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RNA sequencing reveals
immune-related SPP1+
macrophages as a potential
strategy for predicting the
prognosis and treatment
of liver fibrosis and
hepatocellular carcinoma
Bangjie Li1,2, Jialiang Hu1,2* and Hanmei Xu1,2*

1Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation,
China Pharmaceutical University, Nanjing, China, 2State Key Laboratory of Natural Medicines, Ministry
of Education, China Pharmaceutical University, Nanjing, China
Background: Liver fibrosis is a pathological response to liver damage induced

by multiple etiologies including NASH and CCl4, which may further lead

to cirrhosis and hepatocellular carcinoma (HCC). Despite the increasing

understanding of liver fibrosis and HCC, clinical prognosis and targeted therapy

remain challenging.

Methods: This study integrated single-cell sequencing analysis, bulk sequencing

analysis, and mouse models to identify highly expressed genes, cell subsets, and

signaling pathways associated with liver fibrosis and HCC. Clinical prediction

models and prognostic genes were established and verified through machine

learning, survival analysis, as well as the utilization of clinical data and tissue

samples from HCC patients. The expression heterogeneity of the core

prognostic gene, along with its correlation with the tumor microenvironment

and prognostic outcomes, was analyzed through single-cell analysis and

immune infiltration analysis. In addition, the cAMP database and molecular

docking techniques were employed to screen potential small molecule drugs

for the treatment of liver fibrosis and HCC.

Result: We identified 40 pathogenic genes, 15 critical cell subsets (especially

Macrophages), and regulatory signaling pathways related to cell adhesion and the

actin cytoskeleton that promote the development of liver fibrosis and HCC. In

addition, 7 specific prognostic genes (CCR7, COL3A1, FMNL2, HP, PFN1, SPP1

and TENM4) were identified and evaluated, and expression heterogeneity of core

gene SPP1 and its positive correlation with immune infiltration and prognostic

development were interpreted. Moreover, 6 potential small molecule drugs for

the treatment of liver fibrosis and HCC were provided.
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Conclusion: The comprehensive investigation, based on a bioinformatics and

mouse model strategy, may identify pathogenic genes, cell subsets, regulatory

mechanisms, prognostic genes, and potential small molecule drugs, thereby

providing valuable insights into the clinical prognosis and targeted treatment of

liver fibrosis and HCC.
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Introduction

Liver fibrosis and hepatocellular carcinoma are two critical stages

in the development of liver disease and are closely related. Hepatic

fibrosis, a pathological response to liver injury caused by multiple

etiologies (including NASH and CCl4), is characterized by abnormal

proliferation of fibrous tissue and excessive collagen deposition in the

liver due to an imbalance between increased synthesis and insufficient

degradation of extracellular matrix (ECM) (1–3). Although there may

be no obvious symptoms in the early stage of liver fibrosis except

fatigue, loss of appetite and abdominal pain, with the increase of

fibrous tissue, the structure and function of the liver will be gradually

damaged, leading to cirrhosis and hepatocellular carcinoma (HCC)

(4–6). Currently, HCC remains one of the most commonmalignancies

in the world and the fourth leading cause of cancer-related death, with

an approximately 20% 5-year survival rate (7, 8). However, the early

diagnosis rate of HCC is extremely low due to the rapid growth and

inconspicuous early symptoms (except weight loss and abdominal

pain), and most cases are already in the middle and late stages when

clinically diagnosed (9, 10).

The current diagnostic methods for HCC mainly comprise

serum tumor marker detection (alpha fetoprotein, AFP), imaging

examination including ultrasound, computed tomography (CT),

magnetic resonance imaging (MRI), and positron emission

tomography/computed tomography (PET/CT), which are the

most commonly used methods in clinical practice due to their

convenience, real-time and noninvasive characteristics. In addition,

invasive liver biopsy is still widely regarded as the gold standard for

diagnosis, significantly improving the prognosis and survival rate of

patients (11–13). However, the existing diagnostic methods still

have limitations in detecting early HCC. For instance, alpha-

fetoprotein (AFP), a common diagnostic marker for HCC, does

not always provide satisfactory diagnostic accuracy. Moreover,

although CT, MRI and other imaging techniques play an

important role in the diagnosis of HCC, their detection ability for

small hepatocellular carcinoma (less than 5 cm in diameter) is

limited. In addition, the spatial resolution and contrast of these

technologies are also limited, which may not accurately identify the

subtle structures of tumors. More importantly, individual

differences and the complexity of HCC, as well as the influence of
02
tumor microenvironment, will lead to increased difficulty in

diagnosis and improper treatment (14–16). At present, the HCC

therapies mainly consist of surgical therapy (liver resection and

transplantation), local ablation, interventional therapy

(transcatheter arterial chemoembolization (TACE)), radiotherapy,

and systematic drug therapy including targeted therapy,

immunotherapy and chemotherapy, and other complementary

therapies. Among them, local therapies such as surgical resection

and ablation are considered the most effective treatment for early

HCC, but only less than 30% of HCC patients are eligible for this

treatment. Interventional therapy is the main treatment for

intermediate HCC, but the prognosis of advanced HCC patients

after treatment is still unsatisfactory (17, 18). Moreover, the

frequent recurrence and metastasis after traditional treatments

such as surgery and chemotherapy often lead to poor prognosis

for patients (19, 20). In recent years, breakthrough progresses have

been made in systematic drug therapy suitable for patients with

advanced HCC, such as targeted drugs (e.g. Sorafenib, Lenvatinib,

Apatinib and Bevacizumab) and immune drugs (e.g. Nivolumab,

Pembrolizumab, Sintilimab, and Atezolizumab), which have

improved the efficacy and prolonged the survival of patients.

However, single drug therapy is no longer sufficient to meet the

clinical treatment needs of advanced HCC, especially after

significant progress was made in the global multicenter Phase III

study called ImBrave 150 (Atezolizumab+Bevacizumab, ATZ

+BEV). Significantly, in this clinical trial, the median overall

survival (mOS) of patients increased to 19.2 months and the

objective remission rate (ORR) reached 30%, making targeted

combined immunotherapy a new standard for the first-line

treatment of advanced HCC (21–23). In summary, although the

existing diagnostic and therapeutic methods have played important

roles in the management of HCC, there are still many limitations

and efforts should be made to improve the accuracy, sensitivity and

specificity of diagnosis, as well as develop more personalized

diagnosis and treatment strategies.

Several previous studies have analyzed some genetic factors that

cause liver fibrosis or HCC, but there is a lack of specific research on

pathogenic genes, cell subpopulations and signaling pathways,

which may result in the failure of early detection and thus the

inability to successfully intervene in the clinic (24–26). Therefore, it
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is urgent to identify novel targets for the effective prediction and

targeted treatment of liver fibrosis and HCC. In the past decade, the

rapid development of deep sequencing technology and

bioinformatics technology has provided excellent opportunities

for analyzing the immunological characteristics, potential

biomarkers and therapeutic drugs of diseases at the single-cell

level (27–29).

This study integrated single-cell sequencing datasets of NASH

and CCl4-induced liver fibrosis, as well as bulk sequencing data of

independently constructed CCl4-induced mouse liver fibrosis to

screen out 40 pathogenic genes and their expression distribution in

different cell subpopulations, and identified cell adhesion and actin

cytoskeleton regulatory signaling pathways that may promote the

development of liver fibrosis. In addition, a clinical prediction

model was established and validated through machine learning,

survival analysis and clinical samples, thereby identifying a core

prognostic gene SPP1, and its expression heterogeneity between

liver fibrosis and HCC and positive correlation with immune

infiltration and prognostic development were also interpreted.

Finally, six potential small molecule drugs for liver fibrosis and

HCC were screened using the cMAP database and molecular

docking, with the aim of achieving effective prognosis and

targeted treatment for patients with liver fibrosis and HCC.
Materials and methods

The single cell sequencing data download
and processing

The single cell sequencing data of human non-alcoholic

steatohepatitis (NASH)-induced liver fibrosis, CCl4-treated mouse

liver fibrosis, and hepatocellular carcinoma patient samples

(specifically, GSE212837, GSE132662 and GSE242889) were

downloaded from the NCBI database (https://www.ncbi.nlm.nih.gov/).

Additionally, liver cancer datasets for external validation of the

model were acquired from ICGC Data Portal (https://daco.icgc-

argo.org/, a valid Google email address, such as Gmail or G Suite, is

required for logging in and obtaining ICGC controlled data access

authorization). All sequencing reads were mapped to the human

and mouse reference genome (GRCh38, GRCm38) and genome

annotations (GRCh38.84.gtf, GRCm38.102.gtf) sourced from the

Ensembl database (https://asia.ensembl.org/). Subsequent

downstream analysis was conducted using Cell ranger (30).
Visualization analysis of cell
subpopulations and differentially
expressed genes

Firstly, quality control of the single-cell sequencing data was

performed using the parameters set in the Scanpy software

developed by the 10x Genomics company. Cells were retained if

they had genes expressed in at least 3 cells and more than 200 genes

expressed per cell, as implemented by functions such as

sc.pp.filter_cells(adata, min_genes=200) and sc.pp.filter_genes
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(adata, min_cells=3). Additionally, cell filtering was also based on

the number of genes detected in each cell and the proportion of

mitochondrial gene expression relative to the total gene expression

levels in the corresponding sequencing results. Specifically, for the

NASH-derived data, the filtering parameters were set to retain cells

with fewer than 4500 genes detected (adata = adata[adata.obs

[‘n_genes_by_counts’] < 4500],): and a mitochondrial gene

expression proportion of less than 25% (adata = adata[adata.obs

[‘pct_counts_mt’] < 25],):. For the CCl4-derived data, the filtering

parameters were adjusted to retain cells with fewer than 6000 genes

detected (adata = adata[adata.obs[‘n_genes_by_counts’] < 6000],):

and a mitochondrial gene expression proportion of less than 20%

(adata = adata[adata.obs[‘pct_counts_mt’] < 20],):. Following these

filtering steps, data normalization analysis was conducted. The

single-cell gene expression data were then dimensionally reduced

and clustered, with cell types annotated using CellTypist (31).

Trajectory analysis and differential gene identification were

subsequently performed using SCANPY software (32).
Establishment of liver fibrosis model

Before conducting the liver fibrosis model experiments, 30 male

C57BL/6 mice (weighting 20-22 g and aged 6-8 weeks), obtained

from Nanjing Cavens Biotechnology Co., Ltd (Contract number:

2020112508), were acclimatized for a week in Specific Pathogen

Free (SPF) conditions at the Pharmaceutical Animal Experiment

Center of China Pharmaceutical University. The mice were divided

into a model group and a control group, with the model group

receiving intraperitoneal injections of CCl4+mineral oil for 8 weeks

and the control group receiving physiological saline for the same

time duration (33, 34). All animal experiments were conducted in

accordance with the protocols approved by the Institutional Animal

Care and Use Committee of China Pharmaceutical University and

were also approved by the Ethics Committee of China

Pharmaceutical University (Permit Number SYXK2012-0035).
Histopathological assessment

Histopathological assessment was conducted by Hematoxylin–

Eosin (H&E) staining and Masson’s trichrome staining. Briefly, the

mice’s hepatic tissues were fixed by 4% paraformaldehyde solution,

followed by gradient ethanol dehydration and embedding in

paraffin (35). The processed tissues were then cut into 5-

micrometer-thick sections, dewaxed, and stained with the

respective dyes for observation under an optical microscope

(Olympus Co., Ltd., Tokyo, Japan).
Serum levels detection of ALT and AST

Serum samples were obtained from the control group and liver

fibrosis model group of mice. Subsequently, the levels of alanine

aminotransferase (ALT) and aspartate aminotransferase (AST)

were measured using corresponding assay kits provided by
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Jiancheng Co., Ltd. (Nanjing, China), ac-cording to the

manufacturer’s protocol.
Stranded transcriptome sequencing

Liver fibrosis tissues were collected from the mice, and total RNA

was extracted using a TRIzol reagent kit (Thermofisher Co., Ltd.,

California, USA) according to the manufacturer’s protocol. The RNA

concentration and band quality were tested via NanoDrop 2000

spectrophotometer and agarose gel electrophoresis, respectively.

Qualified mRNA was then enriched, fragmented, reverse-

transcribed, purified, and sequenced using Illumina Novaseq 6000

sequencing platform by a commercial biotechnology corporation

(Gene Denovo Co., Ltd., Guangzhou, China).
RNA extraction and real-time
quantitative PCR

Hepatic stellate cells (HSCs) and LX-2 were collected from both

the control group and the liver fibrosis model group. Total RNA was

extracted from these cells using a TRIzol reagent kit (Invitrogen,

Carlsbad, USA) according to the manufacturer’s protocol. The

extracted RNA was then used to synthesize cDNA with the HiScript

III RT SuperMix for qPCR kit (Vazyme, Nanjing, China). Real-time

PCR detection was conducted using ChamQ SYBR qPCRMaster Mix

(Vazyme, Nanjing, China). GAPDH was used as the internal control

gene. The primer sequences are provided in Supplementary Table 1.
Transcriptome and clinical data analysis of
LIHC in TCGA database

The transcriptional expression profiles (n= 424) and clinical data

(n= 377) of patients with liver hepatocellular carcinoma (LIHC) were

downloaded from the TCGA database using the R package

TCGAbiolinks (36). Data extraction, classification, and differential

gene analysis were performed using TCGAbiolinks, DESeq2, edgeR

and limma (37–39), respectively. In the differential gene expression

(DEG) analysis, all genes with adjusted P values less than 0.05 and

absolute log2 fold change (log2FC) values greater than 1 were

considered statistically significant.
Construction and validation of the LIHC
−related prognostic signature

The genes highly expressed in both liver fibrosis and HCC were

selected by three methods: single-cell data analysis, transcriptome

data analysis, and mouse model construction. To further investigate

the correlation and importance of these genes with patient survival

time, only the corresponding patient survival datasets extracted

from the TCGA database were used to construct a univariate cox

proportional hazard model using the survival R package and the
Frontiers in Immunology 04
coxph function. In the process of building the prediction model for

this study, we applied a random splitting method to divided the

extracted HCC patient dataset from the TCGA database into

training and testing datasets in a 7:3 ratio. The specific code is as

follows: library(caret), set.seed(100), index <- createDataPartition

(y = exp$ID, p = 0.7, list = FALSE), train.data <- exp[index],

test.data <- exp[-index],. The filtered variables were then subjected

to Least Absolute Shrinkage and Selection Operator (LASSO)

analysis using the glmnet R package, and candidate genes were

identified for a multivariate Cox proportional hazard model based

on the optimal penalty parameter l determined by lambda.min.

Furthermore, to evaluate the performance of the constructed model,

an independent clinical cohort dataset of liver cancer patients,

known as LIRI-JP, was processed from ICGC Data Portal for

external verification of the model. Forest plot of candidate

differentially expressed genes and the nomogram plot of

significant variables were drawn using the survminer R package

and the rms R package to visualize their close relationship with the

development and prognosis of HCC. To evaluate the model’s

performance, significant variables were added to the constructed

model, and a calibration curve was drawn to compare predicted and

actual values. Furthermore, HCC patients were stratified into high-

risk or low-risk groups based on the median risk score, and the

predictive performance of the prognostic model was evaluated using

Kaplan-Meier survival analysis and time-dependent ROC analysis.

High- and low-risk heatmaps of the prognostic model were drawn

using the tidyverse R package and the pheatmap R package.
Verification of protein expression level of
hub gene in LIHC

Immunohistochemistry (IHC) images, recorded in the Human

Protein Atlas database (https://www.proteinatlas.org/), were used

to verify the protein expression of specific hub genes in LIHC

and norma l t i s sues , bo th de tec ted us ing the same

antibody (HPA027541).
Immune cell infiltration analysis

Using the CIBERSORT R package, immune cell infiltration

analysis on the differentially expressed genes derived from the

mouse liver fibrosis model was conducted, aiming to identify the

immune cell types that showed significant differences between liver

fibrosis and normal samples (40). Additionally, the TIMER2

database provides a data resource for quantifying immune cell

infiltration levels across different cancer types (41). Within the

TCGA database, the correlations between SPP1 expression and 14

immune cell subsets, including B cells, myeloid dendritic cells,

cancer-associated fibroblasts, macrophages (M0, M1, M2),

macrophages/monocytes, monocytes, neutrophils, activated NK

cells, CD4+Th2 T cells, regulatory T cells (Tregs), and myeloid-

derived suppressor cells (MDSCs) in LIHC, were analyzed using

purity-adjusted Spearman correlation analysis.
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Connectivity map analysis and
molecular docking

The CMAP database, the world’s largest gene expression profile

database, is based on perturbations of hundreds of tumors and

normal cell lines from various tissue sources. It includes

approximately 3000 small molecules with clear mechanisms of

action (MOA), affected pathways, and target proteins, revealing

relationships between diseases, genes and drugs (42, 43). The

normalized connectivity score (NCS) represents the enrichment

of transcriptional differences after perturbations, with negative

values indicating opposite directions of transcriptional regulation.

Therefore, 40 highly expressed genes were uploaded into the cMAP

database to search for potential small molecule drugs for the

treatment of liver fibrosis and HCC. Subsequently, the normalized

connectivity score (NCS) was sorted in ascending order and all

compounds with NCS less than -2 were screened. The three-

dimensional structures of these compounds were downloaded

from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/)

and used as ligands for molecular docking with the screened hub

protein through the CB-Dock2 server (44). Finally, their binding

sites and affinities were predicted to identify potential small

molecule drugs for the treatment of liver fibrosis and HCC.
Quantification and statistical analysis

All data presented in this study are shown as mean ± SEM from at

least three independent experiments. Significance was determined

using Student’s t-test conducted with GraphPad Prism 9.5 software.

A P-value of less than 0.05 was considered statistically significant.
Results

Single-cell analysis of liver fibrosis

To explore the distribution types of cell subpopulations among

differentially expressed genes, cell type annotation was applied to

visually analyze human and mouse single cell samples. 15 human cell

subpopulations (Hepatocytes, Cholangiocytes, Neutrophils, T cells,

Circulating NK/NKT, Resident NK, B cells, Plasma cells, Endothelial

cells, cDC1s, Macrophages, Mono+monocyte-derived cells, cDC2s,

Basophils, Fibroblasts) and 16 mouse cell subpopulations

(Fibroblasts, Cholangiocytes, Hepatocytes, Kupffer cells, Endothelial

cells, Basophils, Neutrophils, Migratory cDCs, Monocytes &

Monocyte-derived cells, cDC1s, cDC2s, T cells, ILC1s, NK cells, B

cells, pDCs) were identified (Figure 1A). The results revealed that

hepatocytes and endothelial cells were the predominant cell

subpopulations in patients with non-alcoholic steatohepatitis

(NASH), whereas fibroblasts were the main cell subpopulation in

the livers of CCl4-treated mice liver fibrosis. To infer the evolution

and differentiation processes between different cell types at the single-

cell level by constructing the trajectory of cellular changes over time,

fifteen human and sixteen mouse cell clusters were obtained based on
Frontiers in Immunology 05
cell dimensionality reduction and type clustering (Figure 1B).

Furthermore, 60 human and 64 mouse highly expressed genes in

cell subpopulations were filtered out (Figure 1C), and gene expression

values in different cell subsets in 15 human NASH-induced and 16

mouse CCl4-treated liver fibrosis were also obtained (Figure 1D).
Establishment of liver fibrosis model

Histopathological assessment of mouse liver tissues was

conducted using H&E and Masson staining (Figures 2A, B). The

experimental results indicated that, compared to the control group,

the collagen fibers in the liver tissues of the fibrosis group were

significantly increased. Furthermore, the gene expression levels of

some representative fibrotic markers, as well as the serum levels of

ALT and AST, were higher in the liver fibrosis model group than in

the normal group (Figures 2C, D). Additionally, the Pearson

correlation coefficient heatmap of the expression levels in liver

tissue samples prepared for subsequent sequencing also revealed

significant differences between liver fibrosis and normal liver tissue

samples, and demonstrated good reproducibility among liver

fibrosis samples (Figure 2E).
Functional enrichment analysis of DEGs in
mouse hepatic fibrosis

The expression patterns of differentially expressed genes between

the control group and the liver fibrosis group were analyzed using

hierarchical clustering analysis, and the results showed that liver fibrosis

significantly affects the expression patterns (Figure 3A). There were

significant differences in bulking sequencing of mouse liver fibrosis

group, including 2328 upregulated genes and 509 downregulated genes

(Figure 3B). Based on KEGG, Reactome and GO database, the pathway

and GO (Gene Ontology) analysis of differential genes showed that focal

adhesion and regulation of actin cytoskeleton signaling pathways were

the most significantly enriched, and mainly participated in localization,

cell adhesion and system development that occur in the intracellular

part, actin cytoskeleton and cytoplasm (Figures 3C–E). The Gene Set

Enrichment Analysis (GESA) from the GO and Molecular Signatures

Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb) also

suggested that most differentially genes were closely related to

long-chain fatty acid metabolic process, triglyceride metabolic

process, extracellular matrix binding and transforming growth

factor beta binding in hepatic fibrosis (Figure 3F).
The immune infiltration analysis of DEGs in
liver fibrosis

To analyze the regulatory effects of immune cells on liver

fibrosis development, immune infiltration analysis was performed

on differentially expressed genes between mouse liver fibrosis and a

control group (Figure 4A). The results of this analysis revealed that

liver fibrosis significantly affected 10 cell subpopulations,
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particularly macrophages. The top 20 highly expressed genes in

macrophages from human fibrosis single-cell sequencing were

screened and the expression distribution of four marker genes

was displayed, which indicated that macrophages were markedly
Frontiers in Immunology 06
activated during the progression of liver fibrosis (Figures 4B, C). To

further elucidate the impact of macrophages on liver fibrosis,

enrichment analysis was conducted on these highly expressed

genes (Figure 4D).
FIGURE 1

Expression distribution and trajectory analysis of highly expressed genes in human and mouse liver fibrosis cell subpopulations. (A) Visual analysis of
cell sub-populations and cell type annotations in the human NASH-induced and CCl4-treated liver fibrosis. (B) The cell trajectory analysis over time
of 15 human NASH-induced cell clusters (left) and 16 mouse CCl4-treated cell clusters (right). (C) Dot plots of genes highly expressed in human
NASH-induced (left) and CCl4-treated (right) liver fibrosis cell subpopulations. (D) Tracksplot of gene expression values in different cell subsets in 15
human NASH-induced (left) and 16 mouse CCl4-treated (right) liver fibrosis.
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FIGURE 2

Histopathological evaluation and biomarker detection of liver fibrosis in mice. (A) Histopathological assessment of hematoxylin–eosin of mouse liver
tissues in normal and fibrosis model groups. Each column represents the histological morphology of three different mice under the same treatment
condition. Scale bar =75 mm. (B) Histopathological assessment of masson staining of mouse liver tissues in normal and fibrosis model groups. Each
column represents the histological morphology of three different mice under the same treatment condition. Scale bar = 75 mm. (C) The mRNA
expression detection of 4 representative fibrosis markers of mouse liver tissues in normal and fibrosis model groups. A total of 6 samples and each
experiment was repeated three times. The 2−DDCt method was used to analyze the relative expression of target gene mRNA. Data was presented as
mean ± S.D and the significance of differences between the Normal and Model groups was evaluated using the Student’s t-tests using GraphPad
Prism 9.5 software. ###p<0.001 were considered statistically significant. (D) The serum ALT and AST levels detection in normal and fibrosis model
groups. A total of 6 samples and each experiment was repeated three times. ###p<0.001 were considered statistically significant. (E) Pearson
correlation coefficient heatmap of the expression levels between mouse normal and fibrosis liver tissue samples.
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FIGURE 3

Functional enrichment analysis of differentially expressed genes in mouse hepatic fibrosis. (A) Heatmap for hierarchical clustering of differential gene
expression patterns between control and liver fibrosis groups. (B) Volcano plot of significant gene expression differences between control and
fibrosis groups, including 2328 up-regulated genes and 509 down-regulated genes. (C) Top 20 enriched KEGG pathways in differential gene analysis
of RNA sequencing data of normal and fibrosis mouse liver tissues. (D) GO annotation of differential genes between normal and fibrosis mouse liver
tissues, including biological processes (BP), cellular components (CC), and molecular functions (MF). (E) Top 20 enriched GO pathways in differential
gene analysis of RNA sequencing data of normal and fibrosis mouse liver tissues. (F) Gene Set Enrichment Analysis (GESA) of differential genes in
normal and fibrosis mouse liver tissues.
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Comparison of DEGs between single-cell
sequencing and bulk sequencing

The 60 human and 64mouse differentially expressed genes (DEGs)

from single-cell data were compared with 2837 DEGs in mouse liver
Frontiers in Immunology 09
fibrosis. As a result, 18 human and 22 mouse genes were found to be

significantly different in both single-cell and bulk sequencing analyses.

Furthermore, the expression distribution of these 18 human and 22

mouse DEGs was analyzed across various subgroups in the human and

mouse single-cell sequencing datasets (Figures 5A, B).
FIGURE 4

The immune infiltration of liver fibrosis and enrichment analysis of macrophages. (A) The immune infiltration analysis of 10 cell subpopulations
between control and liver fibrosis. (B) Top 20 highly expressed genes in macrophages subpopulation of liver fibrosis. (C) The expression distribution
of 4 representative highly expressed genes in macrophages subpopulations. (D) The enrichment analysis of DEGs in macrophages subpopulation.
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FIGURE 5

The cell subpopulation distribution, experimental verification of expression levels, and enrichment analysis of 40 liver fibrosis related DEGs. (A) Dot
plot analysis of 18 human and 22 mouse differentially expressed genes (DEGs) in cell subpopulations of human NASH-induced and mouse CCl4-
treated liver fibrosis. (B) Expression heatmap of 18 human and 22 mouse DEGs in cell subpopulations of human NASH-induced and mouse CCl4-
treated liver fibrosis. (C) Gene expression detection of were detected in human and mouse hepatic stellate cells by RT-qPCR analysis. A total of 12
samples and each experiment was repeated three times. The 2−DDCt method was used to analyze relative expression of target gene mRNA. Data was
presented as mean ± S.D and the significance of differences between the Normal and Fibrosis groups was evaluated using the Student’s t-tests using
GraphPad Prism 9.5 software. *p<0.05, **p<0.01, ***p<0.001 or ****p<0.0001 were considered statistically significant. (D, E) The protein–protein
interaction (PPI) network and pathway enrichment analysis of 40 liver fibrosis related DEGs.
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Experimental verification and enrichment
analysis of 40 DEGs

To verify the differential expression levels of these 40 screened

genes, which included 18 human and 22 mouse differentially

expressed genes (DEGs), RT-qPCR analysis was conducted using

cultured hepatic stellate cells (Figure 5C). Additionally, protein-

protein interaction and pathway enrichment analyses were carried

out on the 40 DEGs. The results revealed that protein interaction

network could be categorized into three clusters, with the largest

cluster of genes potentially playing a major role in the development

of liver fibrosis (Figure 5D). Furthermore, cell adhesion was found

to be significantly regulated and closely associated with cell

activation, signal transduction and systemic development

(Figure 5E). These findings were consistent with the enrichment

results obtained from bulk sequencing of mouse liver fibrosis.
Construction and validation of a
prognostic model for HCC

The transcriptome data of patients (n = 424) from the TCGA-

LIHC dataset was analyzed using three algorithms: DESeq2, edgeR,

and limma for differential gene expression. This analysis yielded

1779 common up-regulated genes (Figure 6A), among which 40

genes related to liver fibrosis were screened. Subsequently, a

univariate Cox proportional hazard model, Lasso regression and

multivariable Cox regression were applied to these 40 screened

genes along with the corresponding survival data of liver cancer

patients, identifying 7 specific genes (CCR7, COL3A1, FMNL2, HP,

PFN1, SPP1 and TENM4) that were associated with survival

outcomes (Figure 6B). Furthermore, the forest plots of these

specific genes and a nomogram plot of significant variables

visually demonstrated the significant associations of CCR7 and

SPP1 with 1, 3, and 5-year survival of LIHC (Figures 6C, D). To

evaluate the model’s performance, calibration curves for survival at

1, 3, and 5-year intervals were generated, showing high consistency

with the expected survival probability, thereby indicating reliable

predictive concordance (Figure 6E). Additionally, Kaplan-Meier

survival analysis was conducted to illustrate the prognostic value

of CCR7 and SPP1 in both the training and testing hepatocellular

carcinoma (HCC) patient cohorts. The results for the training

cohort showed marginal significance for CCR7 (p = 0.07) and

significance for SPP1 (p = 0.0033), while in the testing cohort,

significance was observed for CCR7 (p = 0.035) and marginal

significance for SPP1 (p = 0.073) (Figure 6F). The diagnostic

performance of the risk score was evaluated using receiver

operating characteristic (ROC) analysis. The area under the curve

(AUC) values for predicting 1, 3, and 5-years survival in the training

cohort were 0.75, 0.70, 0.71, respectively, and in the testing cohort,

they were 0.67, 0.75, 0.73, respectively (Figure 6G). Moreover, a

heatmap depicting the expression levels of specific genes in patients

with high and low risk scores in both the training and testing HCC

patient cohorts indicated that the expression levels were

significantly higher in the high-risk group compared to the low-
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risk group (Figure 6H). Collectively, the regression model,

performance evaluations, and survival analysis results suggested

that the SPP1 gene may serve as a prognostic marker for HCC.
Expression validation and immune
infiltration of HCC prognostic gene SPP1

To analyze the effect of SPP1 and other significant multivariate

factors on the prognosis of hepatocellular carcinoma (HCC), a

multivariate Cox regression model was applied, incorporating

gender, age, race and history factors. The results of survival analysis

indicated that the SPP1 gene can serve as a prognostic marker for

liver cancer (p = 0.0241) (Figures 7A, B). Furthermore, to evaluate the

performance of the model, the diagnostic performance of the risk

score was assessed using receiver operating characteristic (ROC)

analysis. The area under the curve (AUC) values were 0.84, 0.85,

and 0.81 for predicting 1, 3, and 5- years survival, respectively

(Figure 7C). The calibration curves for survival at 1, 3, and 5-year

intervals displayed high consistency with the expected survival

probability, indicating reliable prediction concordance (Figure 7D).

Based on the results of model validation and risk gene prognostic

evaluation, further verification was conducted to examine the

expression difference of the prognostic gene SPP1 in HCC patients

compared to normal tissues. The protein expression data of HCC

patients in the Human Protein Atlas database was analyzed.

Immunohistochemistry results showed that the expression level of

the SPP1 gene in tissues from three independent HCC patients

(patient IDs 2280, 2766, 3196) was significantly higher than that in

three independent normal tissues (patient IDs 2429, 3222, 3402),

confirming that SPP1 can indeed be used independently as a

prognostic marker (Figure 7E). To explore the distribution and

expression of the prognostic gene SPP1 in cell subpopulations of

HCC, single-cell sequencing data from HCC patient tissue samples

were analyzed. The visualization results of cell type annotation

revealed that the HCC subpopulations were divided into 17 cell

subsets, including B cells, Basophils, Cholangiocytes, Circulating NK/

NKT, Endothelial cells, Fibroblast, Hepatocytes, Macrophage,

Mig.cDCs, Mono+mono derived cells, Neutrophils, Plasma cells,

Resident NK, T cells, cDC1s, cDC2s, pDCs. Among these, T cells,

Hepatocytes and Macrophages were the main cell subsets.

Additionally, the SPP1 gene was highly expressed in Macrophages

and Mono+mono derived cells (Figure 7F). Therefore, to further

investigate the relationship between SPP1 and immune infiltration,

computational methods such as TIMER, XCELL, CIBERSORT,

CIBERSORTABS, QUANTISEQ, MCP-COUNTER and EPIC were

utilized to comprehensively evaluate SPP1 and the immune

microenvironment of liver cancer. The analysis results

demonstrated that the prognostic gene SPP1 was significantly

positively correlated with 14 immune cell subsets in the liver

hepatocellular carcinoma (LIHC), including B cells, cancer-

associated fibroblasts, macrophages, macrophages (M0, M1, M2),

monocytes, neutrophils, myeloid dendritic cells, macrophages/

monocytes, activated NK cells, CD4+Th2 T cells, regulatory T cells

(Tregs), and myeloid-derived suppressor cells (MDSCs) (Figure 7G).
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FIGURE 6

Construction and validation of a prognostic model for HCC. (A) Venn diagram of 1779 upregulated differentially expressed genes (DEGs) in
transcriptome data of patients (n = 424) in TCGA-LIHC dataset using three algorithms: DESeq2, edgeR, and limma. (B) LASSO coefficient profiles of
40 screened liver fibrosis and HCC related DEGs (Left), and tenfold cross validation of the LASSO model, with vertical dashed lines are plotted at the
minimum deviance (log(l.min)) and 1 standard error of the minimum deviance (log(l.1se)) (Right). (C) The forest plots of 7 specific genes, including
CCR7, COL3A1, FMNL2, HP, PFN1, SPP1 and TENM4. The significance of differences was evaluated, *p<0.05, **p<0.01 were considered statistically
significant. (D) The nomogram plot of significant variables CCR7 and SPP1 with the 1, 3, and 5-year survival of LIHC. (E) The calibration curves for
survival at 1, 3, and 5-year intervals displayed high consistency with the expected survival probability. (F) Kaplan-Meier survival analysis of the
prognostic value of CCR7 and SPP1 in the train and test HCC patient cohort. The differences for CCR7, p = 0.07 and SPP1, p = 0.0033 in the train
cohort, and significance of test cohort was CCR7, p = 0.035 and SPP1, p = 0.073, respectively. (G) The receiver operating characteristic (ROC)
investigation of model performance, and the area under curve (AUC) values of train cohort were 0.75, 0.70, and 0.71 and area values of test cohort
were 0.67, 0.75 and 0.73 for predicting 1, 3, and 5 years, respectively. (H) The heatmap of the expression levels of 7 specific genes in train and test
HCC patient cohort with high and low risk scores.
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FIGURE 7

The multivariate analysis, protein expression validation, cell subset expression and immune infiltration of HCC prognostic gene SPP1. (A) The
nomogram plot of significant multivariate and SPP1 with the 1, 3, and 5-year survival of LIHC. (B) The survival analysis of SPP1 gene in the
multivariate Cox regression model incorporating age, gender, race, pathological stage factors. (C) The receiver operating characteristic (ROC)
investigation of model performance, and the area under curve (AUC) values were 0.84, 0.85, and 0.81 for predicting 1, 3, and 5-years, respectively.
(D) The calibration curves of multivariate Cox regression model for survival at 1, 3, and 5-year intervals displayed high consistency with the expected
survival probability. (E) The immunohistochemistry results of gene SPP1 in 3 independent hepatocellular carcinoma patient tissues (patient id_2280,
patient id_2766, patient id_3196) and 3 independent normal tissues (patient id_2429, patient id_3222, patient id_3402) under the same antibody
HPA027541. (F) The distribution and expression of prognostic gene SPP1 in cell subpopulations of hepatocellular carcinoma patient tissue samples.
(G) The immune infiltration analysis of the prognostic gene SPP1 with 14 immune cell subsets in the LIHC, including B cells, cancer-associated
fibroblasts, macrophages, macrophages (M0, M1, M2), monocytes, neutrophils, myeloid dendritic cells, macrophages/monocytes, activated NK cells,
CD4+Th2 T cells, regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs).
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Association analysis of gene SPP1 with
immune infiltration, subtypes, and
prognostic development in HCC

In order to further verify the relationship between SPP1

expression and immune infiltration, an analysis of immune cell

correlation in human liver cancer was conducted (Figure 8A). The

analysis identified four cell types that were positively correlated with

SPP1 expression: B cells, macrophages, MDSCs, and neutrophils

(Figure 8B). Furthermore, an investigation was carried out to

examine the relationship between SPP1 expression and immune

subtypes, overall survival rate, staging, and grading of liver cancer,

aiming to elucidate the connection between SPP1 expression and

the prognosis as well as the progression of liver cancer (Figures 8C–

F). The results of this analysis revealed that SPP1 is primarily closely

associated with C3 (inflammatory) and C4 (lymphocyte depletion)

immune subtypes. Additionally, high expression of SPP1 was found

to be linked to reduced survival time and was also closely correlated

with the third stage and grading of HCC.
Drug discovery of candidate small
molecules for liver fibrosis and
HCC treatment

To further investigate potential small molecule drugs that could

exert therapeutic effects in patients with liver fibrosis and

hepatocellular carcinoma, 40 highly expressed genes were

introduced into the cMAP database as up-regulated genes for

prediction of small molecule compounds capable of reversing the

expression of pathogenic genes associated with liver fibrosis and

HCC. All compounds with an NCS (normalized compound score)

less than -2 were filtered out. The NCS results of these screened

compounds across 26 cell types revealed that six compounds,

namely Betamethasone (a Glucocorticoid receptor agonist), VX-

745 (a p38 MAPK inhibitor), Romidepsin (an HDAC inhibitor),

CGK-733 (an ATM/ATR kinase inhibitor), NU-7026 (a DNA

inhibitor/MTOR/PI3K inhibitor) and Lenalidomide (an

antineoplastic agent), exhibited therapeutic potential for the

treatment of liver fibrosis and HCC (Figure 9A). Furthermore,

the 2D chemical structures of these six compounds were illustrated

(Figure 9B), and protein-ligand molecular docking was performed

between SPP1 and these 3D chemical structures (Figure 9C). The

docking outcomes indicated that the Vina scores of Betamethasone

(-7.3), VX-745 (-6.9), Romidepsin (-7.7), CGK-733 (-6.5), NU-7026

(-6.4) and Lenalidomide (-5.9) were obtained, with the Vina score

showing a positive correlation with the average NCS value. This

suggested that SPP1 possessed good binding ability with these six

small molecule drugs and was closely associated with the NCS.
Discussion

To date, the diagnosis and treatment of liver fibrosis and

hepatocellular carcinoma (HCC) still pose significant challenges,

partly attributed to the limited understanding of the relationship
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between liver fibrosis and HCC (45–47). Further research is

necessary to precisely elucidate the pathogenic genes and

mechanisms at the single-cell level, with the hope of achieving

subtype-based targeted therapy for patients with liver fibrosis or

HCC and enhancing the understanding of severe liver fibrosis

inducing HCC.

In this study, we identified 15 human and 16 mouse cell

subpopulations, of which 15 were identical, as well as 60 human

and 64 mouse highly expressed genes by analyzing single-cell

sequencing data from patients with non-alcoholic steatohepatitis

(NASH) and mice with CCl4-induced liver fibrosis. These genes

may play crucial roles in promoting the development of liver

fibrosis. To further investigate the pathogenic mechanism of liver

fibrosis, a CCl4-induced mouse model of liver fibrosis and bulk

sequencing were employed. The results of pathway analysis, gene

set enrichment analysis, and immune infiltration analysis not only

demonstrated that these differentially expressed genes (DEGs) were

closely associated with long-chain fatty acids, triglyceride

metabolism and extracellular matrix binding in liver fibrosis but

also indicated that various immune cells, particularly macrophages

(highly expressing CD163, DOCK8, MERTK and MSR1) (48–51),

might participate in the response to liver injury through cell

adhesion and actin cytoskeleton regulation signaling pathways,

thereby influencing the progression of liver fibrosis. Given that

the development of the disease is influenced by the interaction

between multiple cells and proteins (52, 53), the results of protein

interaction and pathway enrichment analysis of the 40 DEGs

revealed that protein interaction network could be divided into

three clusters, among which the largest cluster of genes may play a

dominant role in the occurrence and progression of liver fibrosis.

Furthermore, cell adhesion was significantly upregulated and

closely linked to cell activation, signal transduction, and system

development, which have been considered to be closely associated

with the development of liver fibrosis (54–56).

As mentioned above, liver fibrosis is a chronic liver disease, and

its malignant progression ultimately leads to the development of

hepatocellular carcinoma (HCC) (57, 58). To further enhance the

understanding of the role played by the 40 identified differentially

expressed genes (DEGs) in the progression of HCC induced by liver

fibrosis, the transcriptome data of 424 patients from the TCGA-

LIHC datasets were subjected to differentially analysis using three

algorithms (DESeq2, edgeR, and limma). This analysis yielded 1779

identical upregulated genes, including the 40 DEGs. Furthermore, a

Cox proportional hazard model and Lasso regression were applied

based on these 40 DEGs, leading to 7 specific genes (CCR7,

COL3A1, FMNL2, HP, PFN1, SPP1 and TENM4) related to

survival outcomes. These genes also belonged to the largest

cluster in the protein interaction network, suggesting that they

could serve as key genes in the development and construction of a

prediction model for liver fibrosis and HCC. Notably, the results of

ROC curve and Kaplan-Meier analyses indicated that the SPP1 gene

could function as a prognostic marker to accurately predict the

prognosis of HCC patients (AUC = 75.5). Patients with high SPP1

expression had significantly shorter overall survival (OS) compared

to those with low expression (P=0.0033). Additionally, the

nomogram incorporating significant variables and a multivariate
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Cox regression model, which included age, gender, race, and

pathological stage, also demonstrated that the SPP1 gene had a

significant impact on the prognosis of HCC (p = 0.0241). These

findings were consistent with the results of the Kaplan-Meier

analysis of SPP1 in LIHC and were further validated by

independent external liver cancer datasets (LIRI-JP) and clinical

HCC patient tissue expression data. Meanwhile, the survival
Frontiers in Immunology 15
calibration curves at 1, 3, and 5-year intervals exhibited high

consistency with the expected survival probability. Furthermore,

the receiver operating characteristic (ROC) analysis and high- and

low-risk expression heatmaps in both the training and testing HCC

patient cohorts demonstrated the model’s good diagnostic

performance for risk scoring. Therefore, these results not only

indicated that the constructed prediction model possessed reliable
FIGURE 8

The analysis of the relationship between gene SPP1 expression and immune infiltration, subtypes, and prognostic development in HCC. (A) Heatmap
of correlation between SPP1 expression and immune cells across human liver cancer. (B) Spearman correlations between expression of SPP1 and
immune cells in human HCC, including B cells, Macrophages, myeloid-derived suppressor cells (MDSCs) and Neutrophils. (C–F) Associations
between SPP1 expression and immune subtypes, overall survival, stage and grade in human HCC.
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predictive ability but also demonstrated that SPP1 could indeed

serve independently as a prognostic marker for HCC patients.

SPP1, also known as Osteopontin (OPN), is a multifunctional

protein and inflammatory cytokine that is widely present in the

extracellular matrix, which has been reported to promote the

development of liver fibrosis and HCC (59, 60). The tumor
Frontiers in Immunology 16
microenvironment (TME) is considered to play a crucial role in the

occurrence and metastasis of HCC, and relevant studies have only

reported the overall characteristics of TME immune cell infiltration (61–

63). Our study found that the immune related gene SPP1, as a key

prognostic marker for HCC patients, was positively correlated with 14

specific HCC-related immune cells, including B cells, macrophages,
FIGURE 9

Screening and molecular docking of potential small molecule drugs for the treatment of liver fibrosis and hepatocellular carcinoma. (A) Heatmap of
the normalized connectivity score (NCS) of 6 small molecule compounds screened from the cMAP database acting on 26 cell types. (B) The 2D
chemical structures of the six small molecule drugs. (C) Molecular docking and Vina score results of potential drugs to their target protein SPP1,
including Betamethasone (-7.3), VX-745 (-6.9), Romidepsin (-7.7), CGK-733 (-6.5), NU-7026 (-6.4) and Lenalidomide (-5.9). White represents the
protein SPP1, multicolor represents drug binding sites that interact with the protein SPP1.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1455383
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1455383
MDSCs and neutrophils. These immune cells have been reported to

play essential roles in the development of the microenvironment,

immune escape and poor prognosis of HCC (64–66). Furthermore,

the analysis results of subtypes and prognostic development in HCC

also showed that SPP1 is primarily closely related to C3 (inflammatory)

and C4 (lymphocyte depletion) subtypes. High expression of SPP1 can

lead to reduced survival time, as well as being closely associated with the

third stage and grading of HCC. Additionally, some previous research

has only reported that molecular heterogeneity is a critical characteristic

of tumor or fibrosis occurrence (67, 68). Our research investigated the

differences in expression and distribution of SPP1 between liver fibrosis

and HCC, and discovered that SPP1 was significantly overexpressed in

cholangiocytes in cases of liver fibrosis, but it was highly expressed in

macrophages in cases of HCC. These findings suggested that there was

cellular heterogeneity in SPP1 gene expression between liver fibrosis and

HCC. Furthermore, it was indicated that elevated levels of SPP1

expression could stimulate immune cells, particularly macrophages, to

respond to liver injury in the process of liver fibrosis developing into

HCC. Overall, the results mentioned above indicated that SPP1, as a

prognostic gene or biomarker, was not only significantly negatively

correlated with the survival of patients with hepatocellular carcinoma

(HCC), but it may also play a pivotal role in promoting the

immunosuppressive tumor microenvironment and accelerating the

progression of HCC. Consequently, targeting SPP1 and decreasing its

expression level could represent an effective therapeutic strategy for

patients with liver fibrosis and HCC.

The cMAP is the world’s largest perturbation-based gene expression

profile database, capable of unveiling relationships between diseases,

genes and drugs. Consequently, an analysis was conducted on the 40

differentially expressed genes (DEGs), leading to the screening of six

compounds with normalized compound scores (NCS) less than -2.

These compounds were identified as potential small molecule drugs that

could reverse liver fibrosis and hepatocellular carcinoma (HCC) gene

expression. It is noteworthy that the six screened small molecules possess

well-defined mechanisms of action. These include Betamethasone (a

Glucocorticoid receptor agonist), VX-745 (a p38 MAPK inhibitor),

Romidepsin (an HDAC inhibitor), CGK-733 (an ATM/ATR kinase

inhibitor), NU-7026 (a DNA/MTOR/PI3K inhibitor), and Lenalidomide

(an Antineoplastic agent). Thesemolecules are either closely linked to the

occurrence and progression of cancer or have already been developed

into approved clinical drugs. Specifically, Glucocorticoid is known to

inhibit neutrophil apoptosis and NF-kB transcription factors.

Betamethasone, an approved systemic corticosteroid, binds to the

glucocorticoid receptor to suppress pro-inflammatory signals, thereby

exerting immunosuppressive and anti-inflammatory effects (69, 70). P38

is a crucial branch of the MAPK pathway, playing a key role in various

physiological and pathological processes, including inflammation,

apoptosis, cell cycle, and scaffold protein function. VX-745, a highly

selective p38a inhibitor, can cross the blood-brain barrier and has been

applied in therapeutic trials for Alzheimer’s disease and mild cognitive

impairment (71, 72). Romidepsin, an FDA-approved inhibitor of histone

deacetylase (HDAC), interacts with zinc ions in the active site of HDAC

enzymes to restrain overexpressed HDAC in tumors, restoring normal

gene expression and inducing cancer cell apoptosis (73, 74). ATM and

ATR are a class of serine/threonine protein kinases considered the main

controllers of the cell cycle checkpoint signaling pathway, capable of
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phosphorylating and activating proteins involved in inhibiting DNA

replication and mitosis (75–77). Activation of the PI3K/AKT/mTOR

pathway has been reported to promoteHCC cell proliferation,migration,

and invasion. NU7026, an efficient DNA-PK/PI3K inhibitor, enhances

G2/M cycle arrest and apoptosis (78–80). Lenalidomide, an FDA-

approved immunomodulatory drug for the treatment of multiple

myeloma, marginal zone lymphoma, and follicular lymphoma, exhibits

potent antitumor and anti-inflammatory properties (81, 82). The results

indicated that the six screened small molecule drugs have significant

therapeutic effects on inhibiting inflammation, proliferation, invasion,

and promoting cancer cell apoptosis. Furthermore, the Vina scores from

molecular docking not only demonstrated good affinity between SPP1

and the compounds (Betamethasone: -8.3, VX-745: -8.1, Romidepsin:

-7.9, CGK-733: -6.5, NU-7026: -6.4, and Lenalidomide: -5.9), but also

showed a positive correlation with the average value of NCS. Therefore,

the six potential small molecule drugs selected for treatment of liver

fibrosis andHCCprovide crucial insights for future clinical interventions.
Conclusion

In summary, this study comprehensively analyzed the relationship

between liver fibrosis and hepatocellular carcinoma (HCC) by

integrating single-cell and bulk sequencing, mouse models, and

molecular experiments. It identified 40 pathogenic genes, 15 critical

cell subpopulations, as well as cell adhesion and actin cytoskeleton

regulatory signaling pathways that promote the development of liver

fibrosis and HCC. Furthermore, the study identified and evaluated 7

specific prognostic genes (CCR7, COL3A1, FMNL2, HP, PFN1, SPP1

and TENM4) using a prediction model. It also elucidated the

expression heterogeneity of core gene SPP1 and its positive

correlation with immune infiltration and the prognostic progression

of HCC. Additionally, our study screened six small molecule drugs with

high binding affinity and antitumor activity: Betamethasone, VX-745,

Romidepsin, CGK-733, NU-7026, and Lenalidomide, providing

valuable insights into the prognosis and targeted therapy of liver

fibrosis and HCC.
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