG) (38), fatty acid metabolism gene signature (FMRG) (39),

cancer-associated fibroblast signature (CFG) (40), necroptosis-related
FIGURE 3

The development of a prognostic signature for HCC. (A) A total of 101 kinds of prediction signatures via a ten-fold cross-validation framework and
further calculated the C-index of each signatures across all validation datasets. (B) The barplot showed the regression coefficients of 4 genes
obtained in multivariate Cox regression. The risk factor plot of the TCGA-LIHC cohort (C) and the LIRI-JP cohort (D). The Kaplan–Meier curves of
OS according to the HPRGS in the TCGA-LIHC cohort (E) and LIRI-JP cohort (F).
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gene signature (NRG) [21], inflammatory response-related gene

signature (RRG) (41), and immunotherapy-related gene signature

(IRG) (17). We used the C-index to evaluate the predictive ability of

the models, and the results showed that HPRGS had the highest C-

index in both the training and validation cohorts (Figures 4I, J). These

results indicated that the HPRGS has good accuracy in predicting the

prognosis of patients with HCC.

In addition, since clinical features are commonly used in clinical

practice to assess the prognosis of patients with HCC, subgroup

analysis was performed on high- and low-risk groups of patients with

HCC based on age (Supplementary Figures 1A, B), sex

(Supplementary Figures 1C, D), pathological grade (Supplementary

Figures 1E, F), and pathological stage (Supplementary Figures 1G, H)

in the training cohort. Similar to the results in the training and
Frontiers in Immunology 09
validation cohorts, patients with HCC in the high-risk group with

different clinical characteristics exhibited poorer survival rates than

the low-risk group (all P<0.05). In addition, ROC curve analysis

showed that HPRGS had comparable predictive ability at 1-, 2-, and

3-years for patients with different clinical characteristics.
3.4 Biological functions of patients in high-
and low-risk groups

To further explore the differences in biological functions

between patients in high- and low-risk groups, we performed

functional enrichment analysis on the DEGs in these two groups.

In the gene set enrichment analysis (GSEA) based on the GO gene
FIGURE 4

The assessment of HPRGS. ROC curves showed the specificity and sensitivity of HPRGS and clinical characteristics in predicting 1, 2, and 3-year OS
in the TCGA-LIHC cohort (A–D) and LIRI-JP cohort (E–H). C-index of 10 prognostic signatures in TCGA-LIHC (I) and LIRI-JP (J).
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set, the low-risk group was highly enriched in amino acid

catabolism, amino acid metabolism, cellular amino acid

catabolism, fatty acid oxidation, and fatty acid catabolism,

whereas the high-risk group was highly enriched in adaptive

immune response, B cell activation, B cell receptor signaling

pathway, cell division, and chromosome segregation (Figures 5A,
Frontiers in Immunology 10
B). The GSEA based on the KEGG gene set showed that the low-risk

group had higher activity in complement and coagulation cascades,

drug metabolism cytochrome P450, fatty acid metabolism, amino

acid metabolism, and fatty acid catabolism, whereas the high-risk

group had higher activity in cell adhesion molecules, cell cycle, and

DNA replication (Figures 5C, D).
FIGURE 5

Disparities in biological functionality between high- and low-risk groups. GO terms enriched in the low- (A) and high-risk group (B) by GSEA
analysis. KEGG terms enriched in the low- (C) and high-risk group (D) by GSEA analysis. Differences in hallmark pathway activities between the high-
and low-risk groups scored by GSVA (E).Correlation between the HPRGS and hallmark pathway activities scored by GSVA (F). (G) The forest map
depicted the relationship between hallmark pathway activities scored by GSVA and OS in the TCGA-LIHC cohort.
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Further GSVA analysis based on the hallmark gene set revealed

that the high-risk group had higher activity in G2/M checkpoint, E2F

transcription factors, mTOR signaling pathway, PI3K-AKT-mTOR

signaling pathway, whereas the low-risk group had higher activity in

lipogenesis, fatty acid metabolism, bile acid metabolism, and oxidative

phosphorylation (Figure 5E). Additionally, the correlation analysis

between HPRGS and the scores of oncogenic-related hallmarks
Frontiers in Immunology 11
indicated that HPRGS was closely related to cancer-related biological

processes and metabolic pathways (Figure 5F). To investigate whether

the oncogenic-related hallmark scores were associated with the

prognosis of patients with HCC, we performed a survival analysis.

The results showed that the pathways positively correlated with

HPRGS, such as the G2/M checkpoint, E2F transcription factors,

mTOR signaling pathway, and PI3K-AKT-mTOR signaling pathway,
FIGURE 6

The genomic disparities between high- and low-risk populations. (A) Violin plot showed MATH scores between the high- and low-risk groups. (B)
Kaplan-Meier curve shows the difference in OS between high- and low-MATH score groups. (C) Kaplan-Meier curve analysis for OS by combining
the MATH score and the HPRGS risk score. The waterfall plot of the somatic mutation landscape in high- (D) and low-risk patients (E) in the TCGA-
LIHC cohort. (F) The waterfall plot of the differential somatic mutation landscape in high- and low-risk groups. ns P>0.05, *P < 0.05, **P < 0.01, and
***P < 0.001.
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were adverse prognostic factors for patients with HCC. In contrast, the

pathways negatively correlated with HPRGS, such as lipogenesis, fatty

acid metabolism, bile acid metabolism, and oxidative phosphorylation,

were associated with good prognosis (all P<0.05, Figure 5G). In our

study, we found that the biological functions of patients in the high-risk

group were mainly enriched in functions and pathways related to

cancer development, whereas the biological functions of patients in the

low-risk group were mainly enriched in metabolic-related functions

and pathways. The activation or inhibition of these pathways may

contribute to the different prognostic outcomes observed in the high-

and low-risk groups.
3.5 Genomic variation landscapes and
intratumor heterogeneity in high- and low-
risk patient groups

ITH, as a cancer genomic feature, results from the accumulation

of gene mutations (42). Studies have confirmed that ITH is positively

correlated with chemotherapy resistance in malignant tumors (43).

The calculation results showed that in high-risk patients with HCC,

the MATH score was relatively high, indicating a more severe degree

of ITH (P<0.01, Figure 6A). To investigate the relationship between

ITH and prognosis in patients with HCC, a survival analysis was

conducted. The results showed that the MATH score was positively

correlated with poor prognosis in patients with HCC (P = 0.018, HR

= 1.54, Figure 6B). By combining the MATH score with HPRGS, the

prognosis of patients in the “high-risk + high-MATH” group was

significantly worse than that of patients in the “low-risk + low-

MATH” group (P<0.001, Figure 6C).

To explore the differences in genomic mutation frequencies

between the high- and low-risk groups, we depicted the mutation

landscapes of both groups. The results showed distinct mutation

spectra between the high- and low-risk groups (Figures 6D, E). As

shown in the figure, TP53 was the most common mutated gene in the

high-risk group, whereas CTNNB1 was the most common mutated

gene in the low-risk group. To further analyze, we combined the top 10

mutated genes in the high- and low-risk groups and conducted a

differential analysis to investigate whether there were differences in

mutation rates between the two groups. After removing duplicate

genes, 14 genes were obtained, among which TP53 and OBSCN had

significantly different mutation frequencies between the high- and low-

risk groups, with higher mutation frequencies in the high-risk group

(both P<0.05, Figure 6F).
3.6 Patients in high- and low-risk groups
have different tumor
immune microenvironments

To assess the immune infiltration status of patients with HCC,

this study used the ESTIMATE algorithm to calculate the immune

score, stromal score, comprehensive score, and tumor purity score

of the high- and low-risk groups. The results showed that the high-
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risk group performed poorly in the comprehensive score of the

microenvironment, whereas the tumor purity score was relatively

high (all P<0.05, Figure 7A). To further explore the differences in

specific immune cell infiltration between high- and low-risk groups,

we quantitatively analyzed the abundance of immune cell

infiltration in each sample using the CIBERSORT deconvolution

algorithm. The results showed that the tumor immune

microenvironment of patients in the high-risk group was rich in

regulatory T cells, M0 macrophages, activated memory CD4+ T

cells, follicular helper T cells, M1 macrophages, and neutrophil

infiltration. In contrast, the tumor immune microenvironment of

patients in the low-risk group was rich in resting memory CD4+ T

cells and monocytes (all P<0.05, Figure 7B). The correlation analysis

results were also similar (Figure 7C). In addition, we explored the

relationship between different tumor microenvironment (TME) cell

types and OS in patients with HCC. The results showed that the

infiltration abundance of six cell types was correlated with the

prognosis of patients with HCC (all P<0.05, Figure 7D). Combining

the results of differential analysis, correlation analysis, and survival

analysis, we finally identified two types of intersecting cells, namely,

resting memory CD4+ T cells and M0 macrophages (Figure 7E).

This may mean that the infiltration of these two immune cells is of

significant importance in the prognosis and development of HCC.

Given the complexity of intratumoral immune responses and

the microenvironment, the degree of immune cell infiltration alone

cannot fully reflect immune activation and exhaustion. By assessing

the activity of various aspects of the anti-cancer immune cycle, a

deeper understanding of the role of immune cells in the anti-tumor

process can be achieved, thereby improving the accuracy of

immunotherapy guidance [49]. Calculations revealed that the

high-risk group performed more prominently in antigen release

from cancer cells, recruitment of regulatory T cells, infiltration of

tumor-suppressing myeloid cells derived from bone marrow,

recognition of cancer cells by T cells, and cancer cell killing (all

P<0.05, Figure 7F). These results suggest that the high-risk group

may exhibit a reduced anti-cancer efficacy in the immune cell

function cycle compared to the low-risk group.
3.7 Evaluation and prediction of HCC
treatment strategies

To explore the application of HPRGS in predicting the

treatment response of HCC, including tumor volume doubling

time (TVDT), response to transarterial chemoembolization

(TACE) treatment, and prediction of immune and targeted drug

treatment responses, potential therapeutic drugs for patients in the

high-risk group were explored.

3.7.1 Prediction of the response to
transarterial chemoembolization

In the GSE54236 cohort, we observed a negative correlation

between HPRGS and TVDT (R = -0.489, P < 0.001, Figure 8A).

Additionally, in the GSE14520 cohort, a correlation between HCC
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and tumor size was further confirmed, with higher HPRGS

observed in patients with larger tumors compared to those with

smaller tumors (P< 0.01, Figure 8B). Subsequently, HPRGS was

used for validation in the GSE104580 cohort, and the results
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showed that the proportion of responders was higher in the low-

risk group than in the high-risk group (70% vs. 41%, Figure 8C).

Furthermore, the AUC value for predicting the TACE treatment

response rate in patients with HCC using HPRGS was 0.662 (CI:
FIGURE 7

Disparities in the immune microenvironment between high- and low-risk groups. (A) The violin plots showed the differential between low- and
high-risk groups in immune score, stromal score, the ESTIMATE score, and the tumor purity. (B) The abundance of each infiltrated cell type between
high- and low-risk groups, quantified by the CIBESORT algorithm. (C) Correlation analysis between infiltrated cells and HPRGS. (D) Kaplan-Meier
curves showed the association between the abundance of 6 infiltrated cell types and OS. (E)Venn plot showed the intersecting cell types of
differential analysis, correlation analysis, and survival analysis. (F) The histogram showed the difference in the seven-step anti-cancer immunity cycle
activity between high- and low-risk populations. ns P>0.05, *P < 0.05, **P < 0.01, and ***P < 0.001.
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FIGURE 8

Differences in benefit from different treatment options in the high- and low- risk groups. (A) Correlation between HPRGS score and TVDT in
GSE54236. (B) The boxplot showing the difference in main tumor size between high- and low-risk populations in GSE14520. (C) Comparing TACE
treatment response rates between high- and low-risk populations in GSE104580. (D) ROC curve to predict TACE treatment response using the
HPRGS score. (E)The cloud rain plot showed the difference in TIDE scores between high- and low-risk groups. (F) Comparing the immunotherapy
response rate predicted by TIDE algorithm between high- and low-risk populations. (G) The violin plots showed the difference in IPS scores between
high- and low-risk groups. (H) Sensitivity comparison of small molecule drugs in high - and low-risk groups. (I) Comparison of estimated
gemcitabine’s sensitivity between high and low SOCS3 expression groups. (J) Barplot of CMap scores for the top 5 drugs in the high-risk group. (K)
The results of Spearman’s correlation analysis of CTRP-derived compounds and PRISM-derived compounds. (L)The results of differential drug
response analysis of CTRP-derived compounds and PRISM-derived compounds, the lower values on the y-axis of boxplots imply greater drug
sensitivity. *P < 0.05, **P < 0.01, and ***P < 0.001.
Frontiers in Immunology frontiersin.org14

https://doi.org/10.3389/fimmu.2024.1454977
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2024.1454977
0.574–0.750, Figure 8D). Therefore, HPRGS can be used to predict

the efficacy of TACE treatment in patients with HCC.

3.7.2 Prediction of immunotherapy sensitivity
To predict the sensitivity of patients with HCC in the high and low-

risk groups to immunotherapy, patients in the low-risk group exhibited

higher TIDE scores and a higher immunotherapy response rate. This

suggests that patients in the low-risk group may benefit more from ICI

treatment (P< 0.001, Figures 8E, F). Further IPS scoring analysis

revealed that compared to the high-risk group, the low-risk group

had significantly higher IPS scores for PD-1 and CTLA4 inhibitors,

indicating that patients in the low-risk group were more sensitive to

PD-1 and CTLA4 inhibitor treatments than those in the high-risk

group (both P< 0.05, Figure 8G). In summary, patients in the low-risk

group are more likely to benefit from immunotherapy.

3.7.3 Drug sensitivity analysis
Drug resistance is currently a major cause of poor prognosis in

tumors, and the emergence of drug resistance seems to be an

inevitable consequence of tumor exposure to kinase-targeted

therapy (44). Therefore, we used the GDSC database to predict

drug sensitivity in patients with HCC with different HPRGS. The

results showed that the IC50 of 5-fluorouracil, gemcitabine,

sorafenib, cabozantinib, and sunitinib was significantly lower in

the high-risk group, whereas the IC50 of axitinib, erlotinib, and

gefitinib was significantly lower in the low-risk group (all P< 0.05,

Figure 8H). These findings suggest that patients in the low-risk

group may respond better to axitinib, erlotinib, and gefitinib

treatment, whereas patients in the high-risk group may be more

sensitive to 5-fluorouracil, gemcitabine, sorafenib, cabozantinib,

and sunitinib.

3.7.4 Exploration of potential drugs for high-risk
group patients

To explore potential therapeutic drugs for high-risk patients

with HCC, we analyzed data based on the CTRP database and the

relative inhibition database in PRISM (45). To ensure the reliability

of our plan, gemcitabine was used as a reference drug to study

whether the estimated sensitivity was consistent with clinical

practice. An experimental study showed that increased resistance

to gemcitabine in HCC was associated with decreased SOCS3

expression, whereas increased SOCS3 expression could inhibit

resistance to gemcitabine in HCC (45). Consistent with this

study, our results confirmed that patients with higher SOCS3

expression levels had significantly lower predicted AUC values,

indicating higher sensitivity to gemcitabine (P < 0.001, Figure 8I).

Next, we used this formula to identify potentially sensitive drugs for

high-risk group patients and screened out 31 drugs in CTRP and

PRISM. The predicted AUC values of these drugs were statistically

negatively correlated with HPRGS and were significantly lower in

the high-risk group (all R < -0.3, Figure 8J). In addition, based on

the difference analysis between the high- and low-risk groups of

HCC (all P < 0.001, Figure 8K), we further applied the CMap tool to

determine the candidate compounds of HCC. After cross-analysis

of the results obtained from CTRP and PRISM, we finally screened
Frontiers in Immunology 15
out five potential candidate compounds: the tyrosine kinase

inhibitor linifanib, cytochalasin B, puromycin, amifetipine, and

simvastatin. Among them, linifanib exhibited high sensitivity in

the high-risk patient population with a CMap score of -95.88,

indicating that it may be a potential therapeutic drug for high-

risk group patients (Figure 8L).
3.8 Construction and evaluation
of nomogram

To enhance the clinical utility of HPRGS, univariate and

multivariate Cox regression analysis was performed on patients

with HCC in TCGA-LIHC cohort. The results showed that in

univariate analysis, HPRGS were independent prognostic factors for

OS (HR>1, P<0.001, Figure 9A). In multivariate analysis, HPRGS

remained independent prognostic factors for OS (HR>1, P<0.001,

Figure 9B), indicating that HPRGS have reliable prognostic

evaluation ability in patients with HCC. We constructed a

nomogram by combining the HPRGS and independent

prognostic clinicopathological characteristics (Figure 9C).

The calibration curve showed excellent consistency between the

nomogram predictions and actual observations (Figure 9D). ROC

curve analysis showed that the AUC values of the nomogram at 1-,

2-, and 3-years were 0.814, 0.760, and 0.788, respectively,

confirming its high prediction accuracy (Figure 9E). In addition,

the multi-index AUC curve graph confirmed the stability and

robustness of the nomogram, which was superior to other clinical

characteristics in predicting 1- to 5-year survival rates (Figure 9F).

Decision curve analysis at 1-, 2-, and 3-years showed that the

nomogram had better net clinical benefit compared to other clinical

characteristics (Figure 9G). These findings revealed that the

nomogram can provide reliable and accurate evidence for

personalized prognosis prediction in HCC.
3.9 Verification of HPRGS in HCC cDNA
microarray cohorts

To verify the accuracy of HPRGS in the real world, we further

validated HPRGS in HCC cDNA microarray cohorts using qRT-PCR.

Firstly, the results of the differential analysis showed that SOSC2 and

LCAT genes were highly expressed in normal tissues, and ECT2 and

TMEM106C were overexpressed in tumor tissues, regardless of paired

or unpaired samples (all P<0.05, Figures 10A–H). Then, K-M curve

analysis showed that SOSC2 and LCAT were positively correlated with

good prognosis, whereas ECT2 and TMEM106C were positively

correlated with poor prognosis, which was consistent with previous

findings (all P<0.05, Figures 10I–L). Finally, patients were divided into

high- and low-risk groups by using the median risk score. The results

showed that HPRGS were positively correlated with poor prognosis in

HCC cDNA microarray cohorts (P<0.05, Figures 10M, N), and 1-, 2-,

and 3-year ROC curves exhibited excellent predictive efficacy (the

AUCs of HPRGS were 0.750, 0.797, and 0.722 at 1-, 2-, and 3-years,

respectively; Figure 10O).
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4 Discussion

In this study, we used a new computing framework to identify

stable and reliable prognostic features. Through validation, the

HPRGS we constructed has good predictive performance. In

addition, we explained the potential reasons for the prognostic
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differences in different HPRGS groups through mutation, immune

infiltration, and functions analysis, and guided clinical diagnosis

and treatment through drug sensitivity analysis and the

construction of nomograms.

The framework includes 10 machine learning algorithms and

101 combinations (46). We used this framework to screen genes and
FIGURE 9

Establishment and verification of the nomogram. Univariate (A) and multivariate (B) analyses of the clinical characteristics and HPRGS for the OS in
the TCGA-LIHC cohort. (C) Construction of the nomogram based on the HPRGS and independent prognostic clinical characteristics. (D) Calibration
curve of the nomogram for 1-, 2-, and 3-year OS. (E) ROC curves showed the prediction performance of the nomogram in 1-, 2-, and 3-year OS. (F)
The comparison of the AUC between the nomogram and other clinical characteristics. (G) Decision curve analysis showed net benefits by applying a
nomogram and other clinical features at 1-, 2-, and 3-year OS.
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construct a prognostic model with high predictive accuracy and

interpretability through multivariable Cox regression analysis. In

recent years, with the advancement of high-throughput sequencing

technologies, the development of cancer prediction models based

on gene expression has become a significant research focus.
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Notably, models such as the prognostic signature constructed by

Tang et al. based on genes associated with aging (47), the prognostic

signature by Chen et al. based on features regulating glycosylation

(48), and the prognostic signature by Guo et al. related to genes

associated with the heterogeneity of NK cells (49), have all
FIGURE 10

Verification of HPRGS by qRT-PCR in HCC cDNA microarray cohorts. Differential expression of SOCS2 among paired samples (A) and unpaired
samples (B) in HCC cDNA microarray by qRT-PCR. Differential expression of LCAT among paired samples (C) and unpaired samples (D) in HCC
cDNA microarray by qRT-PCR. Differential expression of ECT2 among paired samples (E) and unpaired samples (F) in HCC cDNA microarray by qRT-
PCR. Differential expression of TMEM106C among paired samples (G) and unpaired samples (H) in HCC cDNA microarray by qRT-PCR. The Kaplan–
Meier curves showed the prognosis of the patients grouped by the median expression value of SOCS2 (I), LCAT (J), ECT2 (K), TMEM106C (L) in HCC
cDNA microarray cohorts. (M) The risk factor plot of the HCC cDNA microarray cohorts. (N) The Kaplan–Meier curves of OS according to the
HPRGS in the HCC cDNA microarray cohort. (O) ROC curves showed the specificity and sensitivity of HPRGS and clinical characteristics in
predicting 1-, 2-, and 3-year OS in the HCC cDNA microarray cohort. **P < 0.01 and ***P < 0.001.
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demonstrated excellent predictive efficacy. However, most current

research is predicated on specific gene sets (50, 51), often

overlooking the roles of other genes outside these defined sets.

Machine learning can leverage its capacity for dimensionality

reduction and variable selection in large datasets to identify and

incorporate the most critical variables in model construction.

Additionally, in this study, we compared our recently published

models and found that our HPRGS has a favorable prognostic

predictive role for HCC patients. Using survival analysis and single

and multivariable Cox analysis, we found that HPRGS can stratify

the risk of patients with HCC in terms of OS and are independent

prognostic factors. In addition, the predictive accuracy of HPRGS is

significantly better than other clinical features. The stability of

prognostic stratification among clinical subgroups further

confirms the robustness of HPRGS.

In our study, the biological functions of patients with HCC in

the high-risk group were mainly enriched in functions and

pathways related to cancer development, such as cell division, cell

adhesion molecules, cell cycle, and DNA replication. Conversely,

the biological functions of patients with HCC in the low-risk group

were mainly enriched in metabolism-related functions and

pathways. The activation or inhibition of these pathways may

affect the different prognostic outcomes observed in the high- and

low-risk groups. In addition, the hallmark pathway positively

correlated with HPRGS is considered to be an oncogenic

pathway, including the MYC and PI3K-AKT-mTOR signaling

pathways. As mentioned earlier, these pathways show abnormal

hyperactivation in various types of cancer. This abnormal

hyperactivation has been shown to drive cancer cell proliferation,

invasion, and metastasis, and is usually associated with poor clinical

prognosis (52, 53). We explored the mutation spectrum and ITH of

patients in different high- and low-risk groups. Previous studies

have shown that the higher the degree of ITH, the higher the

possibility of tumor infiltration and drug resistance (54). This

finding is consistent with our observations that patients in the

high-risk group have relatively higher drug resistance and poor

clinical prognosis compared to the low-risk group.

In the high-risk group, the mutation rates of TP53 and OBSCN

genes increased significantly. TP53 is a well-known tumor

suppressor gene, and its mutation is closely related to the poor

prognosis of HCC (33). An increasing number of studies have

confirmed that p53 has a significant impact on the metabolism of

normal cells and cancer cells. In tumor cells, mutant p53 can

positively regulate glycolysis, whereas negatively regulates cell

production, tricarboxylic acid cycle, and lipid metabolism (55,

56). In addition, a large number of copy number changes and

mutations have been observed in the OBSCN gene in many cancer

types. Some studies on this gene have also demonstrated that the

decrease or alteration of OBSCN gene expression largely disrupts

cell integration and activates the occurrence of cancer; furthermore,

several studies on OBSCN gene mutations have revealed its

potential role in melanoma, glioblastoma, colorectal cancer, lung

cancer, breast cancer, and pancreatic cancer. Therefore, the OBSCN

gene may have the characteristics of a tumor suppressor gene and

can prevent cell transformation (57–59). Further studies have
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explored the immune microenvironment of patients with HCC in

the high- and low-risk groups and the results showed that the high-

risk group had more infiltrating regulatory T cells, but there was

higher infiltration of resting memory CD4+ T cells in the low-risk

group. In addition, through the analysis of immune function and

anti-tumor immune cycle, the immune effector cell activity of the

high-risk group was lower, suggesting that the TME of the high-risk

group patients may be in a suppressed state.

HCC exhibits significant heterogeneity in molecular

characteristics and biological behavior, posing significant challenges

for clinicians in managing cancer patients (60). Therefore, it is crucial

to predict the best treatment strategy before treatment to improve

patient prognosis and minimize treatment-related costs. Hence, there

is an urgent need to optimize personalized treatment plans for HCC.

The HPRGS developed in this study can predict the efficacy of TACE

treatment for patients with HCC. Although TACE is considered the

preferred treatment for patients with intermediate-stage HCC,

studies have shown that its ORR is only 52.5% (61). Therefore, it is

particularly important to seek better predictors of TACE treatment

response. Previous studies have revealed that patients with shorter

TVDT often have lower survival rates, increased risk of recurrence,

and poor response to TACE treatment (62, 63). Accurate prediction

of TVDT can help avoid overdiagnosis and overtreatment, reduce

economic losses, and improve patient quality of life without

negatively affecting prognosis (64). In this study, patients in the

high-risk group had shorter TVDT and lower response rates to TACE

treatment compared to those in the low-risk group. This finding is

consistent with previous studies. ICI has brought significant survival

benefits to cancer patients by activating the immune system to

eliminate cancer cells (65). However, its clinical application is

limited by its low response rate in cancer treatment (66). This

study used TIDE and IPS algorithms to predict that patients in the

low-risk group had lower TIDE scores, higher immunotherapy

response rates, and higher IPS scores. This suggests that patients in

the low-risk group may exhibit better outcomes in receiving ICI

treatment compared to those in the high-risk group. Furthermore, we

predicted the sensitivity of small-molecule drugs in the treatment of

HCC in both high- and low-risk groups. The results showed

significant differences in IC50 values between the two groups,

which may help improve the precision of treatment plans and

achieve more effective liver cancer treatment. Interestingly, the

high-risk group exhibits increased sensitivity to 5-fluorouracil and

gemcitabine, two drugs that affect DNA synthesis, which may be

related to the significant activation of pathways such as the cell cycle

and DNA replication in the high-risk group. Because the above

studies suggest that patients in the low-risk group may benefit more

from immunotherapy, we integrated the results of CTRP, PRISM,

and CMap to specifically identify drugs that may be effective for

patients in the high-risk group (33–35). Finally, we identified the

tyrosine kinase inhibitor lenvatinib as a potential drug for patients in

the high-risk group. Lenvatinib (ABT-869) is a tyrosine kinase

inhibitor whose anti-angiogenic activity has been explored in many

clinical trials (67). Given its potential efficacy in the HPRGS high-risk

group of patients with HCC, this finding may provide a reference for

future research. To provide a convenient tool for quantifying HCC
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survival analysis, we constructed a nomogram that integrates HPRGS

and independent prognostic clinical features. The nomogram exhibits

good discrimination, and ROC curves, C-indices, and calibration

curves indicate its high predictive accuracy. Decision curve analysis

showed that the nomogram outperforms other clinical features in

terms of net clinical benefit.

Although our study has yielded promising results, several

limitations should be acknowledged. First, the limited clinical

data available in the public cohort may have masked potential

associations between HPRGS and certain clinical variables.

Therefore, it is necessary to conduct more comprehensive and

standardized data collection to further explore the clinical value

of HPRGS. Second, although we evaluated and validated the

HPRGS in training and validation cohorts, large-scale,

multicenter prospective studies are needed to further confirm our

findings. In addition, in vitro and in vivo studies are required to

reveal the biological functions of HPRGS-related genes in HCC.

Finally, although we predicted the sensitivity of high- and low-risk

groups to various small-molecule drugs, our predictions need to be

validated through in vitro drug screening and clinical trials. Despite

these limitations, our findings provide useful insights for risk

assessment and precision medicine treatment of HCC and lay a

foundation for further research in this area.
5 Conclusions

In conclusion, our study presents the development and validation

of the HPRGS, offering a potent tool for predicting survival outcomes

and treatment responses in HCC patients. The signature’s ability to

delineate distinct subgroups with unique pathway activities and

tumor microenvironments provides insights into HCC

heterogeneity. Moreover, our exploration of potential therapeutic

agents for high-risk patients, aiming to improve prognoses and refine

treatment strategies in HCC management.
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