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Immune dysregulation as a driver
of bronchiolitis obliterans
Kuimiao Deng and Gen Lu*

Department of Respiration, Guangzhou Women and Children’s Medical Centre, Guangzhou Medical
University, Guangzhou, Guangdong, China
Bronchiolitis obliterans (BO) is a disease characterized by airway obstruction and

fibrosis that can occur in all age groups. Bronchiolitis obliterans syndrome (BOS)

is a clinical manifestation of BO in patients who have undergone lung

transplantation or hematopoietic stem cell transplantation. Persistent

inflammation and fibrosis of small airways make the disease irreversible,

eventually leading to lung failure. The pathogenesis of BO is not entirely clear,

but immune disorders are commonly involved, with various immune cells playing

complex roles in different BO subtypes. Accordingly, the US Food and Drug

Administration (FDA) has recently approved several new drugs that can alleviate

chronic graft-versus-host disease (cGVHD) by regulating the function of immune

cells, some of which have efficacy specifically with cGVHD-BOS. In this review,

we will discuss the roles of different immune cells in BO/BOS, and introduce the

latest drugs targeting various immune cells as the main target. This study

emphasizes that immune dysfunction is an important driving factor in its

pathophysiology. A better understanding of the role of the immune system in

BOwill enable the development of targeted immunotherapies to effectively delay

or even reverse this condition.
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1 Introduction

Bronchiolitis obliterans (BO) is a chronic, irreversible pulmonary disease characterized by

small airway obstruction and/or occlusion and peripheral and distal bronchiolar fibrosis (1).

Typical signs and symptoms include dyspnea, wheezing, and hypoxemia. However, the

patient may be asymptomatic, and BO can be diagnosed at an early stage by pulmonary

function test (PFT) and computed tomography (CT) (2). The presence of obstructive airflow

patterns in PFT and air trapping detected by CT during exhalation are characteristic

indicators of BO (3). BO can occur in all ages, but its etiology differs in children and

adults. Bronchiolitis obliterans syndrome (BOS) is a clinical manifestation of BO in patients

who have undergone lung transplantation or hematopoietic stem cell transplantation (HSCT)

(3). BO occurs in different diseases and is thus variously categorized under different medical

terms. Chronic lung allograft dysfunction (CLAD)-BOS and chronic graft-versus-host disease
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(cGVHD)-BOS are the most common etiologies in adults (4), whereas

post-infection-BO (PIBO) most commonly affects children (5).

PIBO is one of the rare complications of severe lower

respiratory tract infections (6). Although PIBO can occur in

patients of any age, it is more common in children, most often in

association with adenovirus infection (7–10). However, other

viruses (e.g., influenza, parainfluenza, respiratory syncytial virus,

human metapneumovirus, human immunodeficiency virus-1,

measles, cytomegalovirus, Sars-Cov-2) and bacteria (Mycoplasma

pneumoniae, Legionella pneumophila, Bordetella pertussis) can also

cause PIBO in the event of severe lower respiratory tract infection

(11, 12). Based on histopathological features, BO can be categorized

into two types: 1) proliferative BO, characterized by granulation

tissue polyps obstructing the small airway, and 2) contractile BO,

marked by peribronchiolar fibrosis resulting in varying degrees of

lumenal constriction. As the disease progresses, the histological

features of PIBO primarily exhibit a contractile pattern,

accompanied by variable degrees of dilatation and airway

obstruction (13). The pathological manifestations of patients with

PIBO vary greatly, and the involvement of bronchioles is

heterogeneous. Other signs of persistent airway disease in PIBO

include bronchiolitis, mucus deposition, macrophage aggregation,

and bronchiole distortion and expansion (13–15).

Lung transplantation is considered to be the best treatment

option for patients with end-stage lung disease (16). CLAD is an

umbrella term used to define a persistent (≥3 weeks) decline in

pulmonary function (forced expiratory volume in 1 second (FEV 1),

with or without a decline in forced vital capacity) of ≥10% from

baseline (17). CLAD is the main cause of death one year after

transplantation, and BOS is the most common CLAD phenotype. In

the survival of lung transplant recipients, the prevalence rate of

CLAD-BOS is 50% after 5 years and 76% after 10 years (16). From

the perspective of histopathology, BOS is characterized by the

accumulation of extracellular matrix under the mucosa, partial

destruction of the original smooth muscle layer, or myocyte

proliferation, and ultimately complete airway obstruction (3).

Antibodies play an important role in the occurrence and

development of CLAD-BOS. Graft-reactive antibodies can induce

the activation of the complement system and the degradation of

lung tissue, leading to the formation of CLAD-BOS (18).

BOS is a rare complication of allogeneic HSCT, characterized by

fixed airflow obstruction after allogeneic HSCT. The incidence of

BOS in allogeneic HSCT recipients is about 2-3%, but it can reach

6% in patients with cGVHD (19, 20). The early processes leading to

BOS in cGVHD are different from those in CLAD, but the final

histological changes are relatively similar (21). However, the

etiology of BOS is still unknown. Allogeneic recognition of lung

antigens may be the cause of this disease, and BOS involves

allogeneic immunity, namely HSCT graft-versus-host (lung)

disease. In fact, in cGVHD, lung epithelium may be a target of

donor cytotoxic T cells, supporting the hypothesis that BOS is the

manifestation of cGVHD in the lungs (22).

This paper summarizes research on patients with BO and

animal models and reviews the roles of various immune cells,

including macrophages, neutrophils, eosinophils, natural killer

(NK) cells, B lymphocytes, and T lymphocytes, on BO onset and
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progression. The most common cause of PIBO is adenovirus

infection. Castleman et al. (23) induced beagle dogs with

adenovirus to establish a BO model that adequately reflects the

pathophysiological process of BO formation caused by viral

infection. However, owing to the considerable costs associated

with large animal breeding and experimentation, the model is

hindered from widespread adoption. Rodent models are therefore

more commonly used, due to lower costs, simpler procedures, and

easier reproducibility. However, because respiratory bronchioles are

absent or rare in rodents, such studies cannot sufficiently reflect the

complexity of clinical BO (24, 25). Hence, the relevance of virus-

induced BO rodent models has yet to be validated. For non-

transplantation models, diacetyl (26), nitric acid (27), chlorine

(28), sulfur mustard (29), and papaverine (30) are currently used

more frequently. Still, although these animal models can develop

airway obstruction and even fibrosis, they cannot accurately reflect

the pathophysiological process of BO. In turn, human research on

BO relies on tissue specimens, but histological confirmation is often

difficult due to insufficient diagnostic sensitivity of bronchoscopic

biopsy specimens. Despite these caveats, animal models that

effectively simulate human pathophysiological changes often

provide detailed mechanistic insights, which are challenging to

obtain in human research.
2 The role and mechanisms of
immune cells in
bronchiolitis obliterans

2.1 Monocytes and macrophages

Monocytes and macrophages are multifunctional immune cells

that exist or infiltrate tissues and crucially influence innate

immunity, normal tissue development, homeostasis, and repair of

damaged tissues (31). Macrophages are involved in various

conditions and diseases, such as inflammation, tumors, and

autoimmune disorders, and play essential roles in eliminating

pathogens and regulating immune function (32, 33). Alveolar

macrophages (AM) serve as the primary defenders for the airways

and alveoli against pathogens, while pulmonary interstitial

macrophages act as vital gatekeepers for the vascular system and

pulmonary interstitium (34) (Figure 1).

Macrophages play a major role in the occurrence and

development of BO. Duecker et al. (35) found that the percentage

of macrophages in the sputum of patients with PIBO was

significantly lower than that of healthy controls. Similarly, Palmer

et al. (36) found that on day 1 post-induction, AM numbers in an

animal model of BO were significantly higher than in the control

group, while on days 3 and 7, AM abundance decreased slightly.

O’Koren et al. (37) observed that AM levels rose during the initial

phase and declined during the subsequent phase. In this model,

infiltration of inflammatory cells, particularly monocytes and AM,

preceded the development of intraluminal lesions, which

manifested typically after 7 days of chlorine exposure. Meanwhile,

suggesting the potential value of anti-TNF-a therapy in CLAD-
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BOS, it was further reported that classically activated macrophages

adjacent to bronchial epithelial cells of lung transplant patients

show increased secretion of TNF-a and IL-1b, in parallel with

significantly enhanced epithelial-mesenchymal transition (EMT)

driven by transforming growth factor beta-1 (TGF-b1) (38). This
indicates that anti-TNF-a can inhibit macrophages driven EMT

function and thus treat BOS.

Macrophage dysfunction appears to be involved in the

pathogenesis of BOS after lung transplantation, and potential

therapeutic targets might be derived from the underlying

mechanisms (39). It is controversial whether the main source of

AM after transplantation comes from the donor or the recipient.

Nayak et al. (40) demonstrated that >94% of AM in the

bronchoalveolar lavage fluid (BALF) of human lung transplant

recipients are sourced from the donor, being the predominant

macrophage subset for at least 2 to 3 years after transplantation

(41). The inflammatory cascade reaction caused by donor-derived

AM leads to the injury of airway epithelium, which eventually leads

to the obstructive airway disease of transplanted lung. However,

Snyder et al. (42) found that about 2 years post-transplantation, the
Frontiers in Immunology 03
proportion of donor macrophages in lung recipients was only about

10.5%. Similarly, after HSCT, the majority of infiltrating AM

appears to originate from the donor’s hematopoietic cells (43).

Thus, there are conflicting data on the proportion of donor-derived

AM in lung transplant recipients.

Based on the activation state and function of macrophages,

these cells can be categorized into an M1 phenotype (classically

activated macrophages) and an M2 phenotype (alternatively

activated macrophages) (44). M1 macrophages are primarily

involved in immune responses such as microbial killing and anti-

tumor effects, while M2 macrophages are primarily involved in

immune suppression and tissue repair. Both macrophage types play

essential roles in the immune system, maintaining a dynamic

equilibrium. Although the classification of macrophage

phenotypes into a M1 and M2 category is oversimplified, the

extreme heterogeneity of response to stimuli highlights the need

for a better understanding of the function of macrophages in

human pathology. The AM observed in the early phase of

cGVHD-BOS are positive for CD68 and inducible nitric oxide

synthase and negative for CD163 and CD206, suggesting an M1
FIGURE 1

Immune cells in bronchiolitis obliterans (BO). There are three main entities of BO: post infection BO; BO after stem cell transplantation and BO after
lung transplantation. Macrophages, neutrophils, eosinophils, Th1 and Th17 cells may contribute to disease progression, while Th2, NK, and Tregs
seem to have controversial roles. The balance between Tregs and Th17 cells is implicated in pulmonary fibrosis. MPO, Myeloperoxidase; ECM,
Extracellular matrix; Treg cell, Regulatory T cell; NK cell, Natural killer cell; APC, Antigen-presenting cells; MT1H, Metallothionein-1H; NKG7, Natural
killer cell granule protein 7.
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phenotype. This suggests that donor-derived M1-AM may

contribute to the pathogenesis of the early phase of cGVHD-BOS,

while AM exhibiting M2 polarization potentially participate in

fibrosis in the late phase (43).

During the formation of fibrotic scars, various cells secrete

platelet-derived growth factor (PDGF) in response to injury, and

many pro-inflammatory cytokines facilitate their mitogenic

effects through the autocrine secretion of PDGF. Through

immunohistochemical and in situ hybridization studies on tissue

sections and BALF cells of patients with CLAD-BOS, it was found

that AM are one of the cell sources of PDGF (45). TGF-b also plays

a significant role in pulmonary fibrosis. During the acute

complications of lung transplantation, AM are initially activated,

leading to excessive secretion of interleukin-6 (IL-6), which

mediates tissue repair (46). High airway TGF-b activity can

enhance the expression of chemokine ligand 2 (CCL2) in AM,

resulting in the development of BO mouse model driven by CCR2+

monocytes (47). It can thus be questioned whether the severity of

BO rat model can be reduced by inhibiting the number and

activation of AM. It was shown that macrophage depletion with

GdCl3 significantly reduced the development of occlusive airway

disease in experimental heterotopic tracheal allografts, resulting in a

decrease in PDGF mRNA expression (48). In turn, inhibition of

macrophage migration inhibitory factor (MIF) significantly

prevented tracheal epithelial and luminal occlusions caused by

fibrosis, reflecting blockade of MIF-related adverse immune

reactions associated with allograft rejection (49).

Interestingly, Alexander et al. (50) reported that colony-

stimulating factor 1 (CSF-1)-dependent donor derived

macrophages mediate the occurrence of cGVHD in mouse

models. Axatilimab is a hinge-stabilized IgG4k antibody targeting

the CSF-1 receptor, which is the first cGVHD therapeutic drug

targeting disease-related macrophages (51). Among patients

receiving approved doses of 0.3mg/kg niktimvo every two weeks

(N=79), 75% of patients achieved an overall response rate (ORR)

within the first six months of treatment. The pulmonary response

rate was 50%, with 16 patients showing complete response (52). In

2024, the US Food and Drug Administration (FDA) has recently

granted axatilimab orphan drug designation for patients with

cGVHD and idiopathic pulmonary fibrosis.
2.2 Neutrophils

During pulmonary infections, neutrophils are recruited to fend

off further immune cell recruitment by engulfing necrotic cells.

Concurrently, they facilitate tissue growth and neovascularization

by releasing cytokines and synthesizing granule enzymes, playing an

important role in tissue breakdown and repair (53). Neutrophils are

persistently activated at sites of chronic inflammation, fueling

the inflammatory process through the release of proteases,

the formation of neutrophil extracellular traps (NETs), and the

activation of other immune cells (54). As key players in chronic

respiratory disorders, neutrophils are integral to the progression of

conditions such as chronic obstructive pulmonary disease (COPD),

asthma, and pulmonary fibrosis (55).
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The characteristic airway fibrosis in BO is due to the inability of

the airway epithelium to repair normally after injury (1). In this

context, a large number of T cells and neutrophils functionally

replace epithelial cells, followed by matrix degradation, collagen

deposition, and fibroblast stimulation, ultimately leading to airway

fibrosis (6). It was reported that patients with BO/BOS showed a

significant increase in the percentage of neutrophils in BALF,

sputum, and on histopathology (56–59).

Due to neutrophils’ capacity to induce ongoing airway

remodeling and inflammation, their recruitment and activation

may cause harm to the lung tissue of patients with CLAD-BOS

(60, 61). Azithromycin can significantly reduce the number of airway

neutrophils in patients with CLAD-BOS, which may be one of the

mechanisms behind its therapeutic effects (62). The early increase of

neutrophils in BALF has a predictive effect on the occurrence of BOS

within 12 months after lung transplantation. By monitoring the

number of neutrophils in BALF, CLAD-BOS can be determined

earlier (63). Therefore, interrupting neutrophil-dependent pathways

may mitigate tissue damage in BO/BOS. A phase I clinical trial of

alvelestat (n = 7), an inhibitor of neutrophil elastase (NE), has been

used in patients with cGVHD-BOS. In this trial, 6 patients had stable

disease, while 1 patient had progression in the setting of pneumonia.

Moreover, 2 patients had improvement in FEV1 of 9%, and 4 patients

experienced improvement in symptoms (64).
2.3 Eosinophils

Elevated blood counts of eosinophils, a type of innate immune

cell, are closely linked to the severity of pulmonary fibrosis (65).

Under the influence of inflammatory mediators, activated

eosinophils induce fibroblasts to produce IL-6 and other pro-

fibrotic cytokines (66). Through autocrine or paracrine

mechanisms, these cytokines cause the fibroblasts to proliferate

and differentiate into myofibroblasts. This results in excessive

deposition of extracellular matrix (ECM) within the lung

parenchyma, ultimately leading to pulmonary fibrosis. In patients

with CLAD-BOS, eosinophil counts also rise, potentially serving as

effector cells to exacerbate disease symptoms (67). Using a cut-off of

≥2% eosinophils, a BALF eosinophilia was recorded in patients with

CLAD-BOS (25/79; 31.6%), compared to control lung transplant

patients without BOS (41/277; 14.8%).

Montelukast is a potent, specific cysteinyl leukotriene receptor

antagonist which can significantly decreases blood eosinophils (68).

Suguru et al. (69) found that eosinophilia after allogeneic HSCT

occurs before the onset of cGVHD, and early eosinophilia may

predict the occurrence of cGVHD in children. A phase II clinical

trial was shown that montelukast stabilized FEV1% predicted in all

patients with cGVHD-BOS (n=23/23, 100%) at six months,

improved compared to historical controls (60%) (70).
2.4 Natural killer cells

NK cells coordinate both innate and adaptive immune

responses by stimulating the maturation of dendritic-like cells
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and B cells, the polarization of helper T cells, and the activation of

cytokines in T cells (71). Notably, NK cells can exert pro-fibrotic

(72) and anti-fibrotic (65, 73) effects and may play, through the

production of inflammatory mediators, a crucial role in transplant

rejection (74). In patients with CLAD-BOS, the number of NK cells

in peripheral blood and BALF increases (75–77). Evidence indicates

that activated NK cells can exacerbate the severity of CLAD-BOS,

and were associated with long-term graft dysfunction and decreased

CLAD-free survival (76). In this regard, NK cells were shown to

exert harmful effects by interacting with donor-specific antibodies

(78, 79), and to exacerbate airway obstruction in allogeneic

transplants (80). In patients with CLAD-BOS, there was an

increase in NK cells and cytotoxic molecules in NK cell derived

exosomes. Injection of anti-NKG2D blocking antibody can alleviate

the development of BO in allografted mice by inhibiting the

activation of NK cells (81). Controversially, NK cells can also

promote tolerance in solid organ allografts by killing donor

antigen-presenting cells (APC), which correlates with improved

survival (82). In turn, it was reported that NK cells can alleviate the

severity of cGVHD-BOS by inhibiting the proliferation of

transplanted T cells (83). Due to the important role of NK cells in

cGVHD, some drugs are being developed with the intent of

exploiting the above mechanisms (84, 85).
2.5 Lymphocytes

The role and function of B and T lymphocytes in BO

pathophysiology are complex and controversial, and evidence

suggests that their interaction may either promote or inhibit the

progression of the disease. B cells function by producing antibodies,

which mediate humoral immunity, and cytokines that contribute to

immune modulation (86). Moreover, B cells can activate antigen-

specific CD4+ and CD8+ T cells, and present antigens to already

activated T cells. Traditionally, T cells are considered key cells

involved in transplant rejection (87).

Lymphocyte infiltration, lymphoid follicles, and bronchus-

associated lymphoid tissue hyperplasia are often observed in BOS

(6). Several drugs with regulatory effects on lymphocyte function

are being currently evaluated in clinical trials and have the potential

to be applied in the treatment of various types of BOS. It is

necessary to understand the mechanism of lymphocytes in BO

disease for treatment.
2.6 B cells

B cells can function as effector cells and regulatory cells in BOS,

and it is important to balance these two roles in disease treatment. B

lymphocytes promote CLAD-BOS by producing antibodies and

presenting antigens through major histocompatibility complex

(MHC) molecules (88). Due to antigen presentation, T cell co-

activation, and the production of donor-specific antibodies, B cells

are traditionally considered to be an important factor in chronic

graft failure (89). B cells play an essential role in hyperacute

rejection, which is caused by recognition of donor antigens by
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preexisting antibodies after organ transplantation (86). Regulatory

B (Breg) cells secrete the anti-inflammatory factors IL-10 and TGF-

b1, which inhibit the progression of CLAD-BOS (90). Smirnova

et al. (91) found that B cells are the main source of local antibody

production and a major contributor to CLAD-BOS. An animal

study by Texier et al. (92) reported that allografts are infiltrated by a

large number of B cells organized in germinal centers. These

aggregates are strongly regulated in their IgG alloantibody

response, and exhibit an inhibited and regulatory profile.

The accurate identification of biomarkers predictive of BOS can

improve the prognosis for patients. Compared with patients

without cGVHD, the percentage of CD19+CD21low B cells, as well

as B cell-activating factor (BAFF) levels and the BAFF/CD19+ ratio,

are notably elevated in patients with newly diagnosed BOS.

Accordingly, an elevated frequency of CD19+CD21low B cells was

proposed to represent a potential novel biomarker for predicting

early risk of BOS in HSCT patients, potentially impacting prognosis

(93). B cells play a pivotal role in antigen presentation in

autoimmune diseases (94), and their function is particularly

evident at low antigen thresholds. Cytokines can trigger an

immune response to self-antigens, leading to the development of

BO after administering anti-MHC antibodies. Nevertheless, B cells

exhibit abnormal survival and maturation in BOS (95).

Srinivasan et al. (96) found that the development of BO in

mouse models required the deposition of allogeneic antibodies from

donor B cells and the formation of germinal centers. Ibrutinib, a

small molecule drug that inhibits the B cell receptor pathway, has

been approved by the FDA for the treatment of cGVHD (97).

Although entospletinib combined with steroids as frontline

treatment for cGVHD was terminated for lack of efficacy,

fostamatinib (phase I trial) produced an ORR of 77% and allowed

for a strong and durable steroid-sparing effect (98). Meanwhile,

phase II clinical trials are currently ongoing to test the clinical

efficacy of rituximab (the clinical response rate was 70%) (99) and

ofatumumab (the ORR was 62.5%) (100), two monoclonal

antibodies which are specific anti–B-cell therapy and beneficial

for patients with steroidrefractory cGVHD.
2.7 CD8+ T cells

The primary function of CD8+ T lymphocytes is to identify

endogenous antigens, directly kill intracellular and extracellular

pathogens, and eliminate infected, mutated, and cancerous cells

(101). After lung transplantation, CD8+ T cells exhibit high

cytotoxic activity and pro-inflammatory properties. A study

described the presence of inflammatory infiltration of bronchioles

in lung biopsies of 23 children with BO, and compared it with the

infiltration of histologically normal airways (102). It was found that

CD3+ T cells were the most common cell type in BO patients,

represented mainly by the CD8+ T cell subtype. In addition, lung

histopathology showed that CD4+ and CD8+ T cells were also

significantly increased in animal models of BO (103).

BOS is associated with steroid resistance, down-regulation of

CD28 expression in pro-inflammatory CD8+T cells in peripheral

blood, and upregulation of selective costimulatory molecules (104).
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Increased abundance of cytotoxic/pro-inflammatory CD8+T cells,

in association with exacerbated fibrosis, has been demonstrated in

small distal airways in CLAD-BOS (105, 106). Khatri et al. (107)

found that cytotoxic CD8+T cells not only accumulate in CLAD-

BOS lungs, but also lead to targeted basal cell death in early CLAD-

BOS airways. These findings suggest that infiltrating CD8+ T cells

contribute importantly to the progression of BOS.

Patients with CLAD-BOS may exhibit relative resistance to

immunosuppressive agents, including glucocorticoids (GC),

which limits the effectiveness of immunosuppressive therapy to

prevent pro-inflammatory cytokine secretion (108). Specifically,

the stimulation and activation of CD8+ T cells during the disease

process further accentuates this resistance, which may be

associated with reduced GC receptor (GCR) expression in pro-

inflammatory CD8+ T cells. Decrease expression of inhibiting p-

glycoprotein-1 in GC-resistant T-cells would be further increased

GCR in patients with CLAD-BOS. Therefore, upregulating GCR

expression in CD8+ T cells may improve the prognosis of CLAD-

BOS. T cells can induce epithelial cell apoptosis through the

secretion of granzyme B, and inhibiting this enzyme can reduce

the incidence of CLAD-BOS (18). Also, the upregulation of the

gene encoding granzyme A in CD8+ T cells during homing to

lymphoid tissues is linked to the activation of the non-canonical

NF-kB pathway (95). However, gabexate mesylate, a synthetic

serine protease inhibitor, and methylprednisolone, a synthetic

GC, showed no impact on the production of granzyme B in CD8+

T cells in vitro, while tacrolimus and cyclosporine A, which

inhibit IL-2 production, exhibited only modest effects (109).

These findings indicate a clear need to identify effective T cell-

targeted immunosuppressants for the prevention and treatment

of CLAD-BOS (110).
2.8 Th1/Th2 cells

In 1986, Mosmann et al. identified two different types of CD4+ Th

cells (later defined as Th1 and Th2) that exhibited distinct cytokine

profiles (111). One theory of immunemodulation posits that Th1 and

Th2 cells operate between states of stability (112), directing distinct

immune response pathways through the production of cytokines.

Th1 cells produce interferon (IFN)-, IL-2 and tumor necrosis factor

(TNF)-, which cause phagocyte dependent inflammation. Th2 cells

produce IL-4, IL-5, IL-6, IL-9, IL-10 and IL-13, which cause strong

antibody response and inhibit the functions of phagocytes (113).

Specifically, Th1 cells can stimulate macrophages through TNF and

IFN, driving cellular immunity against viruses and other pathogens. It

can also trigger delayed type hypersensitivity skin reactions. Th2 cells

drive in turn humoral immunity, by inducing the production of

antibodies by B cells to combat pathogens. While in healthy subjects

the balance between Th1 and Th2 is in a state of dynamic

equilibrium, alterations in either pathway can influence the other,

and overactivation of either pathway can lead to the onset and

progression of diseases. Indeed, research has shown that the Th1/

Th2 balance plays a pivotal role in the progression of pulmonary

diseases (114–116).
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Lymphocytes infiltrating in BOS-affected lungs release a variety

of inflammatory cytokines, especially Th1 cytokines (105, 117, 118).

Th1 cytokines are significantly elevated in peripheral blood, BALF,

and lung tissue of patients with BO/BOS (103, 109, 119–121).

However, studies have shown that there was no significant

difference in the levels of IFN-g, IL-4, and IL-10 between the

peripheral blood of children with PIBO and that of healthy

controls, suggesting that Th1/Th2 imbalances may not be related

to PIBO pathophysiology (122). In turn, whether Th2 cells mediate

pro-fibrotic or anti-fibrotic effects in BO is controversial. Th2 cells

can accelerate rejection by releasing pro-inflammatory and potent

pro-fibrotic mediators such as IL-4, IL-6, and IL-13 (39, 123, 124).

However, by releasing IL-10, Th2 cells can reduce the severity of

cGVHD in animal models (125). These findings suggest that Th2

cells have different effects on BOS and fibrosis in different

pathophysiological contexts.

A Phase II clinical trial (n =10) to assess aldesleukin, a

recombinant analog of IL-2, was conducted for treatment of

steroid-refractory cGVHD. The response rate was 80% when

assessed by intent to treat in this trial (126). Besides, a potential

Th2-targeted therapy is represented by romilkimab, a bispecific

IL-4/IL-13 neutralizing antibody that is being evaluated in a phase

II clinical trial as anti-fibrosis treatment in systemic sclerosis (127).

Romilkimab (n = 47) resulted in a statistically significant decrease in

modified Rodnan skin score (mRSS) from baseline to week 24

versus placebo (n = 48) in this trial. However, more research is

needed to develop drugs targeting Th1-dependent inflammation, as

TNF-a blockade failed to improve small airway obstruction in

rheumatoid arthritis patients (128).
2.9 Th17 cells

The process by which CD4+ T cells differentiate into Th cells is

influenced by specific cytokines and costimulatory molecules acting

on the T cell receptor (TCR) (129). Th17 cells, a subset of effector

Th cells, secrete cytokines and exert effects that are distinct from

those of Th1 and Th2 cells (130). Evidence shows that Th17 cells

primarily contribute to the onset of various autoimmune and

inflammatory diseases via secretion of IL-17, which acts on a

variety of cells, including endothelial, mesenchymal, epithelial,

and hematopoietic cel ls (131). Through IL-17-related

mechanisms, Th17 cells participate in immune regulation and

pathophysiological changes of lung diseases such as COPD,

asthma, pulmonary fibrosis, pulmonary arterial hypertension, and

lung cancer, among others (132).

During the development of CLAD-BOS, Th cells are induced to

differentiate into immunomodulatory Th17 cells (133). After lung

transplantation, IL-17 mRNA levels in the BALF of patients with

CLAD-BOS were shown to be significantly increased compared to

clinically stable lung transplant recipients. In mouse models, there is

a correlation between IL-6 and IL-17 levels and tracheal

obstruction, and blocking IL-6 can mitigate allograft fibrosis by

decreasing the IL-17 transcripts (134). Th17 cells may indeed

represent key regulators of airway fibrosis, as inhibiting the
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function of Th17 cells was shown to reduce the severity of airway

fibrosis in BO (103, 135).

Th17 cells play also a deleterious role in cGVHD. Forcade et al.

(136) showed that belumosudil, a rho-associated coiled-coil kinase

2 (ROCK2) inhibitor, decreases both severity of murine BO and

clinical scores in sclerodermatous cGVHD through inhibition of

STAT3 and activation of STAT5. Besides, belumosudil was

associated with a best ORR of 32% for patients with early stages

of cGVHD-BOS (137). In 2021, the FDA approved belumosudil for

the treatment of cGVHD after failure of at least two prior lines of

systemic therapy (97).
2.10 Regulatory T cells

Treg cells (Tregs) are specialized CD4+ T cells typically defined

by expression of FOXP3 and CD25 (IL-2 receptor alpha chain)

(138). The inhibitory functions of Tregs are crucial to limit

inflammation, maintain peripheral tolerance, and curtail the

development of autoimmune and autoinflammatory diseases,

allergies, acute and chronic infections, cancer, and metabolic

inflammation (139). Ample evidence supports the involvement of

Tregs in the regulation of immune cell interactions in lung diseases,

including parasitic infections, pneumonia, COPD, asthma, fibrosis,

and lung cancer (90, 140).

Tregs may enhance EMT and contribute to the progression of

pulmonary fibrosis by secreting cytokines such as PDGF and TGF-b,
or curb its progression by facilitating the repair of damaged epithelial

cells, suppressing fibroblast accumulation, and inhibiting the

production and activity of pro-inflammatory factors and cells (141).

However, the role of Tregs in lung fibrosis is controversial, as

they were shown to alternatively promote and inhibit fibrosis by

enhancing inflammation and contributing to tissue repair,

respectively (142, 143). The balance between Tregs and Th17 cells

is implicated in pulmonary fibrosis. Th17 mediate autoimmune

responses and inflammation, whereas Tregs suppress inflammation

and ensure immune homeostasis (144). It was reported that within

3 years after lung transplantation, the proportion of circulating

Tregs was significantly higher in patients with BOS than in patients

with non-BOS. The risk of BOS in patients with increased

proportion of Tregs after transplantation was 2 times higher than

that in patients without increased proportion of Tregs (145).

Likewise, BO was more severe in animal models implanted with

peripheral blood mononuclear cells depleted of CD4+ CD25high

cells, which suggests that Tregs may have a protective effect on BOS.

Accordingly, studies revealed that Tregs can reduce airway fibrosis

in mice that developed BO after heterotopic bronchial

transplantation (146, 147). However, other studies suggested that

Tregs may exert instead pro-fibrotic roles. In mice with ischemic

cardiomyopathy, Tregs ablation alleviated hypertrophy and

myocardial fibrosis (148). Similarly, in renal fibrosis animal

models, inhibiting Tregs differentiation was shown to reduce

fibrosis (149). These findings suggest that Tregs have different

effects on fibrosis in different pathophysiological contexts.
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Extensive efforts are made to develop therapies targeting Tregs.

Ruxolitinib, a JAK-STAT pathway inhibitor, can decrease collagen

deposition and improve lung function in a mouse model of cGVHD

by reducing the polarization of CD4+ T cells towards IFN-g and IL-

17A-producing cells and increasing their conversion to Tregs (150).

A phase II multicenter trial of ruxolitinib to treat cGVHD-BOS

showed that newly diagnosed BOS experienced more dynamic early

changes in FEV1 while established BOS was stable, comparing PFTs

at baseline. The best lung-specific ORR for the entire study is 34%

(151). In 2021, the FDA approved ruxolitinib for the treatment of

cGVHD after failure of one or two lines of systemic therapy (97).
3 Conclusion

Studies on patients and animal models indicate that immune

dysregulation contributes to the onset and progression of airway

obstruction and fibrosis in BO. Immune cells interact with each

other and influence pathophysiological changes by secreting

cytokines to regulate effector cells. In different BO subtypes,

macrophages, neutrophils, eosinophils, Th1, and Th17 cells may

contribute to disease progression, while Th2, NK, and Tregs seem to

have controversial roles (Figure 1). cGVHD-BOS is treated with

steroids – with ruxolitinib, belumosidil, and now potentially

axatilimab for steroid refractory disease. In addition, systemic

steroids, fluticasone-azithromycin-montelukast and inhaled long-

acting bronchodilator are first-line treatment options for CLAD-

BOS. However, none of these drugs are likely to reverse advanced

fibrosis/severe obstruction. As research progresses on the complex

interplay between immune cells shaping BO development, immune

therapy and targeted immune modulators may emerge.
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