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Primary cilia (PC) are essential signaling hubs for proper epithelial formation and

the maintenance of skin homeostasis. Found on most cells in the human body,

including skin cells, PC facilitate signal transduction that allows ciliated cells to

interact with the immune system via multiple pathways, helping to maintain

immune system homeostasis. PC can be altered by various microenvironmental

stimuli to develop corresponding regulatory functions. Both PC and ciliary

signaling pathways have been shown to be involved in the immune processes

of various skin lesions. However, the mechanisms by which PC regulate cellular

functions and maintain immune homeostasis in tissues are highly complex, and

our understanding of them in the skin remains limited. In this paper, we discuss

key ciliary signaling pathways and ciliated cells in the skin, with a focus on their

immunomodulatory functions. We have compiled evidence from various cells,

tissues and disease models to help explore the potential immunomodulatory

effects of PC in the skin and their molecular mechanisms.
KEYWORDS
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1 Introduction

The skin serves as a life-sustaining interface between the body and the environment,

functioning both as a good mechanical barrier and as the body's first line of immune

defense. Extensive interactions between epithelial, stromal, and immune cells regulate the

skin's immune response (1). Immune dysregulation in the skin leads to localized

inflammatory infiltration and impaired epithelial function, triggering a variety of

inflammatory skin diseases. These conditions are primarily mediated by T cells, the

humoral immune system, or nonspecific inflammation (2), each involving distinct

immune response patterns (3).

Primary cilia (PC) are highly conserved organelles protruding from the cell surface.

They present abundant receptors, ion channels, and downstream effectors for multiple

signaling pathways (4). PC can perceive and transmit extracellular signals to regulate

various cellular processes during development and to maintain tissue homeostasis. PC are
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dynamic structures formed from the centriole. Since centrioles serve

a dual function in spatially organizing the mitotic spindle and

forming cilia, the genesis and disassembly of cilia are inextricably

linked to cell cycle progression (5–7).

Numerous studies have shown that keratinocytes (KC),

Langerhans cells (LC), melanocytes and fibroblasts of the skin

express PC (8–11). During skin growth and development,

approximately 60–75% of epidermal cells express PC (8). Structural

or functional ciliary defects can lead to a variety of sensory,

physiological, and developmental abnormalities (12). Damage to PC

poses threats to the normal growth and differentiation, tissue

homeostasis, and barrier function of the skin (8, 13–15). Studies have

shown that PC may contribute significantly to skin inflammatory

processes such as skin wound healing and scarring (13). The epidermis

of patients with inflammatory skin diseases such as atopic dermatitis

and psoriasis expresses high numbers of ciliated cells (9, 16).

PC are relatively understudied organelles in the skin. Beyond

their role in integrating extracellular signaling pathways, they also

modulate the activation of multiple inflammatory signals and the

expression of pro-inflammatory cytokines (17–22). Another

prospective viewpoint suggests that PC may regulate the number,

phenotype, and function of immune cells through noncell-

autonomous mechanisms; epithelial ciliary signaling may

modulate the behavior and function of non-ciliated immune cells,

leading to inflammatory responses (23, 24). Despite accumulating

evidence revealing that PC have an important regulatory role in

immune system function, the immunomodulatory role and

molecular mechanisms of PC in the skin remain largely

unexp lored (25) . This rev i ew aims to examine the

immunomodulatory potential of PC in the skin based on the

current knowledge of their immunomodulatory function.
2 Signal transduction function of
primary cilia

PC are microtubule-based organelles that extend from the basal

body (centriole) and protrude from the cell surface (4). The ciliary

membrane is continuous with the plasma membrane, overlying the

axoneme (4). The ciliary proteins required to maintain ciliogenesis

and function must be transported from the cytoplasm, where they are

generated, a process that relies on intraflagellar transport (IFT) (26,

27). IFT particles move bidirectionally along the axonemal

microtubules between the base and tip of the cilium for the

transport of structural and signaling components. Changes in

ciliary length usually indicate altered ciliary function (28). The

unique ciliary structure provides a suitable space for signal

transduction. It includes ciliary membranes enriched in specific

transmembrane receptors and signaling functional lipids, ciliary

pockets highly capable of endocytosing signaling molecules, ciliary

cytoplasm enriched in second messengers and effector proteins,

transition zones controlling the ciliary entrance and exit of soluble

and membrane-bound signaling molecules, and IFT mediating the

transport of membrane-bound and soluble signaling proteins (4, 29)

(Figure 1). The structure and composition of PC enable them to
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receive, transmit and integrate biological information and play an

important role as signaling hubs in intercellular communication.

Primary cilium structural and functional abnormalities usually lead to

dysfunctions in signaling and cellular function, resulting in

polymorphic diseases and syndromes (12).

In skin lesions, the signaling properties of PC are associated with

various immunoregulatory functions. The role of PC in the tumor

immune microenvironment, particularly their regulation of immune

cells, has garnered significant attention (24). Studies have shown that

PC-dependent signaling pathways are involved in the pathogenesis of

skin cancers such as basal cell carcinoma [dependent on the PC-

activated Hedgehog (Hh) pathway (30)] andmelanoma [dependent on

the PC-inhibited Wnt signaling (31)]. Targeted inhibition of the Hh

pathway for basal cell carcinoma treatment notably alters the immune

microenvironment of basal cell carcinoma, promoting adaptive

immune reactions via upregulation of major histocompatibility

complex (MHC) class I and cytotoxic T cells recruitment, alongside

a reduction in PC (30). Additionally, PC antagonize the conversion of

Hh to the Ras/MAPK pathway, which may explain why PC loss leads

to resistant basal cell carcinoma (32). Research has also found that

oxidative stress in NRF2-downregulated melasma keratinocytes

inhibits ciliogenesis and Hh signaling, which in turn promotes

keratinocyte differentiation, melanin synthesis, and melanosome

transfer to keratinocytes (33). Dermal lymphatic endothelial cells are

also found to possess PC. It has been suggested that PC-dependent

signaling may have a regulatory function in maintaining lymphatic

vessel homeostasis as well as various lymphatic vessel patterns in

inflammation, wound healing, recurrent inflammation, and tumor

microenvironment (34). The contribution of PC signaling in

inflammatory processes of skin wound repair and healing has also

been summarized (13). Cilia-dependent signaling pathways are likely

involved in characteristic skin inflammatory processes such as skin

thickening, fibrosis, immune cells activation and infiltration.
3 Key signaling pathways mediated by
primary cilia in the skin

3.1 Hedgehog signaling pathway

The vertebrate Hh signaling, a typical signaling pathway

transduced by PC, is absolutely dependent on these organelles

(35) (Figure 1). The Hh signaling pathway is a significant

regulator of skin inflammation, specific immune responses, and

the skin barrier function (36). In melasma, inhibition of ciliogenesis

and Hh signaling in KCs stimulates KC differentiation, leading to

skin hyperpigmentation (33). Inturned (INTU), a ciliogenesis and

planar cell polarity effector protein, is essential for the formation of

PC in the skin. The loss of epidermal PC due to INTU protein

disruption causes inhibition of Hh signaling and results in aberrant

differentiation of follicular KCs (37). Conversely, INTU disruption

in basal cell carcinoma with highly expressed ciliated cells and Hh

signaling is effective in controlling disease progression (38).

Sonic hedgehog (Shh) is the major ligand for Hh in the skin. The

presence or absence of ligands such as Shh controls the level of
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enrichment of the transmembrane protein receptor Patched-1 and

the seven-transmembrane protein Smoothened on cilia, as well as the

activation of Hh signaling (39). In atopic dermatitis, both activation

of the Hh pathway in skin T cells and Shh expression are increased,

and upregulation of Shh signaling attenuates the pathological

alterations of the disease (40). Gli transcription factors are

endpoints of the Hh pathway that bind to DNA at consensus Gli-

binding sites to repress or promote the expression of Hh-targeted

genes (40). PC and ciliary proteins such as Kif7 regulate the

conversion of Gli to either its repressive or its activated form (35, 41).
3.2 mTOR signaling pathway

mTOR is an atypical serine/threonine protein kinase that forms

two distinct signal transduction complexes, mTOR complex 1

(mTORC1) and mTOR complex 2, by binding to a variety of

concomitant proteins. The two kinase complexes are differentially

sensitive to upstream input and downstream output signals, and

they have specific regulatory functions on cells (42). The regulation

of KC proliferation, epidermal stratification, and hair follicle
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formation by mTOR signaling is critical for normal skin

morphogenesis and epidermal barrier formation (43). mTOR

signaling pathway activation can downregulate the expression of

epidermal barrier-associated proteins (44, 45).

The proteins and signaling molecules residing in PC may

regulate mTORC1 activity (Figure 1). The negative regulator of

mTOR, Lkb1, is enriched in cilia and basal bodies (78). Flow stress-

induced bending of cilia activates the Lkb1 pathway in the basal

region, resulting in a large accumulation of phosphorylated AMPK

at the basal body (46). Tuberous sclerosis complex (TSC) 1 and

TSC2 are key regulators of mTORC1. Activated AMPK forms the

TSC1/TSC2 complex by phosphorylating TSC2; TSC1/TSC2 can

stimulate the GTPase-activating protein of TSC2 to bind to Rheb

(Ras homolog enriched in brain) and suppress mTORC1

activity (47).

In terms of immune regulation, mTOR is a critical signaling

node that senses the immune microenvironment and integrates

immune signals and metabolic processes that determine the

maintenance and activation of T cells (48–50). mTOR is

commonly upregulated in inflammatory skin diseases (51). PI3K/

Akt is the classical upstream pathway of mTOR (49), and the PI3K/
FIGURE 1

Key signaling pathways mediated by primary cilia in the skin (A) The major structures of primary cilium. (B) Cilia-dependent Hedgehog signaling.
(C) Cilia-dependent mTOR signaling. (D) Cilia-dependent TGF-b/BMP signaling. (E) Cilia-dependent Notch signaling. (F) Cilia-dependent Wnt
signaling. IFT, intraflagellar transport; SOM, Smoothened; PTCH1, Patched-1; SUFU, Suppressor of Fused; Gli-FL, full-length versions of GLI
transcription factors; GliA, Gli activator; GliR, Gli repressor; LKB1, liver kinase B1; AMPK, AMP-activated protein kinase; TSC1/2, Tuberous sclerosis
complex 1/2; SMAD, Small mother against decapentaplegic protein transcription factor; NICD, Notch intracellular domain; MAML, Mastermind-like;
LRP6, low-density-lipoprotein-receptor-related protein 6; Dvl, Dishevelled; GSK3-b, glycogen synthase kinase 3 beta; PP1, phosphatase 1; TMEM67,
transmembrane protein 67; ROR2, receptor tyrosine kinase-like orphan receptor 2.
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Akt/mTOR signaling cascade is critical in the development of

immune-mediated inflammatory skin diseases. For example, in

psoriasis, hyperactive PI3K/Akt/mTOR1 signaling leads to

hyperproliferation of KCs and increased cellular inflammation

(52, 53). mTOR inhibition effectively alleviates excessive immune

responses (54). In addition, autophagy is a key downstream event of

mTORC1 (55). Autophagy is a key mechanism for organelle

degradation during the terminal differentiation of epidermal KCs

(56), and a lack of autophagy impairs the epidermal barrier and

exacerbates inflammation (56–58). A reciprocal positive interaction

between PC and autophagy exists, where mTOR signaling is

activated in cilia-suppressed (cilia-shortened) cells and results in

autophagy inhibition (59). However, the exact mechanism of

mTOR signaling by skin cilia remains to be clarified.
3.3 Wnt signaling pathway

The Wnt signaling pathway is a complex regulatory network

with three main branches: the classical Wnt/b-catenin pathway, and

the two main non-classical Wnt pathways induced by Wnt family

member 5A (Wnt5a), the Wnt/planar cell polarity and Wnt/Ca2+

signaling pathways (60, 61). Proinflammatory functions of Wnt5a

trigger proinflammatory signaling cascades that increase the

secretion of proinflammatory cytokines and chemokines (62).

Both Wnt5a and its receptor (Frizzled) are redistributed in

psoriatic lesions (63–65) and overexpressed throughout all

epidermal layers of the lesions, inhibiting downstream b-catenin
signaling in the classical Wnt pathway (63, 65). This process

involves Wnt5a-regulated disruption of KC proliferation and

differentiation, as well as a series of Wnt5a-induced

proinflammatory signals (63, 64, 66).

Research indicates that kinases, phosphatases, and proteasome

proteins involved in signaling between PC and Wnt pathway

members are primarily localized in the basal and transition zones

of the cilium (67, 68). This localization allows the classical and non-

classical Wnt signaling pathways to converge at the basal body (67,

68). In the ciliary transition zone, the atypical Wnt signaling receptor

transmembrane protein 67 binds Wnt5a and acts as a co-receptor to

mediate downstream signaling via ROR2 (69). As a result, the pro-

inflammatory action of Wnt5a in skin inflammation may depend on

the signaling at the cilia (Figure 1). Additionally, PC can also respond

directly to endogenous and exogenousWnt signals without traversing

through the nonciliated regions of the plasma membrane and the

cytoplasm, promoting ciliogenesis through the b-catenin-

independent WNT/GSK3 pathway (70). Furthermore, PC are not

only organelles that transduce Wnt signaling, but their assembly and

disassembly are regulated by the Wnt signaling pathway (71).
3.4 TGF-b/BMP signaling pathway

The transforming growth factor b (TGF-b) superfamily of

proteins consists of subfamilies such as TGF-b and bone

morphogenetic protein (BMP). PC are important coordination

sites for TGF-b signaling (Figure 1), and the receptors for TGF-b
Frontiers in Immunology 04
signaling, TGFb-RI and TGFb-RII, are localized at the tip and base

of the cilia (72). BMP signaling is similarly regulated by signaling

proteins that are localized in PC (73, 74). Upon ligand binding, the

TGF-b receptor translocates to the ciliary pocket, where it gets

internalized by clathrin-dependent endocytosis, forming clathrin-

coated vesicles and early endosomes (72). Small mother against

decapentaplegic (SMAD) protein transcription factors, SMAD2/3

(downstream of TGF-b signaling) and SMAD1/5/8 (downstream of

BMP signaling) (74) are phosphorylated by early endosomal

anchoring. Activated SMAD transcription factors form a trimeric

complex with an auxiliary SMAD (SMAD4) and translocate to the

nucleus for the expression of target genes (75).

TGF-b1 is the most abundant TGF-b isoform in most tissues,

including the skin (76). TGF-b1 has been shown to have

immunosuppressive effects (77); however, its role in the

development and migration of epidermal LCs (78, 79), as well as

in the induction of T helper (Th) 17 cell differentiation (80, 81),

highlight the pro-inflammatory effects of TGF-b1. Thus, TGFb1’s
immunosuppression in the skin may be easier to overcome than

that in other organs (82). In psoriatic epidermis lesions, typical

TGF-b signaling levels are downregulated and TGF-b receptors are

markedly diminished (83, 84), whereas increased TGF-b1 in the

epidermis and serum is directly correlated with the severity of the

skin inflammation (82, 85). This may be due to the enhanced

production of molecules required for the development of Th1

inflammatory dermatopathies induced by the overexpressed TGF-

b1 (82). Studies have shown that active TGF-b1 release promotes a

variety of physiological or pathological processes via primary

cilium-mediated TGF-b signaling; and, the absence of PC impairs

functions that are dependent on TGF-b1 signaling (86, 87).

The typical TGF-b signaling molecules are expressed at low

levels, but KC-derived BMP7 signaling is highly expressed

throughout the proliferating psoriatic epidermis (88). TGF-b
family members induce differentiation and proliferation of bone

marrow-derived epidermal LC-like cells with a phenotype similar to

LCs by preferentially activating the BMP signaling cascade (88) and

enhance the stimulatory activity of Treg cells in inflammation (89).

In addition, TGF-b signaling is also necessary for the formation and

survival of tissue resident memory T cells (90, 91).
3.5 Notch signaling pathway

Notch signaling is involved in the normal epidermal

proliferation and differentiation program. Notch signaling is

upregulated in suprabasal cells and hair follicles, and Notch

receptor expression sites coincide with cells that are initiating or

undergoing terminal differentiation (92, 93). Notch signaling

balances the proliferation and differentiation of KCs and LCs

(94–97) and maintains the epidermal skin barrier function (93,

98). The Notch receptors (Notch 2, Notch 3) and the catalytic

subunit of the protease g-secretase localize in the epidermal cilia (8,

99) (Figure 1). Upon binding of the extracellular domain of the

receptor to the Notch ligand on the neighboring cell membrane, the

Notch receptor undergoes two proteolytic cleavages that release its

intracellular domain (92). The Notch intracellular domain
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translocates to the nucleus and activates the expression of

downstream target genes by binding to the transcriptional

repressor CSL to form a complex and recruit the coactivator

protein Mastermind (100, 101). In addition, PC can activate

Notch signaling by translating the perceived shear stress (102).

Absence of PC attenuates Notch signaling and directly impairs

epidermal differentiation and the skin barrier function (8). Notch

dysregulation is an important phenotype in inflammatory skin

diseases (103). The expression of Notch-related genes is

downregulated and epidermal KC differentiation is inhibited in

psoriasis skin biopsies (95, 104). Expression of Notch receptors is

similarly markedly downregulated, or even undetectable, in the

epidermis of patients with atopic dermatitis (105). The Notch

signaling pathway also reinforces Th cell differentiation,

particularly during the differentiation of CD4+ T cells to effector

subpopulations such as Th1, Th2, and Th17 (106–108). Although

the transduction function of PC in response to Notch signaling is

crucial for skin development, the manifestation of PC that changes

with Notch signaling in skin inflammation requires further study.
4 Involvement of primary cilia in the
inflammatory response of skin-
associated structures

4.1 Keratinocytes

KCs are the predominant cell type in the epidermis. Their

proliferation begins in the basal layer of the epidermis, they gradually

migrate, differentiate, andmature upward through the basal, spinosum,

granulosum, and corneum strata, maintaining the normal structure

and function of the epidermis (109). The expression of PC is associated

with the proliferation and differentiation of KCs. Ciliogenesis may be

negatively correlated with KC proliferation (8, 15). However, the

increased numbers of ciliated cells in the epidermis of individuals

with atopic dermatitis may interfere with the differentiation of the cells

under the stress induced by tissue inflammation, leading to the

overproliferation of immature LCs and KCs in the epidermis (9, 16).

KCs constitute the mechanical barrier of the skin and have

important immune functions. They express a range of pattern

recognition and cytokine receptors that sense the immune

environment, allowing them to respond to and express or secrete

a wide range of pro-inflammatory cytokines, chemokines, and

growth factors (110). These responses direct and activate most

polarized immune responses, including Th1, Th2, Th17, and a

variety of autoinflammatory responses, making KCs the causative

agent of many, if not all, inflammatory skin disorders (110). The

formation of PC in KCs is regulated by immune signaling stimuli.

The number of ciliated cells increases significantly (without

significant ciliary length changes) after stimulation of neonatal

normal human epidermal keratinocytes with Th2 cytokines

(interleukin [IL]-4, IL-13, and IL-31) and Th17 cytokines (IL-17A

and IL-22), whereas the number of ciliated cells tends to decrease

when stimulated with high concentrations of proinflammatory

factors (IL-1b, tumor necrosis factor-alpha (TNF-a), and
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interferon-gamma (IFN-g)) (16). Patients with atopic dermatitis

and psoriasis have a significant increase in the number of PC

expressed by KCs, which may be related to JNK phosphorylation

regulated by the expression of the ciliary transport protein IFT88

(16). Dysregulation of the JNK pathway influences the onset of

inflammatory dermatoses (111). Thus, KCs exhibit alterations in

their primary cilium numbers while mediating diverse skin immune

responses, and the immune function of KCs may be influenced by

the sensing and transduction functions of their PC (Figure 2).

Upon activation by local skin inflammatory signals, KCs

express MHCII molecules on their surface, allowing them to act

as antigen-presenting cells (APCs) to activate localized (auto-

reactive) CD4+ and CD8+ T cells (112–114) and induce Th1-

based immune responses (113, 114). PC also appear to be

involved in MHCII expression. Defects in the ciliary kinesin

motor protein Kif7 reduce cell surface MHCII expression on

thymic epithelial cells and seem to correlate with the overall

activation level of the Hh pathway (115). Therefore, the

expression of PC on KCs may influence the activation of local

inflammatory signals on MHCII expression on KCs and the ensuing

immune responses.
4.2 Langerhans cells

LCs are important cutaneous APCs, their migration to lymph

nodes induces T cell differentiation in specific immune

environments (94, 116–118). Different LC subpopulations

synergistically modulate the homeostasis of the normal human

skin and immune responses in diseases (94). LCs have been

reported to proliferate extensively in the epidermis of inflamed

skin (94, 119). In the epidermis of patients with atopic dermatitis,

the expression of PC on LCs is increased with hyperproliferation of

immature LCs (9). Studies on the exact mechanisms by which

primary cilium expression affects LC function are lacking, but

ciliary signaling pathways, such as TGF-b/BMP and Notch

signaling, are known to mediate the inflammatory proliferation

and differentiation of LCs. Thus, PC may influence LC function in

skin inflammation via these pathways.

TGF-b1 is essential for the development and maintenance of

epidermal LCs (78, 120). Disruption of TGF-b1 signaling drives LC

migration from the epidermis to subcutaneous draining lymph nodes

in both homeostatic and inflammation-inducing environments (121).

Monocytes are also an essential source of LCs. Under inflammatory or

injured conditions, monocyte-derived LC-like cells are rapidly

recruited to the site of inflammation, activating skin T cells by

producing inflammatory cytokines and amplifying inflammation

(122, 123). In vitro, both TGF-b1 and BMP7 can induce the

complementary differentiation of monocytes into LCs, but BMP7-

induced LCs produce larger amounts of proinflammatory cytokines

and exhibit a greater capacity to stimulate T cells than TGF-b1-
induced LCs (88, 124). Notch signaling also mediates the generation of

monocyte-derived LCs (96, 97) and promotes the differentiation of

LC2 subpopulations with immunomodulatory effects (94). Cilia-

associated signaling derived from epidermal KC is known to guide

the self-renewal and differentiation of inflammation-associated LCs
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(88), suggesting that cilia-mediated signaling may be a key factor in

facilitating the crosstalk between skin KCs and LCs.

Antigen presentation by LCs is one of the prerequisites for

inducing T cells to initiate an immune response. In inflammatory

environments, the number of LCs in the skin increases (derived

from monocytes and/or skin-residents, but mainly from recruited

monocytes) (122, 125) (Figure 2). LCs and macrophages share a

common precursor; therefore, LCs share many similarities with

tissue-resident macrophages in self-renewal maintenance and

ontogeny (125, 126). Deletion of primary cilium component

genes affects the macrophage niche, thereby contributing to an

accumulation of infiltrating macrophages and a decrease in resident

macrophages (127). Could PC abnormalities also affect the LC

ecological niche? Further studies are awaited.
4.3 Fibroblasts

The cellular composition of the dermis includes fibroblasts as well

as a host of immune cells such as macrophages, immature dendritic

cells, mast cells, and resident memory CD4+ T cells (2). Fibroblasts
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amplify the inflammatory response of the skin (128, 129), promoting

type 2 immunity and pruritus in atopic dermatitis (129, 130). The

absence of PC on fibroblasts increases the secretion of the

proinflammatory cytokine IL-6, which in turn inhibits PC

formation on fibroblasts. This feedback loop of PC loss and IL-6

upregulation amplifies the inflammatory response (18).

Inflammatory cytokines and chemokines produced by dermal

fibroblasts have a key inflammatory role in the skin (131, 132).

Many chemokines originating from fibroblasts bind to receptors

expressed by myeloid and T cells, promoting tissue inflammation via

immune cell recruitment (128). In addition, fibroblast growth factor

(FGF) expressed by fibroblasts can induce KC hyperproliferation (133).

Psoriasis is an inflammatory skin disease characterized by epidermal

KC overproliferation and abnormal differentiation (134). In psoriatic

skin, mRNA levels of FGF and its receptor (FGFR) are elevated (135).

High FGF expression is localized in the dermis, and that of FGFR is

localized in the basal and suprabasal layers of the epidermis, coinciding

with the localization offibroblasts and KCs (135). The increased FGFR-

mediated signaling contributes largely to the epidermal hyperplasia of

psoriasis (128). FGF/FGFR signaling has been found to act through PC

and can control ciliogenesis while crosstalking with the PC-associated
FIGURE 2

Involvement of ciliated cells in skin inflammatory responses. (1) Pro-inflammatory factors and TH2 and TH17 cytokines stimulate the aberrant
expression of PC, which is manifested by changes in length and number. Abnormal expression of PC mediates the abnormal proliferation and
differentiation of keratinocytes and promotes immune response and inflammatory process in the skin. (2) PC may be involved in regulating the niche
of LC in inflamed skin to ensure the maintenance of LC number in the epidermis and to induce differentiation and response patterns of different T
lymphocyte subsets. (3) The inflammatory response is amplified by the activation loop formed between the absence of PC on fibroblasts and the
upregulation of IL6. High expression of fibroblast growth factor induces proliferation and abnormal differentiation of epidermal keratinocytes, which
may be associated with the expression of PC in keratinocytes. (4) PC may be associated with low expression of skin barrier related proteins like LOR
and FLG. PC are also involved in skin inflammation stimulated by external environmental triggers like PM2.5. PC, primary cilia; LC, Langerhans cell;
DC, dendritic cell; FLG, filaggrin; LOR, loricrin; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; MHCII, major histocompatibility
complex class II.
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Hh pathway (136). Sustained activation of pathological FGF/FGFR

signaling results in primary cilium shortening and inhibition of the Hh

pathway; and, the shortening of cilia is associated with a reduction in

the speed of the IFT affected by FGF signaling (137). Thus, PC are likely

to be the sites of important mediators and effectors of fibroblast

inflammation (Figure 2).
4.4 Skin barrier

PC in KCs are important for the adequate formation of the skin

barrier. The cilium structural gene kinase family member 3A

(KIF3A) is required for skin barrier homeostasis, and KIF3A

deficiency leads to atopic dermatitis susceptibility (138).

Filaggrin (FLG) and loricrin (LOR), two major proteins expressed

by KCs during terminal differentiation (139), are major components of

the epidermal barrier (140). FLG and LOR deficiencies drive the

deterioration of the skin barrier and skin immune dysfunction,

important pathogenic factors mediating susceptibility to

inflammatory skin diseases (141–143). Skin LOR and FLG

expressions correlate with that of PC. Epidermal hyperproliferation

due to centrosome amplification results in a significant loss of PC

accompanied by a decrease in FLG and LOR expression (14). By

contrast, LOR expression downregulation in atopic dermatitis and

psoriasis is accompanied by an increase in PC (9, 16). In addition to

the reduced FLG expression due to FLG gene mutations, the Th2

cytokinemilieu in patients with atopic dermatitis can itself contribute to

acquired FLG deficiency (144, 145). Whether this is related to increased

PC in response to Th2 stimulation remains to be explored (16).

However, FLG expression levels in atopic dermatitis epidermis do not

seem to correlate with the percentage of ciliated cells (9), and psoriatic

skin samples failed to demonstrate colocalization of PC and LOR (16).

Thus, further research is needed to obtain more conclusive evidence.

Airborne particulate matter induces oxidative skin stress, leading to

skin barrier dysfunction or immune dysregulation, important

contributors to the progression of skin inflammation (146). PM2.5

stimulation inhibits KC differentiation as well as ciliogenesis by

activating the c-Jun pathway, which leads also to ciliary length

shortening (147). Moreover, high levels of environmental PM2.5 can

downregulate the levels of FLG degradation products in the skin and

inhibit the expression of skin barrier protein genes such as FLG and

LOR in human epidermal primary keratinocytes in vitro (145). In

dermal fibroblasts, PM2.5 similarly decreases both ciliated cells and

cilium length, and induces the generation of excessive reactive oxygen

species and the activation of the JNK pathway, promoting localized

inflammatory responses (22). The above suggests that PC are also

involved in the deterioration of skin inflammation by external

environmental stimuli (Figure 2).
5 Regulation of differentiation and
expression of skin immune cells by
primary cilia

Lymphocyte subpopulations drive distinct response patterns in

the skin. In response to specific skin microenvironmental stimuli,
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different lymphocyte subpopulations differentiate from common

naïve precursor cells and secrete specific cytokines to perform their

functions (3). Immune imbalances in T-lymphocyte subsets are

important contributors to the disparate phenotypes of

inflammatory skin diseases that can be classified according to the

specific T-lymphocyte subsets that dominate the response.

Examples include the T1 cell-dominated allergic contact

dermatitis (148) and vitiligo (2), T2 cell-dominated atopic

dermatitis, and T17/T22 cell-dominated psoriasis (2). The effector

mechanisms of each T cell subset determine molecular changes in

local tissue cells, leading to specific microscopic and macroscopic

skin alterations (2).

Hematopoietic cells lack a primary cilium (149), but the PC on

other skin cells can still influence the local immune response via

several direct or indirect channels:

First, cilia-associated proteins have been shown to be expressed

in T lymphocytes, and there is a high degree of morphological and

functional similarities (IFT components, vesicular trafficking, and

signaling such as Hh) between the immunological synapse (IS) of T

lymphocytes and PC, suggesting that the IS may serve as a

functional primary cilium homologue (150, 151). Ciliary protein

deletions severely affect T cell differentiation, maturation, and

immune function. IFT20 knockdown leads to IS assembly defects

and polarized TCR recycling disruption in T cells, resulting in

impaired TCR/CD3 clustering and signaling on IS (152). During

early T cell developmental stages, IFT20 deletion can attenuate

inflammatory manifestations by inhibiting T cell development and

expression of key inflammatory factors (153). Deletion of the

thymocyte-intrinsic ciliary kinesin Kif7, a negative regulator of

Hh pathway activation, increases the activation of the pathway,

which regulates T cell activation and TCR signaling intensity.

However, Kif7 deletion may also decrease the sensitivity of

thymocytes to Shh (115). Kif7-deficient thymi reduce the

differentiation of CD4-CD8- double negative cel ls to

CD4+CD8+double positive (DP) cells and selectively delay the

maturation of DP cells to the CD8 single positive lineage during

T cell development (115). Thymocyte-intrinsic Kif7-deficiency

results in reduced expression of the surface antigen CD5, which

correlates with the intensity of the TCR signal, on DP and mature

CD4 and CD8 cells (115).

Second, ciliated cells can influence tissue homeostasis by

modulating immune cells (Figure 3). PC are shown to tightly

regulate the niche of macrophages and trigger localized

inflammatory responses. Dysfunctional PC can elevate the

expression of the macrophage-recruitment chemokine CCL2,

leading to the recruitment of mononuclear phagocytes and

activation of macrophages, which in turn increases the expression

of the pro-inflammatory cytokines TNF-a and IL-1b (127, 154).

High expression of CXCL12 in the epidermis and dermis has been

shown to induce an increased inflammatory infiltration of immune

cells, such as T lymphocytes and mast cells (155). It has been

suggested that PCmay be able to regulate the expression of CXCL12

through WNT signaling to maintain the homeostasis of the

immune and hematopoietic systems (156). The absence of skin-

specific Notch signaling causes epithelial cells to secrete large

amounts of thymic stromal lymphopoietin, a molecule triggering
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type 2 immunity and leading to massive inflammation and atopic

dermatitis-like disorders (105, 157). The absence of PC on

fibroblasts increases the secretion of the pro-inflammatory

cytokine IL-6 (18). IL-6-activated inflammation inhibits TGF-b-
induced differentiation of naïve T cells to Treg cells and instead

activates a pro-inflammatory T cell response dominated by TH17

cells (158, 159).

Finally, various inflammatory microenvironmental stimuli

induce alterations in the number and length of PC (Figure 3).

The stimulation of KCs using Th2 and Th17 cytokines significantly

increased the number of ciliated cells (16). Ciliogenesis in primary

KCs does not increase in response to stimulation by

proinflammatory factors (IL-1b, TNF-a, and IFN-g) until a

certain concentration of proinflammatory factors is reached,

increasing levels beyond that threshold gradually decrease the

percentage of ciliated cells (16). In inflammatory diseases of other

tissues and organs, proinflammatory signals usually reduce and

elongate PC. IL-6 stimulation reduces the number of PC on colonic

fibroblasts (18). Ciliogenesis is inhibited in acute and chronic

pancreatitis tissues (160, 161). After stimulation with

proinflammatory cytokines (IFN-g and TNF-a), thyrocytes

significantly reduce ciliogenesis but increase ciliary length (162).

IL-1b significantly stimulates ciliary elongation in chondrocytes and

fibroblasts, and this elongation drives downstream inflammatory

responses in the form of chemokine release (17).
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6 Conclusions and perspectives

The role of PC in regulating immune system homeostasis has

not been widely appreciated, partly due to their absence in

differentiated myeloid or lymphoid cells (149). Recent

perspectives suggest that PC signaling facilitates communication

between ciliated cells and non-ciliated immune cells (23, 154, 156).

Additionally, PC and their mediated signals have been implicated in

immune processes associated with various skin lesions (9, 13, 16, 30,

33). However, the mechanisms by which PC regulate cellular

functions and tissue immune homeostasis via signal transduction

are far more complex than previously understood.

The signal transduction function of PC can be achieved in

different ways. For example, extracellular vesicles budding from the

ciliary membrane transport signaling proteins (25, 163), and their

role should not be overlooked. Epigenetically, micro-RNAs

(miRNAs) regulate the assembly and genesis of PC and influence

the level of cilia-associated signaling (164–168). Whether the

aberrant expression of miRNAs in inflammatory skin diseases

(83, 169–171) interferes with primary cilium expression to

promote inflammation also deserves further investigation.

Simultaneous complex stimuli have different driving effects on

primary cilium expression and relevant downstream signaling

pathways, but they collectively affect the roles of PC in disease.

For example, the expression of ciliary genes (ENO4, INTU, KIF27,
FIGURE 3

Differentiation and functional regulation of immune cells influenced by PC in the skin. Cytokines during skin immune processes regulate the
phenotype of PC on cells. Abnormal expression of PC regulates the polarization and infiltration of non-ciliated immune cells. TSLP, thymic
stromal lymphopoietin.
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PACRG, and STK36), stimulated by the inflammatory factors IFN-g
and TNF-a, is increased but ciliogenesis is inhibited, whereas the

high expression of specific miRNAs (miR-146b-3p, miR-21-5p, and

miR-6503-3p) decreases both the ciliary gene expression and

primary cilium numbers (162). Both inflammatory factors and

specific miRNAs synergistically result in shorter and fewer PC in

disease (162). The skin is a large and complex organ, and primary

cilium-expressing cells in the dermis and epidermis differ somewhat

in their sensitivity to specific inflammatory environments to the

extent that both the trend of primary cilium expression as well as its

immunity drivers may be cell-specific. The characteristic expression

of PC in different skin environments cannot be analyzed from a

single perspective.

Among the PC-mediated signaling pathways, the transduction

of Hh signaling must occur via PC, whereas other signals are only

partially dependent on PC (35). In addition, the primary cilium-

dependent crosstalk among various signaling pathways is

important. Co-localization within the PC lays the foundation for

synergistic and crosstalk patterns among some intracellular

signaling pathways (29). For instance, PC offer a unique platform

for G-protein-coupled receptor signaling to regulate Hh signaling

(172, 173). Hh signaling depends on PC; at the same time, PC allow

crosstalk between Hh and other signaling pathways such as mTOR

(174, 175), RTK (176), and prostaglandin (177) pathways. PC are

also able to antagonize the conversion of Hh to the Ras/MAPK

pathway (32). The simultaneous inter-pathway coordination via PC

is also an important process maintaining the normal functioning

and length of the cilia to stably direct downstream signals (177).

Multiple signal pathways may co-coordinate immune responses via

PC. The characteristic expression of various types of immune

signals in skin diseases is the joint result of regulation by the PC

and other parties, and the extent to which PC have specific

regulatory roles in the pathogenesis of these diseases deserves to

be further investigated.

Researchers studying PC usually generate aberrant primary

cilium expression models by mutating or deleting the genes of

various ciliary proteins. The models help validate the functional

significance of the PC and display any independent roles of the

ciliary proteome (12, 67). Some scholars have suggested that the

function of ciliary proteins during inflammation goes beyond their

canonical ciliary function. These researchers propose that PC

themselves may not be involved in the transmission of early

inflammatory signals, and that the regulatory function of the

ciliary proteins in cellular inflammation may be independent of

the ciliary axoneme (178). Therefore, whether the regulatory role of

some ciliary proteins in downstream cellular responses to

inflammation is independent of fundamental primary cilium

structures, such as the ciliary axoneme, needs to be further clarified.

We reviewed the functions of major PC signaling pathways and

c i l i a t ed ce l l s in the sk in , examin ing the poten t i a l

immunomodulatory effects of PC in the skin and their molecular

mechanisms. This paper compiles evidence from various cells,

tissues and disease models, providing valuable references for

investigating the potential mechanisms by which PC
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communicates with the immune system in the skin. However,

this evidence does not fully represent the specific mechanisms of

PC within the skin’s immune environment, highlighting a

limitation of this review and uncerscoring the need for further

molecular studies. In addition, not all PC in the body are created

equal (29). The specificity of PC expressed by diverse skin cells

under the different immune environments of skin diseases also

needs to be clarified in future studies. What immune signals

stimulate PC in skin cells, and what immune pathways and

cellular responses do PC drive in response to these stresses?

These questions merit deeper exploration. A thorough

understaning of the molecular mechanisms underlying PC-

mediated immunomodulation in the skin will enrich our

understanding of skin physiology and related diseases.
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